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The cerebrospinal fluid (CSF) occupies the brain’s ventricles and subarachnoid space
and, together with the interstitial fluid (ISF), forms a continuous fluidic network that
bathes all cells of the central nervous system (CNS). As such, the CSF is well positioned
to actively distribute neuromodulators to neural circuits in vivo via volume transmission.
Recent in vitro experimental work in brain slices and neuronal cultures has shown that
human CSF indeed contains neuromodulators that strongly influence neuronal activity.
Here we briefly summarize these new findings and discuss their potential relevance to
neural circuits in health and disease.
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INTRODUCTION

The cerebrospinal fluid (CSF) system is an evolutionarily preserved feature of animal brains
(Brocklehurst, 1979) and provides central neurons with a regulated chemical environment well
suited to promote their function and survival. CSF is a clear transparent extracellular fluid
occupying the ventricles (I–IV) and subarachnoid space (Figure 1A), and forms a continuous
fluidic network together with the interstitial fluid (ISF) of the parenchyma (Figure 1B). Its
composition is characterized by low protein (∼1% of blood) and high salt (>150 mmol/L) content,
and is influenced by multiple sources including blood, the choroid plexus, ventricular ependymal
cells, neurons and glia (Smith et al., 2004; Skipor and Thiery, 2008).

Communicating freely with the ISF (Brightman and Palay, 1963; Smith et al., 2004), the CSF
system has the potential to serve as a vessel for neuromodulatory signals acting via volume
transmission (Agnati et al., 1986, 2010). However, whether the CSF system in fact plays an active,
rather than simply passive, role in distributing neuromodulators throughout the brain is still
unknown. In this review, we summarize a set of new experimental findings in vitro showing that
endogenous neuromodulators in human CSF potently influence the function of pyramidal cells
and interneurons in the rat hippocampal brain slice, and in rat cortical neuronal cultures. The
potential significance of this neuromodulation is discussed in health and disease, and an outlook
on the future advancement of this research field is provided.
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FIGURE 1 | Schematic drawing of the human CSF system. (A) The position of the lateral (I/II), third (III), and fourth (IV) ventricles with respective choroid plexa (green),
and the subarachnoid CSF compartments surrounding the brain and spinal cord. (B) Enlargement of area highlighted in (A) showing the interface between
ventricular CSF and the ISF of the parenchyma in the adult brain. Note the restricted molecular exchange across the choroid plexus epithelial lining, where cells are
adjoined by tight junctions (blood-CSF barrier), as opposed to areas of the ventricular lining composed of ependymal cells connected by gap junctions (black arrows
indicate free exchange of molecules between CSF and ISF at these sites).

RECENT IN VITRO FINDINGS WITH
HUMAN CEREBROSPINAL FLUID

Electrophysiological Recordings from
Rat Hippocampal Brain Slices
Since its introduction in the early 1970s, the hippocampal
brain slice preparation has remained a major in vitro platform
to study synaptic, cellular and network aspects of neuronal
activity (Skrede and Westgaard, 1971). However, a limitation
of this experimental model is that neurons in brain slices
are perfused with artificial extracellular fluid (artificial CSF,
aCSF) during recordings. Consisting simply of electrolytes,
glucose and water, aCSF lacks the complex organic make-up
of physiological CSF including proteins, peptides, lipids, amino
acids, etc. Of particular relevance with respect to neuronal
activity and function, physiological CSF is also known to contain
a wide range of neuromodulators (Table 1) whose collective
influence on cellular and synaptic properties has been poorly
investigated.

In a recent study, Bjorefeldt et al. (2015) used the
simplistic make-up of aCSF to establish the functional impact
of endogenous neuromodulators in real brain extracellular
fluid, i.e., human CSF (hCSF), on rat hippocampal neurons.
The study measured electrolyte and glucose levels in pooled
samples of hCSF obtained by lumbar puncture from both
neurological patients and healthy volunteers. A matched aCSF
was then designed based on obtained measurements and
used as control for potential neuromodulatory effects of
hCSF on hippocampal neurons. In whole-cell patch clamp
recordings from CA1 pyramidal cells, hCSF caused a strong
increase in neuronal excitability, boosting spontaneous action
potential (AP) firing approximately fivefold (Figures 2A,B).
Moreover, hCSF depolarized the resting membrane potential
of CA1 pyramidal cells (Figures 2A,C) and lowered their

firing threshold (Figures 2E,F) through apparent G-protein
signaling-dependent mechanisms (Figures 2D,G), leading to
a left shifted frequency-current (input–output) relationship
(Figures 2H–J). In extracellular field recordings from CA3–CA1
synapses in stratum radiatum, hCSF caused a large increase in
evoked excitatory synaptic transmission that was accompanied
by an apparent increase in presynaptic release probability
(Figure 2K). In attempt to isolate the active neuromodulatory
fraction of hCSF based on molecular size, the authors
dialyzed hCSF samples to remove all constituents larger
than 8 kDa. Compared to untreated hCSF, evoked excitatory
synaptic responses were strongly reduced in the dialyzed hCSF,
indicating a large contribution from low molecular weight
(≤8 kDa) substances to these effects (Figure 2L). Overall
the study revealed strong neuromodulatory influence of hCSF
on hippocampal CA1 pyramidal cells, suggesting that such
neuromodulation could be of relevance to pyramidal cell function
in vivo.

Another recent study examined the effects of hCSF on
GABAergic interneurons in CA1 stratum pyramidale of rat
(Bjorefeldt et al., 2016). Cortical GABAergic interneurons
are a diverse population consisting of many subtypes of
cells with distinct anatomical and physiological properties
(Klausberger and Somogyi, 2008; Moore et al., 2010; Tremblay
et al., 2016). Bjorefeldt et al., 2016 examined two broad
groups interneurons that were classified as having either
fast-spiking (FS) or non-fast-spiking (NFS) phenotype
based on their voltage response to a series of depolarizing
and hyperpolarizing current injections (Bjorefeldt et al.,
2016). The authors found that hCSF, again compared to
a matched aCSF, increased the excitability of both groups
of CA1 interneurons, boosting their spontaneous firing
two–threefold over 10 min in whole-cell current clamp
recordings (Figures 3A,B,D,I,J,L). However, in contrast to CA1
pyramidal cells, hCSF had no effect on the resting membrane
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TABLE 1 | Examples of neuromodulators present in CSF and their respective targets in the central nervous system.

Neuromodulator Target receptor(s) Reference

Classical transmitters

Acetylcholine Nicotinic AChRs (ionotropic), M1–M5 muscarinic AChRs (GPCRs) Welch et al., 1976

Dopamine D1, D2, D3, D4, D5 (GPCRs) Strittmatter et al., 1997

Histamine H1, H2, H3 (GPCRs) Gabelle et al., 2017

Noradrenaline α1, α2, β1, β2 (GPCRs) Strittmatter et al., 1997

Serotonin 5-HT3 (ionotropic), 5-HT1, 5-HT2, 5-HT4 – 5-HT7 (GPCRs) Strittmatter et al., 1997

Neuropeptides

Cholecystokinin CCKA, CCKB (GPCRs) Geracioti et al., 1993

Neuropeptide Y Y1, Y2, Y4, Y5 (GPCRs) Nilsson et al., 2001

Orexin OX1, OX2 (GPCRs) Heywood et al., 2015

Oxytocin OXTR (GPCR) Martin et al., 2014

Somatostatin SSTR1, SSTR2, SSTR3, SSTR4, SSTR5 (GPCRs) Nilsson et al., 2001

Substance P NK1R (GPCR) Juul et al., 1995

Vasoactive intestinal peptide VPAC1, VPAC2 (GPCRs) Juul et al., 1995

Vasopressin V1a, V1b (GPCRs) Martin et al., 2014

Neurosteroids

Allopregnanolone GABAARs, NMDARs (ionotropic) Meletti et al., 2017

DHEAS GABAARs, NMDARs (ionotropic) Kim et al., 2003

Pregnenolone sulfate GABAARs, NMDARs (ionotropic) Kim et al., 2003

Purines

Adenosine (P1) A1, A2A, A2B, A3 (GPCRs) Schmidt et al., 2015

Adenosine triphosphate P2X1–P2X7 (ionotropic), P2Y2, P2Y11 (GPCRs) Schmidt et al., 2015

Endocannabinoids

2-AG CB1, CB2 (GPCRs) Romigi et al., 2010

Anandamide CB1, CB2 Romigi et al., 2010

Amino acids

GABA GABAARs (ionotropic), GABABRs (GPCRs) Orhan et al., 2017

Glutamate NMDARs, AMPARs (ionotropic), mGluRs (GPCRs) Spreux-Varoquaux et al., 2002

Gasses

Nitric oxide Guanylyl cyclase Denda et al., 2011

AChR, acetylcholine receptor; GPCR, G-protein coupled receptor; D1–5, dopamine receptors 1–5; H1–3, histamine receptors 1–3; α/β 1–2, alpha and beta noradrenergic
receptors 1 and 2; 5-HT1–7, 5-hydroxytryptamine receptors 1–7; CCKA/B, cholecystokinin receptors A and B; Y1, Y2, Y4, Y5, neuropeptide y receptors 1, 2, 4, and
5; OX1–2, orexin receptors 1 and 2; OXTR, oxytocin receptor; SSTR1–5, somatostatin receptors 1–5; NK1R; neurokinin 1 receptor; VPAC1–2, vasoactive intestinal
peptide receptors 1 and 2; V1a/b, vasopressin receptors V1a and V1b; GABAA/BRs, types A and B gamma-aminobutyric acid receptors; NMDARs, N-methyl-D-aspartic
acid receptors; A1, A2A/B, A3, adenosine receptors A1, A2A, A2B and A3; P2X1−7/P2Y2/11; adenosine triphosphate (ATP) receptors P2X1−7, P2Y2 and P2Y11; CB1/2,
cannabinoid receptors type 1 and 2; AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; mGluRs, metabotropic glutamate receptors.

potential of interneurons (Figures 3B,C,J,K), indicating
cell specificity of the neuromodulatory effects. Similar to
pyramidal cells, hCSF caused a left-shift in the frequency-
current relationship of both groups of interneurons, increasing
their responsiveness to excitatory input (Figures 3E–H,M–P).
Moreover, both interneuron groups displayed increased firing
in response to sinusoidal current injections at theta and
gamma frequencies in hCSF. Together with strong excitation of
pyramidal cells, these effects are likely to promote hippocampal
oscillatory network activity (Bjorefeldt et al., unpublished
findings).

Together these studies show that (i) hCSF contains
physiologically active neuromodulators that potently increase
the excitability of both pyramidal cells and interneurons in vitro,
(ii) some of these neuromodulatory effects are cell-type specific
and act through G-protein coupled receptors (GPCRs), (iii)
pyramidal cells appear to be more strongly modulated than the
two examined groups of GABAergic interneurons, (iv) active

neuromodulators are largely ≤ 8 kDa in size and (v) the presence
of neuromodulators in physiological brain extracellular fluid
such as hCSF can help explain differences in the amount of
spontaneous neuronal activity observed in vivo vs. in typical
in vitro brain slice recordings.

Multielectrode Array Recordings from
Rodent Primary and Stem Cell-Derived
Neural Cultures
Multielectrode arrays (MEAs) are extracellular recording devices
allowing the detection of neuronal network activity generated by
cultured neurons or within brain slice preparations (Figure 4).
MEAs are composed of tens of electrodes embedded into a
glass or plastic substrate. On this electrode array, neural cells
can be cultured and brain slice preparations can be placed
to study neuronal activity at the single cell and network
level for minutes up to several months (Obien et al., 2014).
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FIGURE 2 | Effects of human CSF on CA1 pyramidal cells in the rat hippocampus. (A) Example traces of spontaneous action potentials recorded at resting
membrane potential (Vrest) in aCSF and after 10 min of hCSF perfusion. (B) Summary graph of the effect of hCSF on spontaneous firing at Vrest. (C,D) Summary
bar graphs showing effect of hCSF on Vrest under conditions of unperturbed (C) and clamped (D) G-protein activity. (E) Example traces of action potential threshold
recorded in aCSF and after 10 min of hCSF perfusion. (F,G) Summary bar graphs showing effect of hCSF on action potential threshold under conditions of
unperturbed (F) and clamped (G) G-protein activity. (H) Example traces of action potentials evoked by depolarizing current injections from –70 mV in aCSF and after
10 min of hCSF perfusion. (I) Summary graph of the effect of hCSF on the frequency-current (input–output) relationship in CA1 pyramidal cells. (J) Summary graph
showing normalized change in rheobase, gain (slope), amount of injected current required to reach 50% of maximum firing frequency (I Fmax/2) and maximum firing
frequency (Fmax) in hCSF. (K) Summary graph showing effect of hCSF on the EPSP slope (upper left graph), fiber volley (lower left graph), and paired-pulse ratio
(PPR) in extracellular field recordings from CA1 stratum radiatum. (L) Summary graph of the effect of normal vs. dialyzed hCSF (hCSF and D. hCSF) on the EPSP
slope (upper graph) and fiber volley (lower graph) in extracellular field recordings. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. Adapted from Bjorefeldt et al. (2015).

For this purpose, MEAs are connected to an amplifier and
computer system, where an increasing amount of data analysis
approaches is being used to analyze the electrophysiological
neuronal activity. The extracted neuronal signals are comprised
of spikes (filtered signals > 200 Hz) and local field potentials
(filtered signals < 200 Hz), and thereby, neuronal function

can be analyzed at different levels in a non-invasive approach.
As the extracellular solution in the recording chamber is
easily exchangeable, MEAs represent an ideal non-invasive
measurement tool to understand the acute and chronic impact
of CSF samples on single neurons as well as neuronal
networks.
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FIGURE 3 | Effects of human CSF on fast-spiking and non-fast-spiking rat hippocampal CA1 interneurons. (A) Example of cell morphology in the FS interneuron
group. (B) Example traces of spontaneous action potentials recorded at Vrest in aCSF and after 10 min of hCSF perfusion in a FS interneuron. (C,D) Summary bar
graphs showing effect of hCSF on Vrest (C) and spontaneous firing frequency (D) in the FS interneuron group. (E) Example traces of action potentials evoked by
depolarizing current injection from –70 mV in aCSF and after 10 min of hCSF perfusion. (F) Summary graph of the effect of hCSF on the frequency-current
(input–output) relationship in FS CA1 interneurons. (G) Summary graph showing normalized change in rheobase, gain (slope), amount of injected current required to
reach 50% of maximum firing frequency (I Fmax/2) and maximum firing frequency (Fmax) in hCSF. (H) Summary graph of the effect of hCSF on the threshold of first
elicited action potential in response to depolarizing current injection from –70 mV in FS interneurons. (I) Example of cell morphology in the NFS interneuron group.
(J) Example traces of spontaneous action potentials recorded at Vrest in aCSF and after 10 min of hCSF perfusion in a NFS interneuron. (K,L) Summary bar graphs
showing effect of hCSF on Vrest (K) and spontaneous firing frequency (L) in the NFS interneuron group. (M) Example traces of action potentials evoked by
depolarizing current injection from –70 mV in aCSF and after 10 min of hCSF perfusion. (N) Summary graph of the effect of hCSF on the frequency-current
(input–output) relationship in NFS CA1 interneurons. (O) Summary graph showing normalized change in rheobase, gain (slope), amount of injected current required
to reach 50% of maximum firing frequency (I Fmax/2) and maximum firing frequency (Fmax) in hCSF. (P) Summary graph of the effect of hCSF on the threshold of first
elicited action potential in response to depolarizing current injection from –70 mV in NFS interneurons. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. Adapted from Bjorefeldt
et al. (2016).

Otto et al. (2009) described the neuronal network function
of rodent primary tissue-derived, and stem cell-derived,
neurons exposed to aCSF or to hCSF samples obtained
from healthy individuals and traumatic brain injury (TBI)
patients by applying MEAs. The mouse embryonic stem

cell (mESC)-derived neuronal population used comprises
∼70% GABAergic neurons (Illes et al., 2009) and ∼70% of
neurons are intrinsically active (Illes et al., 2014). Due to this
cellular composition, the mESC-derived neuronal cultures
are predominantly asynchronously or partially synchronously
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FIGURE 4 | Microelectrode array recordings of neuronal culture to study the impact of human CSF on neuronal network activity. Representative image of a (A)
multielectrode array (MEA), (B) synchronous neuronal network activity detected by 59 electrodes, (C) cortical neural cells cultures on MEAs, and cortical neuronal
morphology. (D) Schematic drawing of a recording procedure used to study the functional impact of human CSF samples on neuronal cultures. Examples show the
neuronal network activity of cortical neurons exposed to cultivation media, aCSF and human CSF samples from a healthy individual.

active in aCSF or cultivation media. However, substitution
of aCSF with healthy hCSF produces highly synchronous
neuronal network activity. As described by Otto et al. (2009),
several network activity parameters are increased after healthy
hCSF application, such as the number of spikes, population
bursts and parameters to describe synchrony such as Cohen’s
kappa value. Since hippocampal and cortical rodent neuronal
cultures are predominantly of glutamatergic identity, the
recorded network activity in the presence of culture media or
aCSF is highly synchronous (Wagenaar et al., 2006; Illes et al.,
2014; Perez-Alcazar et al., 2016) (Figure 4D). Nevertheless,
hippocampal or cortical neuronal cultures exposed to healthy
hCSF show a strong increase in the number of population
bursts (Otto et al., 2009; Gortz et al., 2013) (Figure 4D).
Thus, all together these studies show that hCSF enhances
neuronal activity and induces synchronicity in the network
(Otto et al., 2009; Gortz et al., 2013; Jantzen et al., 2013), which
is consistent with the results obtained in hippocampal brain
slices.

Study Limitations
There are a number of outstanding questions and limitations
associated with above described studies. Perhaps most notable
is that the specific identity of active neuromodulators in hCSF,
as well as their respective receptor signaling pathways, remains
to be identified. A further limitation is that effects of hCSF
were examined in neurons from rat. Thus, to what extent
are findings with hCSF in these studies of relevance to the
human brain? To control for potential species differences in

neuromodulatory effects we attempted to sample CSF from the
cisterna magna of rats. Unfortunately, given the small extractable
volume from each rat (∼150 µL) we were unable to obtain
a CSF pool large enough to allow proper electrophysiological
experimentation. Since neuromodulatory systems architecture is
known to be well conserved across species (O’Connell, 2013;
Swallow et al., 2016; Lovett-Barron et al., 2017), we would expect
hCSF to produce similar effects on human hippocampal and
cortical neurons. In line with this prediction, a recent study
using human neocortical brain slices prepared from resected
tissue of epilepsy patients reported that hCSF, as compared to
artificial culturing media, enhanced neuronal activity (Schwarz
et al., 2017).

Another issue relates to the artificial manner in which
neurons were exposed to neuromodulators in these studies.
hCSF was introduced directly to brain slices and cultured
neurons via an artificial perfusion system, allowing
neuromodulators to bypass any natural diffusion barrier. It
therefore remains unclear whether certain neuromodulators
in hCSF would ever reach the corresponding areas in the
intact brain. Moreover, it is possible that the neuromodulatory
composition of hCSF could differ between brain and spinal
compartments. All hCSF used in above described studies
was sampled from the lumbar subarachnoid space, raising
the question of whether hCSF sampled, e.g., from one
of the ventricles could have produced somewhat different
effects.

Finally, a number of studies suggest that the CSF system
during development is more compartmentalized than in the
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adult and young adult brain due to the presence of strap
junctions between ependymal cells that largely limit the exchange
of molecules between the CSF and ISF (Saunders et al., 2000;
Whish et al., 2015). Thus, it should be noted that the findings
with adult hCSF in above described studies may not have
significant implications for neuromodulatory CSF signaling
during development.

PROPERTIES AND POTENTIAL
SIGNIFICANCE OF CSF
NEUROMODULATION

The essential finding that hCSF contains physiologically active
neuromodulators at ambient levels can be interpreted in light
of two separate, although not mutually exclusive, scenarios.
One possibility is that the neuromodulators, whose specific
identities and relative functional importance are yet to be
fully established, were selectively secreted into the CSF system
in order to exert effects at downstream target areas. In
this case, one could consider the CSF as an ‘active’ vessel
or distributor of neuromodulatory signals within the brain,
as has been previously suggested (Skipor and Thiery, 2008;
Veening and Barendregt, 2010; Fuxe et al., 2012). An alternative
scenario, considering the free bidirectional exchange of molecules
between the CSF and ISF, is that the CSF acts as a sink
for neuromodulatory substances originating from the neuronal
parenchyma, diffusing away from their site of release along
their concentration gradients. The CSF could then be viewed
as reflecting an overall neuromodulatory environment with
broad spatiotemporal profile, perhaps merely transporting
neuromodulators that are to be cleared from the brain
parenchyma.

Whether neuromodulators are in fact actively secreted into
the CSF in vivo or not, their remarkably potent effects on
cortical neurons in recent studies have interesting implications
for neuromodulation and neuronal communication in the brain.
These findings show that (i) there exists neuromodulatory
substances in brain extracellular fluid that retain physiological
function over prolonged time periods (up to several hours
in our studies) and (ii) there are neuromodulatory GPCRs
(not excluding contributions from other receptor types) in
cortex with sufficient affinity for these neuromodulators to
mediate observed effects on neuronal activity. Thus, these
results provide strong support for the concept of long distance
(non-synaptic) volume transmission (Agnati et al., 1986, 2010)
as a means for neuronal communication in the brain. In
line with our findings, neuromodulators acting via CSF
volume transmission in vivo would likely operate on a slow
(minutes to hours) timescale with broad spatial distribution,
targeting neuromodulatory GPCR families (Fuxe et al., 2012,
2013). In addition to canonical intracellular metabotropic
signaling, GPCR activation may influence ionotropic receptor
families via heterodimerization (Borroto-Escuela et al., 2010,
2017).

Given the wide range of neuromodulators found in CSF
(see Table 1), their collective influence on neural circuits

should be considered. In such a paradigm, the functional
impact of a given neuromodulator would depend on its
local concentration, target receptor affinity, expression and
distribution, as well as sensitivity to enzymatic degradation
and/or uptake by transporter proteins. Moreover, parameters
affecting diffusion through extracellular space, such as local
tissue tortuosity and chemical properties of the neuromodulator
(e.g., molecular weight and charge distribution), are likely
to be important (Sykova, 2004). An interesting aspect of
multiple neuromodulators acting via volume transmission to
exert simultaneous influence on neural circuits is the potential
for synergistic neuromodulatory effects, e.g., through converging
intracellular signaling pathways.

Our recent findings have indicated that a major functional
effect of CSF-distributed neuromodulators on cortical neurons
is to boost intrinsic excitability and increase neuronal
responsiveness to excitatory input. It is possible that these
effects, causing a left-shift in neuronal input–output function,
are indicative of how neuromodulation directs neurons and
circuits into an efficient ‘online’ information processing state
during wakefulness. The neuromodulatory effects of hCSF
could facilitate and/or support multiple aspects of neural
circuit function in vivo. For example, allowing fewer numbers
of simultaneously active synapses to drive AP output would
support a sparse and energy efficient information coding
regime, which is thought to be utilized by the brain (Olshausen
and Field, 2004; Wolfe et al., 2010; Barth and Poulet, 2012;
Palm, 2013). With respect to learning and memory, the
increased excitability of cortical pyramidal cells is likely to
enhance NMDA receptor-mediated coincidence detection
and synaptic plasticity in neural circuits through membrane
potential depolarization and increased numbers of back-
propagating APs (Tsubokawa and Ross, 1997; Lisman and
Spruston, 2005). This would promote learning-associated
structural and functional modifications to neural circuits
during active wake, which is when synapses are thought to
undergo strengthening to support acquisition and storage
of new information (Tononi and Cirelli, 2014). In cortical
networks, periods of synchronized fast GABAergic inhibition
onto principal cells give rise to rhythmic membrane potential
fluctuations in neuronal populations (network oscillations)
that are hypothesized to facilitate information processing and
cognition (Singer, 1999; Buzsaki, 2006; Lisman and Jensen, 2013).
By boosting the excitability of both GABAergic interneurons
and principal cells, it is likely that CSF neuromodulation would
promote such rhythm generation in cortical networks and
circuits.

In summary, in terms of its functional effects on neurons,
this type of neuromodulation seems to support multiple circuit
mechanisms hypothesized to underlie cognitive abilities. As an
ambient form of neuromodulation it may serve to promote
and/or facilitate signature neuronal activity patterns important
in information coding and processing by neural circuits.
Neuromodulatory effects of other spatiotemporal characteristics
would be able to operate on top of such an ambient component,
further enriching the means by which neuromodulation can
regulate neural circuit function.
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ORIGIN AND IDENTITY OF CSF
NEUROMODULATORS

The chemical composition of CSF is shaped by contributions
from multiple sources including blood, the choroid plexus,
ependymal cells, neurons and glia (Smith et al., 2004; Skipor
and Thiery, 2008). With respect to neuromodulators, release
from CNS resident cells is likely to be a major source but
the relative contribution of different CNS compartments is
largely unknown. Part of the neuromodulatory composition
of CSF could result from the tonic activity of subcortical
monoaminergic and cholinergic nuclei during wakefulness,
resulting in widespread release of noradrenaline, histamine,
dopamine and serotonin and acetylcholine throughout the brain
(Saper et al., 2001). The finding that release often occurs
from varicosities lacking a postsynaptic element (Descarries
and Mechawar, 2000; Vizi et al., 2010), and that there is
mismatch in transmitter release site vs. receptor location (Jansson
et al., 2002; Fuxe et al., 2005), suggests that monoamines
and acetylcholine operate as volume transmitters in the CNS.
Depending on local regulation of reuptake mechanisms and
acetylcholine esterase levels, these classical transmitters could
be active over long distances. Another potential source is the
CSF-contacting neurons found in periventricular brain regions
of a wide range of species. Some of these neurons feature
varicose neuromodulator-containing processes that terminate
in ventricular CSF (Parent, 1981; Vigh et al., 2004; Veening
and Barendregt, 2010), suggesting that neuromodulators may be
actively released into the CSF to exert downstream effects on
target neurons. Dendritic neuropeptide release from large dense-
core vesicles, such as seen in hypothalamic neuronal populations
(Ludwig and Leng, 2006), may additionally contribute to the
neuromodulatory composition of CSF. In addition to CNS
derived release, certain blood-borne neuromodulators such
as leptin have been shown to enter the CSF by way of
specific transporters expressed at the choroid plexus blood-
CSF barrier (Zlokovic et al., 2000; Skipor and Thiery, 2008).
Furthermore, choroid plexus epithelial cells are known to secrete
certain neuropeptides and neurotrophic factors into the CSF
(Chodobski and Szmydynger-Chodobska, 2001; Smith et al.,
2004).

Our work so far has focused largely on characterizing the
functional impact of CSF neuromodulators on cortical neurons.
While we believe this to be an important effort, the specific
identities of active neuromodulators in hCSF should also be
thoroughly addressed. There is at present evidence suggesting
critical contribution from a distinct receptor subfamily in
promoting hippocampal network oscillations in vitro (Bjorefeldt
et al., unpublished findings). Depending on the experimental
readout of neuronal activity (synaptic, cellular, network), and the
type of neuronal population or brain area examined, the relative
importance of specific neuromodulators in CSF and their various
receptor signaling pathways may vary.

It can be concluded that any neuromodulator remaining
functionally active at the level observed in present studies is
remarkably resistant to both in vivo degradation and reuptake,
and experimental handling such as thawing and freezing.

Neuropeptides may display long half-lives in brain extracellular
fluid and are active at nanomolar concentrations due to their
high affinity GPCRs (Jones and Robinson, 1982; Ludwig and
Leng, 2006; van den Pol, 2012). The actions of peripherally
secreted peptides such as leptin and ghrelin on central neurons
further suggest plausibility of neuropeptide involvement in
the neuromodulatory effects of hCSF. Interestingly, some
neuropeptides have also been shown to enhance effects of non-
peptide neuromodulators such as acetylcholine (Mancillas et al.,
1986; Kouznetsova and Nistri, 2000). Whether such results
exemplify synergistic or additive neuromodulatory effects, this
provides a mechanism by which multiple neuromodulators
present at low ambient concentrations could significantly
influence the operation of neural circuits in vivo.

CSF NEUROMODULATORS IN DISEASE

The most studied neuromodulators in CSF in relation to disease
are the classical transmitters dopamine, serotonin, acetylcholine,
histamine, and noradrenaline. A prototype neurodegenerative
disease in which neuromodulation is impaired is Parkinson’s
disease; neurodegeneration-mediated depletion of dopamine
in the striatum (especially the putamen) is the defining
feature of the disorder, which has translated into a clinically
established therapy based on levodopa/carbidopa treatment
(Carlsson, 2002). Given the dopaminergic lesion, measurements
of CSF concentrations of dopamine or its metabolites should
provide a relatively straightforward diagnostic test but so far
this expectation has not been realized. Nevertheless, some
reports have noted decreased homovanillic acid (HVA, the
end-product of dopamine metabolism) concentrations in CSF
from patients with Parkinson’s disease (Zubenko et al., 1986;
Chia et al., 1993; Loeffler et al., 1995), or decreased CSF
concentrations of dihydroxyphenylacetic acid (DOPAC; the
main neuronal metabolite of dopamine) (Zubenko et al.,
1986; Chia et al., 1993; Gonzalez-Quevedo et al., 1993;
Eldrup et al., 1995). These results were not confirmed in the
deprenyl and tocopherol antioxidative treatment of parkinsonism
(DATATOP) trial that reported negative results for both CSF
HVA and DOPAC in Parkinson’s disease (LeWitt et al.,
1992).

There are many potential reasons for why dopamine
metabolite concentrations in CSF are not robustly associated with
Parkinson’s disease. CSF HVA is only distantly related to neuronal
dopamine stores and reflects several intervening processes.
Since dopaminergic neurons do not contain catechol-O-
methyltransferase, CSF HVA depends on uptake and intracellular
O-methylation in non-dopaminergic cells. Thus, in Parkinson’s
disease, the striatal content of HVA is not as severely decreased as
that of dopamine (Lloyd et al., 1975).

Cerebrospinal fluid dopamine concentration may also not
be a direct marker of central dopamine deficiency; increased
dopamine release from remaining nerve terminals may
compensate the loss of dopaminergic neurons in Parkinson’s
disease, thereby augmenting dopamine delivery from those
terminals to the extracellular fluid (Sossi et al., 2002). CSF
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dopamine concentration may thus underestimate the extent of
loss of neuronal dopamine stores.

Cerebrospinal fluid DOPAC may be a superior marker
of central dopamine stores, compared to HVA or dopamine
itself. DOPAC is formed from deamination of cytosolic
dopamine catalyzed by monoamine oxidase-A. Dopamine leaks
continuously from vesicular stores into the cytosol. Therefore,
the rate of DOPAC formation should be related to the amount
of stored dopamine. Post-mortem putamen from patients with
end-stage Parkinson’s disease shows similarly decreased tissue
concentrations of dopamine and DOPAC (Goldstein et al., 2011),
and CSF DOPAC is related directly to brain tissue content of this
metabolite (Palfreyman et al., 1982).

Although several reports have noted low CSF DOPAC in
Parkinson’s disease, these were relatively small studies (Goldstein,
2013). Further, they did not compare CSF DOPAC levels in other
neurodegenerative diseases and it is presently unclear whether
CSF DOPAC reduction is specific to Parkinson’s disease or not.
More research on these topics is needed.

Other diseases in which neuromodulators play a major role
for the clinical presentation are narcolepsia (orexin), Alzheimer’s
disease (acetylcholine), neuroinflammatory conditions, including
multiple sclerosis (cytokines and interleukins), schizophrenia
(dopamine and its metabolites) and affective disorders (serotonin
and its metabolites). CSF orexin concentration is used as an
adjunct in the criteria of the disease [CSF orexin concentration
is low in the disease due to the loss of orexin-producing neurons
(Bourgin et al., 2008)]. For Alzheimer’s disease and affective
disorders, changes in the neuromodulator concentrations are not
specific enough to be clinically meaningful.

TOWARD A BETTER UNDERSTANDING
OF THE ROLE OF THE CSF SYSTEM IN
NEUROMODULATION

Neuromodulation encompasses a vast variety of biochemical
processes, occurring at various spatiotemporal scales, which tune
the excitability and function of central neurons. In this review, we
have considered how long distance neuromodulation via the CSF
might influence the function of neurons and neural circuits in
health and disease, in light of new experimental findings. Further
efforts are needed in order to establish whether the CSF acts as
an ‘active’ neuromodulatory channel in vivo and, if so, how this

neuromodulation impacts neural circuit function, e.g., during
different brain states such as sleep and wake. To experimentally
confirm such active role of the CSF system would require in vivo
demonstration of (i) active release of neuromodulator into a CSF
compartment, (ii) neuromodulator utilization of the CSF/ISF
system to distribute within the brain and (iii) a functional impact
of the neuromodulator(s) on a distant neuronal population.
Moreover, it would require the capacity to distinguish between
functional effects caused by CSF-derived and locally released
neuromodulator.

A conceivable path toward elucidating the role of the
CSF system in neuromodulation involves further research
into the brain’s CSF-contacting neurons. Identification of
cell type-specific markers enabling selective manipulation of
CSF-contacting neurons that harbor neuromodulatory release
machinery would greatly aid in this effort. The development
of better techniques for detecting neuromodulator release and
diffusion in vivo combined with use of, e.g., fluorescent GPCR
activation reporters and genetically encoded calcium/voltage
indicators should provide new and better means to address the
functional relevance of neuromodulation via the CSF system in
health and disease. At present, further in vitro studies examining
the neuromodulatory influence of healthy and pathological CSF
on central neurons and circuits are warranted.
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