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Abstract

While many useful microstructural indices, as well as orientation distribution functions, can be 

obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of 

microstructural features that can be extracted from the full ensemble average propagator (EAP). 

The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost of 

a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more practical 

by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the EAP 

from significantly undersampled q-space data. We present a post mortem validation study where 

we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also multi-shell 

acquisitions with high fidelity. Human brain samples are imaged with high-resolution DSI at 

9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter provides 

direct measurements of axonal orientations at microscopic resolutions, allowing us to evaluate 

the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their angular error 

and the presence of spurious peaks. We test two fast, dictionary-based, L2-regularized algorithms 

for CS-DSI reconstruction. We find that, for a CS acceleration factor of R=3, i.e., an acquisition 

with 171 gradient directions, one of these methods is able to achieve both low angular error 

and low number of spurious peaks. With a scan length similar to that of high angular resolution 

multi-shell acquisition schemes, this CS-DSI approach is able to approximate both fully sampled 

DSI and multi-shell data with high accuracy. Thus it is suitable for orientation reconstruction and 
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microstructural modeling techniques that require either grid- or shell-based acquisitions. We find 

that the signal-to-noise ratio (SNR) of the training data used to construct the dictionary can have 

an impact on the accuracy of CS-DSI, but that there is substantial robustness to loss of SNR in the 

test data. Finally, we show that, as the CS acceleration factor increases beyond R=3, the accuracy 

of these reconstruction methods degrade, either in terms of the angular error, or in terms of the 

number of spurious peaks. Our results provide useful benchmarks for the future development of 

even more efficient q-space acceleration techniques.

1. Introduction

Diffusion magnetic resonance imaging (dMRI) has played an integral role in the study of 

human brain circuitry in vivo by enabling non-invasive investigation of tissue architecture 

(Le Bihan et al., 1986). The molecular displacements resulting from water diffusion can 

be estimated from dMRI measurements acquired with a pulsed gradient spin-echo (PGSE) 

sequence (Stejskal and Tanner, 1965). Diffusion tensor imaging (DTI), the seminal approach 

for quantitative reconstruction of 3D water molecule displacement (Basser et al. 1994b, 

1994a), assumes a 3D Gaussian displacement distribution and thus can only model a single 

fiber population in each voxel. One of the techniques that were introduced to resolve 

multiple intravoxel fiber populations is diffusion spectrum imaging (DSI), which relies on 

an acquisition that samples the entire q-space on a Cartesian grid (Wedeen et al., 2005). The 

diffusion ensemble average propagator (EAP), or the 3D probability density function (PDF) 

of spin displacements in a voxel, can be recovered directly from a Fourier transform (FT) 

of the Cartesian q-space signals, and yields a plethora of information describing the angular 

and radial features of diffusion (Wedeen et al. 2008; Hagmann et al. 2008).

We have previously used a DSI acquisition to collect data for our post mortem validation 

studies (Jones et al., 2020; Grisot et al., 2021). The benefit of this acquisition is that it yields 

a dataset that is densely sampled in q-space and can thus be used to generate data with 

other sampling schemes (such as single- or multi-shell) with q-space resampling. We have 

shown that this resampling approach can approximate q-shell data from data collected on a 

grid in q-space with high accuracy (Jones et al., 2020). Thus, from a single scan, we can 

generate data with multiple q-space sampling schemes and perform systematic, side-by-side 

comparisons, as we did most recently in the IronTract Challenge (Maffei et al., 2021, 2020).

Given that long acquisition times are one of the main challenges in the post mortem 

validation of dMRI (Yendiki et al., 2021), any opportunity to further reduce the scan time 

would be beneficial, as it would allow us to scan more samples or to scan the same samples 

at higher spatial resolution in the same amount of time. Compressed sensing (CS) has 

been proposed as an approach to accelerated DSI (CS-DSI). In general, CS theory exploits 

transform sparsity to recover signals from sub-Nyquist acquisitions (Donoho 2006; Lustig et 

al., 2008; Lustig et al. 2007). In CS-DSI, q-space is undersampled and the missing samples 

are reconstructed with CS, allowing for a reduction in acquisition time directly proportional 

to the CS acceleration factor. Here, we present the first ex vivo validation of CS-DSI as a 

method for approximating not only fully sampled DSI but also multi-shell acquisitions with 

high fidelity.
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We focus on the dictionary-based, L2-regularized algorithms for CS-DSI that were proposed 

by Bilgic et al. (2013). These methods were shown to achieve orders of magnitude 

faster reconstruction than other CS-DSI methods that used iterative, L1-regularized solvers 

(Menzel et al., 2011; Paquette et al., 2015; Merlet et al., 2012), without compromising 

reconstruction quality. Previously, CS-DSI reconstruction fidelity was assessed in vivo. In 

that case, the only available ground truth was a fully sampled DSI dataset from the same 

brain (Bilgic et al., 2012, 2013; Menzel et al., 2011). A drawback of this approach is 

that the fully sampled DSI data are inherently corrupted with noise, particularly at high 

b-values. Bilgic et al. (2013) ameliorated this issue by sampling a few q-space locations 10 

times, and using these low-noise q-space samples as ground truth. Interestingly, they found 

that CS-reconstructed data exhibited lower errors (8.2%) than the 1-average, acquired data 

(10.7%), when they were both compared to the 10-average, acquired data. These results 

highlight the inadequacy of acquired DSI data as ground truth. Ultimately, our goal is to 

characterize the underlying white-matter fiber geometries. Thus, it is important to know 

the accuracy of both the CS-reconstructed and acquired data with respect to the true fiber 

orientations. For this purpose, we need independent measurements of fiber orientations from 

a modality that does not rely on water diffusion.

Here, we address these questions with a validation study of CS-DSI reconstructions in 

ex vivo human brain. Our goal is two-fold. First, we perform the first validation study 

that assesses the accuracy of CS-DSI with respect to ground-truth measurements of axonal 

orientations from optical imaging. This is of relevance to the use of CS-DSI in large-scale 

population imaging to study white-matter organization across the human lifespan (Tobisch 

et al., 2018). Second, we investigate the ability of CS-DSI reconstruction to approximate 

multiple q-space sampling schemes, including grid- and shell-based. This is of relevance to 

both in vivo population studies and ex vivo validation studies, where the flexibility to use 

orientation reconstruction methods and microstructural models that require either type of 

sampling scheme is an asset.

Specifically, we image human white-matter samples with high-resolution DSI at 9.4T and 

with polarization-sensitive optical coherence tomography (PSOCT) (De Boer et al., 1997). 

The latter is a technique in the family of label-free 3D optical imaging methods, which 

provide direct measurements of fiber orientations at microscopic resolution (Wang et al., 

2018 2011) and have emerged in recent years as a powerful tool for the validation of the 

mesoscopic-resolution diffusion orientations obtained from dMRI (see Yendiki et al. 2021 

for a review). We have recently demonstrated the ability of PSOCT to resolve complex fiber 

configurations, including interdigitated crossing fibers, distinct (non-interdigitated) crossing 

fibers, and branching fibers, in human brain tissue (Jones et al., 2020). Numerous other 

studies have employed PSOCT to resolve crossing fibers in biological tissues (Villiger et al., 

2018; Ruiz-Lopera et al., 2021; Yao and Duan 2020; Guo et al., 2004; Fan and Yao 2013), 

including the mouse brain (Lefebvre et al., 2021) and human brain (Boas et al., 2017; Wang 

et al., 2018).

We undersample the DSI data and use the dictionary-based techniques from Bilgic et 

al. (2013) to perform CS reconstructions, with dictionaries trained on DSI data from 

three different ex vivo human brain blocks to determine generalizability. We investigate 
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if fiber orientations estimated from CS reconstructed data can achieve the same accuracy as 

those estimated from the fully sampled data, by comparing both to the ground-truth fiber 

orientations measured by PSOCT. We also investigate the effect of the SNR on dictionary­

based CS algorithms, which is yet to be well characterized (Bilgic et al., 2012). Specifically, 

we examine the influence of the SNR of the training or test data on the accuracy of the 

diffusion orientation estimates. We show that, for an acceleration factor of R=3, which 

corresponds to 171 diffusion-encoding gradient directions, the accuracy of CS-DSI is very 

similar to that of fully sampled DSI. Our findings indicate that, with an acquisition time 

similar or shorter than typical high angular resolution multi-shell scans, CS-DSI data can be 

used to approximate both fully sampled DSI and multi-shell data with high accuracy. This 

provides the flexibility to take advantage of the high angular accuracy of DSI (Daducci et 

al., 2013; Jones et al., 2020; Maffei et al., 2020, 2021) while also allowing microstructural 

analyses either on q-shells or on the full EAP. For in vivo population studies, this gives 

access to a wider range of potential biomarkers. For ex vivo validation studies, it facilitates 

the comparison of multiple acquisition schemes from a single scan. Finally, we find that, 

when the acceleration factor of CS-DSI is increased beyond R=3, performance deteriorates, 

increasing either the angular error or the number of spurious peaks. These results suggest 

that a benchmark for the future development of q-space acceleration techniques may be to 

enable high-fidelity reconstructions at acceleration factors greater than R=3.

2. Methods

2.1. Sample identification

The samples used in this study were extracted from two human brain hemispheres that were 

obtained from the Massachusetts General Hospital Autopsy Suite and fixed in 10% formalin 

for at least two months. Demographic information about the hemispheres is given in Table 

1. Three samples were extracted from different anatomical locations of the hemispheres. 

Sample 1A (Fig. 1A) was cut from brain 1 and was approximately 3 × 2 × 2 cm. It 

contained an area of deep white matter (WM) that included the corpus callosum (CC), 

the internal and external capsules (IC and EC, respectively), the caudate nucleus and the 

putamen. Sample 1B (Fig. 1B) was taken from a different region of brain 1. The block was 

approximately 3 × 2 × 2 cm and contained an area of deep WM including the posterior 

internal capsule, putamen, and thalamus. Sample 2 (Fig. 1C) was cut from brain 2 and was 

sized approximately 2 × 2 × 3 cm. The superior part of the block contained the anterior part 

of the superior frontal gyrus, the medial side included the cingulate sulcus, and the lateral 

side contained parts of the corticospinal tract and dorsal superior longitudinal fasciculus 

(SLF-I).

2.2. Diffusion MRI

2.2.1. Data acquisition—All three ex vivo samples were scanned in a small-bore 9.4T 

Bruker Biospec system with gradients capable of Gmax=480 mT/m. Prior to scanning, each 

block was placed in a plastic syringe filled with Fomblin (perfluoropolyether) and all air 

was removed. The dMRI data were acquired using a spin echo 3D single-shot echo-planar 

imaging (EPI) sequence with Gmax=393 mT/m, TR=750 ms, TE=43 ms, GRAPPA factor 

2, matrix size 136 × 136 × 176, 1 average and 250 μm isotropic resolution. We used a 
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DSI sampling scheme consisting of one b=0 image and 514 gradient directions arranged 

on a Cartesian lattice in q-space and zero padded to an 11 × 11 × 11 grid (Wedeen et al., 

2005). Diffusion encoding was applied with bmax=40,000 s/mm2, ẟ=15 ms, and Δ=21 ms, 

corresponding to qmax=250 mm−1. The total acquisition time was approximately 48 h. We 

will refer to the datasets containing all 515 diffusion volumes as the “fully sampled” or “FS” 

data.

A 4-channel phased array surface receive (Rx) coil was used in dMRI acquisitions 

(diagramed in Fig. 2A, bottom), leading to a decrease in coil sensitivity and SNR as the 

distance between the sample and Rx coil increased. The coronal planes of the dMRI data 

were approximately parallel to the surface coil, so coronal slices closer to the coil had higher 

signal than the slices farther away. Fig. 2A (top) shows three example coronal slices from 

the b=0 volume of sample 1A, each with varying distances from the surface Rx coil. To 

quantify the dMRI SNR, we used the b=0 signal intensities from a region of interest (ROI) 

in the deep WM. The SNR of each coronal slice was calculated as the mean signal (Fig. 

2B, solid black line) divided by the standard deviation of the signal intensities from the ROI 

(Fig. 2B, solid gray line). To relate the SNR across slices to the sensitivity profile of the 

coil, we fit a linear model to the calculated SNR values to obtain an expression for SNR as a 

function of slice (Fig. 2B, dotted green line). For the dMRI slice numbering of each sample, 

we will refer to slice 1 as the slice closest to the surface coil, with increasing slice numbers 

indicating increased distance from the coil.

2.2.2. Compressed sensing reconstruction—CS reconstructions were performed 

using two dictionary-based CS-DSI methods previously introduced by Bilgic et al. 

(2013). One is PCA-based reconstruction (PCA), and the other is Tikhonov-regularized 

pseudoinverse reconstruction using the training set of PDFs as the dictionary (PINV). 

CS undersampling masks were generated for acceleration factors R=3, 5, and 9 using a 

variable-density power-law function (Lustig et al., 2007; Bilgic et al., 2013). Nine CS masks 

with different sampling patterns were created for each acceleration factor. Retrospective 

undersampling was applied to fully sampled q-space data, followed by CS reconstruction 

using either PCA or PINV. Each reconstruction method had one free parameter: the number 

of principal components T and the Tikhonov regularization parameter λ, for PCA and 

PINV respectively. The optimal parameter for each dictionary was determined using the 

parameter sweeping approach from Bilgic et al. (2013), in which the training data were 

undersampled and reconstructed using a range of parameters, and the one yielding the lowest 

root-mean-square error (RMSE) in PDFs (described in Section 2.4.2.) when compared to 

the fully sampled data was selected. This procedure was performed separately for each 

combination of dictionary and acceleration factor.

Reconstructions and analyses were performed in MATLAB (R2019a, 9.6) based on publicly 

available code (https://www.martinos.org/~berkin/software.html). Both PCA and PINV 

methods used a single matrix multiplication to reconstruct an entire slice, with computation 

times of ~10–15 s per slice (~6000 voxels per slice) on a workstation with a 3.4GHz Intel i7 

processor, 8 cores, 32GB RAM. For full volume reconstructions (~50 slices), we compiled 

the MATLAB function into a standalone application and processed individual slices in 

parallel on a high-performance compute cluster. Simultaneously running each slice as a 
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separate process with 8GB of allocated memory resulted in full volume reconstruction times 

between 2–10 min (depending on the number of available CPUs on the cluster).

2.2.3. Fiber orientation reconstruction—At each dMRI voxel, we computed the 

orientation distribution function (ODF), i.e., the marginal PDF of the diffusion orientation 

angle. Diffusion tractography algorithms use the ODFs, rather than the full PDFs, to 

reconstruct WM bundles. In DSI, ODFs are typically obtained by interpolating the PDFs 

onto uniform radial vertices and summing them along each radial projection. The truncation 

of q-space causes ringing in the PDFs, which introduces artifacts into the ODFs. One 

approach to mitigating these artifacts is to apply a windowing function on the q-space data, 

like a Hanning filter (Wedeen et al., 2005). This smooths the signal decay at the edges 

of q-space but diminishes the contributions of high-frequency diffusion terms, potentially 

oversmoothing the PDFs and ODFs and reducing angular resolution. An alternative 

approach is to use unfiltered q-space data and carefully define the starting and ending 

displacement distances for integration of the PDF (Tian et al., 2016; Paquette et al., 2016; 

Lacerda et al., 2016). This way, one can restrict the integration range so that PDF ringing 

is omitted from ODF computations without having to taper the high frequency q-space data. 

We used the latter approach for ODF reconstructions.

DSI ODF reconstructions were performed in Python with the Dipy (version 1.3.0.) library 

(Garyfallidis et al., 2014). For each voxel, the q-space data were zero-padded to a 75 × 75 

× 75 grid and the 3D FFT was applied to obtain the PDF, with negative PDF values clipped 

to zero. For ODF reconstruction, we used a PDF integration lower bound of rstart = 10 and 

upper bound of rend = 16 (which were roughly 0.27× and 0.43×FOV), a radial step size of 

rstep = 0.05, and a radial weighting factor of 2. ODF peaks were extracted using a maximum 

of 3 peaks per voxel, minimum peak separation angle of 25° and minimum peak magnitude 

of 0.05. The same parameters were used for all DSI ODF reconstructions.

We also fit the DTI model to the fully sampled data using the FSL command dtifit 
and extracted the orientations of the primary eigenvectors of the tensors. These served 

as a baseline for “worst-case” dMRI orientation accuracy, i.e., where only a single fiber 

population can be resolved in each voxel. We will refer to the fully sampled DTI and DSI 

orientations as FS-DTI and FS-DSI, respectively.

2.2.4. Resampling onto q-shells—Next, we investigated how well we could 

approximate q-shell data from CS-DSI acquisitions by comparing data that were acquired 

with CS-DSI scheme and resampled onto q-shells to data from the same sample that were 

acquired on q-shells. Following CS reconstruction, the CS-DSI q-space data were resampled 

onto shells in q-space using the approach described in (Jones et al., 2020). Briefly, the 

q-space samples arranged on shells were approximated by using a nonuniform fast Fourier 

transform (NUFFT) with min-max interpolation (Fessler and Sutton 2003) to interpolate 

the DSI q-space samples arranged on a dense grid. Multi-shell data from sample 1B that 

were generated by resampling FS-DSI [NUFFT(FS)] and CS-DSI [NUFFT(CS)] q-space 

data were compared to multi-shell q-space data of sample 1B that were acquired during a 

separate scan.
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The multi-shell acquisition of sample 1B used identical imaging parameters as the FS-DSI 

acquisition (described in Section 2.2.1.), except that it consisted of one b=0 image and 256 

directions arranged on 3 q-shells, with 64, 64, 128 directions and b=4,000, 12,000, 20,000 

s/mm2, respectively. FS-DSI and CS-DSI q-space data from sample 1B were resampled onto 

the same 3 shells and compared to the acquired multi-shell data. The CS-DSI reconstruction 

tested here used the PCA method at acceleration R=3 and training data from sample 2.

As previously (Jones et al., 2020), resampling fidelity was assessed using the relative 

normalized root mean square error (rNRMSE) between the acquired and resampled q-space 

data. This accounts for the fact that the acquired and resampled data come from different 

scan sessions, and thus some differences between them are expected as they contain different 

noise realizations. This is done by normalizing the NRMSE of the q-space images by the 

NRMSE of the b=0 images from each acquisition. Thus the rNRMSE quantifies the extent to 

which resampling introduces additional error, with respect to what the error would have been 

due to noise alone. For each diffusion-weighted volume, we compared the average rNRMSE 

across all WM voxels for the resampled FS-DSI data [NUFFT(FS-DSI)] and resampled 

CS-DSI data [NUFFT(CS-DSI)].

We also investigated the effect of q-space resampling on indices extracted from 

microstructural dMRI models. For each of the three multi-shell datasets, i.e., acquired, 

resampled NUFFT(FS), and resampled NUFFT(CS), the diffusion kurtosis imaging (DKI) 

model was fit to the first two shells (b=4000 and 12,000 s/mm2) using an ordinary 

least-squares approach implemented in Dipy (version 1.3.0). Microstructural indices were 

extracted from the fitted tensors, namely the fractional anisotropy (FA) of the diffusion 

tensor, the orientation of the primary eigenvector of the diffusion tensor, the mean kurtosis 

(MK), the radial kurtosis (RK) and the axial kurtosis (AK).

2.3. PSOCT

2.3.1. Data acquisition—Following dMRI acquisition of sample 1A, a piece of the 

tissue block was extracted for imaging with PSOCT (Fig. 1A, right). For a thorough review 

of PSOCT and its applications, see de Boer et al. (2017). Briefly, PSOCT uses polarized 

light to probe tissue birefringence and obtain undistorted, direct measurements of in-plane 

fiber orientations at microscopic resolutions. Thus PSOCT has been used as a reference 

modality for the validation of dMRI-derived fiber orientation estimates (Wang et al., 2014; 

Jones et al., 2020). As these studies have shown, PSOCT can resolve complex fiber patterns 

at a scale that is not accessible with dMRI. That is because the spatial resolution of PSOCT 

is 2–3 orders of magnitude higher than that of dMRI, and thus much closer to the caliber of 

axons (<1–10 μm; Liewald et al. 2014).

Details on our setup, acquisition, and analysis for PSOCT were previously described (Jones 

et al., 2020). Briefly, the sample was imaged with a polarization maintaining fiber (PMF) 

based, spectral domain PSOCT system developed in-house (Wang et al., 2016). The light 

source consisted of two broadband super-luminescent diodes (Thorlabs Inc., LSC2000C), 

with a center wavelength of 1300 nm and a bandwidth of 170 nm. The axial resolution 

was 2.9 μm in tissue and the lateral resolution was estimated at 3.5 μm. PSOCT produces 

measurements of optic axis orientation, which represent the in-plane (2D) orientation of 
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the fiber axis. We downsampled the PSOCT data to an in-plane resolution of 10 μm to 

facilitate data processing. To cover the entire tissue surface, 1120 tiles (FOV = 1 mm2) 

were acquired using a snaked configuration scheme with 50% overlap between adjacent 

tiles. The tiles were stitched using the Fiji software (Schindelin et al., 2012; Preibisch et al., 

2009). A vibratome cut off a 75 μm slice after the superficial region of the tissue block was 

imaged, which consequently allowed deeper regions to be exposed by PSOCT. There were 

63 total slices acquired for the sample block. One critical advantage of the technique is that 

PSOCT images the blockface of the tissue before slicing (Wang et al., 2018). This avoids the 

nonlinear slice distortions that are present in traditional histological techniques, where slices 

are imaged after they are cut. As a result, we can simply stack the slices into a volume.

2.3.2. Cross-modal registration—The registration of PSOCT and dMRI images was 

performed as described in Jones et al. (2020). There, we examined whether our dMRI scans 

had nonlinear distortions that might affect image registration. We registered the dMRI b=0 

volume to a structural MRI scan from the same sample, using either affine or nonlinear 

registration. We found that b=0 voxel intensities after affine vs. nonlinear registration were 

highly correlated (ρ = 0.96, p < 0.001), indicating that nonlinear distortions were negligible 

and therefore affine alignment was sufficient.

Affine registration was used to align the dMRI fractional anisotropy (FA) and PSOCT 

retardance volumes. Retardance represents the phase delay between orthogonal polarization 

channels that is induced by birefringence, a property of anisotropic structures. The 

myelinated axons that compose WM bundles possess birefringent properties and are 

highlighted in the retardance, providing a tissue contrast similar to FA. We used a robust, 

inverse consistent registration method that detects and down-weighs outlier regions in the 

images (Reuter et al., 2010). Previously, Wang et al. (2014) reported a Dice coefficient of 

0.96 between co-registered FA and retardance volumes with this approach, signifying the 

exceptional alignment that can be attained between the two contrasts.

We transformed the dMRI volumes to PSOCT space using nearest-neighbor interpolation, 

and also rotated the dMRI orientation vectors (see Section 2.2.3 above) accordingly using 

the rotational component of the affine transformation. Finally, we projected the 3D dMRI 

vectors onto the 2D PSOCT imaging plane for the purposes of comparison to PSOCT optic 

axis measurements, which represent in-plane (2D) fiber orientations.

2.4. Error metrics

2.4.1. Angular error with respect to PSOCT—We performed a voxel-wise 

comparison of dMRI and PSOCT orientations using absolute angular error as the accuracy 

metric, as in (Jones et al., 2020). In each voxel, we selected the peak of the diffusion ODF 

with the (2D) in-plane orientation that matched the corresponding PSOCT orientation most 

closely and computed the angular error between that peak and the PSOCT measurement. 

Thus, for a voxel with N dMRI ODF peaks, the absolute in-plane angular error AE was 

calculated as:
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AE = min
n

arccos enTv , (1)

where en is the unit vector along the nth dMRI peak orientation, and v is the unit vector 

along the measured PSOCT orientation. Since the analysis was performed in 2D, the angular 

error could take values between 0° and 90°.

A WM mask was created to exclude all voxels where the retardance intensity was below 

50% of the maximum retardance, and only voxels in this WM mask were considered when 

computing angular error metrics. PSOCT optic axis measurements rely on the birefringence 

of anisotropic processes, such as axon bundles in WM, but are not necessarily accurate in 

gray matter (GM) or voxels where fibers primarily project through the imaging plane, where 

the lack of apparent birefringence results in low retardance.

The PSOCT imaging plane was nearly parallel to the dMRI coronal plane, which itself was 

nearly parallel to the surface Rx coil. We exploited this arrangement, and the decreasing 

SNR of dMRI slices at increasing distance from the coil, to assess the accuracy of CS-DSI 

as a function of SNR.

2.4.2. RMSE in PDFs with respect to FS-DSI—As a more conventional CS-DSI 

error metric, we also computed the normalized RMSE of the PDFs obtained from CS 

reconstruction with respect to those obtained from the fully sampled DSI data:

RMSE = x − x 2
x 2

, (2)

where x is the PDF from the fully sampled data, x is the PDF from the CS reconstructed 

data, and ‖·‖2 is the L2-norm.

2.4.3. Number of fiber populations per voxel—To gauge the specificity of 

dMRI fiber orientation estimates, we investigated the number of fiber orientations per 

voxel extracted from dMRI ODFs and from PSOCT measurements. For each dMRI 

reconstruction, we calculated the average number of detected ODF peaks (max of 3 in 

each voxel) across all WM voxels. To estimate the number of PSOCT fibers per voxel, 

we used an approach similar to the one described in Jones et al. (2020). First, PSOCT 

fiber orientation distributions (FODs) were constructed by generating histograms of the 

orientation measurements from all 0.01 mm PSOCT voxels within each 0.25 mm dMRI 

voxel, using a bin width of 5°. Then, the local maxima of the PSOCT FODs that had a 

height of at least 5% of the maximum bin and were separated by at least 10° were extracted 

using the findpeaks function in MATLAB. For consistency with dMRI, we also imposed a 

maximum of 3 PSOCT FOD peaks per voxel. The average number of PSOCT fibers per 

voxel was then calculated by averaging the number of PSOCT FOD peaks across all WM 

voxels in the volume.
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2.5. CS-DSI validation experiments

A total of six PDF dictionaries were constructed, each trained on a single slice of fully 

sampled DSI data from sample 1A, sample 1B, or sample 2. For each sample we created 

two dictionaries, one from a high-SNR slice (slice 3) and one from a low-SNR slice (slice 

13). We applied CS reconstruction to DSI data from sample 1A, undersampled by a factor of 

R=3, 5, or 9, using one of these dictionaries. We then computed DSI ODFs and extracted the 

orientations of the ODF peaks. We transformed the diffusion orientation vectors to PSOCT 

space, projected them onto the PSOCT plane, and calculated the absolute angular error with 

respect to PSOCT at each WM voxel.

Angular non-uniformities in the CS undersampling patterns may introduce directional biases 

into the ODFs, and thus affect our angular error computations. We accounted for this 

potential source of variability in our error metrics by repeating the CS reconstructions with 

9 different CS undersampling masks, for each combination of dictionary and acceleration 

factor. Visualizations of the 3D angular distributions for all CS undersampling masks used in 

this study are provided in the supplementary information (Figs. S1–S3).

2.5.1. Effect of CS acceleration factor and training sample on angular error—
We assessed the efficacy of the CS algorithms at different acceleration factors by comparing 

CS reconstructions of data from sample 1A that had been undersampled by a factor of R=3, 

5, and 9. In this comparison, we used the PCA and PINV methods with dictionaries trained 

on a high-SNR slice from each sample. The accuracy of dMRI orientations was quantified 

by the mean angular error across each PSOCT slice, as well as across all WM voxels in the 

PSOCT volume. This error was averaged over the reconstructions that were obtained with 

the 9 different CS undersampling masks. The mean angular error of FS-DSI was used as a 

reference for evaluating the quality of CS reconstructions.

2.5.2. Effect of SNR on reconstruction error metrics—One goal of this study 

was to determine the influence of SNR on metrics of CS reconstruction quality. To this 

end, we calculated the b=0 SNR (as described in Section 2.2.1.) for each dMRI slice and 

computed the average RMSE in PDFs (with respect to the fully sampled data) and the 

average angular error (with respect to PSOCT) across all WM voxels in each slice. Then, 

for each CS reconstruction, we performed a linear regression of RMSE or angular error 

against SNR. This was done for FS-DTI, FS-DSI, and CS-DSI. For CS-DSI, error metrics 

from each combination of acceleration, training sample, and method were calculated, each 

time averaging the mean errors over CS reconstructions from the 9 different undersampling 

masks.

2.5.3. Effect of SNR on dictionary training—To evaluate the effect that the SNR 

of the training data has on CS reconstructions, voxels in sample 1A were reconstructed at 

acceleration R=3 with dictionaries trained on low-SNR data (slice 13) from each sample 

using PCA and PINV methods. These results were then compared to the corresponding 

results from the experiment described in Section 2.5.1. that used high-SNR training data. 

The accuracy of dMRI orientations was quantified by the mean angular error across all WM 
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voxels in the PSOCT volume. The CS reconstructions included here were performed with 

one randomly selected CS undersampling mask.

3. Results

3.1. Visual inspection

Fig. 3 provides visualizations of dMRI and PSOCT orientations from a representative slice 

of sample 1A. Fig. 3A shows fiber orientation maps as color-coded RGB images, where 

the color wheel shows the correspondence between pixel color and in-plane orientation. 

For FS-DSI and for CS-DSI at acceleration factors R=3, 5, and 9, the color maps show 

the orientations of the ODF peaks that most closely matched the PSOCT orientations in 

the same voxel. All CS-DSI results are shown for the same CS undersampling mask. For 

fully sampled DTI, the color maps show the orientations of the primary eigenvector of the 

diffusion tensor. Fig. 3B shows heat maps of the absolute angular error between dMRI and 

PSOCT orientations in each voxel.

Despite the large disparity in voxel size, there was good overall agreement between 

dMRI and PSOCT fiber orientation maps (Fig. 3A). The dMRI maps showed the closest 

resemblance to PSOCT in the medial half of the slice, with greater differences in the lateral 

half of the slice. Examination of the angular error maps (Fig. 3B) confirms that the greatest 

angular errors occurred in the middle and lateral regions of the slice. This distribution of 

errors was most obvious in the FS-DTI error map (Fig. 3B, top right). The fully sampled 

(Fig. 3B, top middle) and CS-DSI maps (Fig. 3B, bottom) show similarly good agreement 

with PSOCT.

3.2. Effect of CS acceleration factor and training sample on angular error

Fig. 4 shows bar plots of the mean angular errors of dMRI with respect to PSOCT, averaged 

over all WM voxels analyzed, from CS reconstructions of sample 1A with high-SNR 

training data from different samples and at different acceleration factors. Error bars show 

the standard error over different CS undersampling masks. The corresponding statistics are 

given in Table 2. The mean angular error of FS-DSI (green bar and dotted line) is shown as 

the benchmark for assessing CS-DSI results. The mean angular error of FS-DTI (red bar and 

dotted line) is shown as a worst-case scenario.

At an acceleration factor of R=3, CS-DSI achieved very similar angular error to FS-DSI 

(within +/−1.27°), for both PCA and PINV reconstruction methods, and regardless of 

whether the training data came from the same or a different sample than the test data. For 

PCA reconstruction, the angular error increased with the acceleration factor. This increase 

was most dramatic in the (more realistic) scenario where the training data came from a 

different brain than the test data. Conversely, higher acceleration factors imparted only 

minor changes on the accuracy of PINV reconstructions.

We delved deeper into this difference between the performance of PCA and PINV by 

comparing the average number of ODF peaks per voxel from the data reconstructed by each 

method. The bar plot in Fig. 5A (left) shows the average number of reconstructed ODF 

peaks per WM voxel from each reconstruction (for a maximum of 3 peaks per voxel), with 
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error bars showing the standard error of the mean. CS-DSI results were averaged over the 

9 undersampling masks used for CS reconstructions. The number of peaks per voxel from 

FS-DSI ODFs (green bar) and from PSOCT FODs (dashed red line) are shown for reference.

FS-DSI produced an average of approximately 2 peaks per voxel, which was slightly greater 

than PSOCT (1.88 peaks per voxel). For an acceleration factor of R=3, PCA reconstructions 

produced a similar number of peaks compared to both PSOCT (less than 7.9% difference) 

and FS-DSI (less than 3.2% difference). As the acceleration factor increased, PCA tended to 

return slightly fewer peaks. On the other hand, all PINV reconstructions returned a notably 

greater number of peaks than both PSOCT (greater than 12.54% difference) and FS-DSI 

(greater than 7.6% difference). This number increased as the acceleration factor increased, 

and when the training data came from a different sample than the test data (e.g., PINV with 

sample 2 training had greater than 30% difference vs. PSOCT for all acceleration factors).

Fig. 5B plots the average number of peaks per voxel against the mean angular error. The 

PCA and PINV reconstructions are denoted by triangle and circle markers, respectively, and 

colored as in Fig. 5A. Vertical and horizontal error bars indicate the standard error for each 

metric. FS-DSI (green diamond) served as the benchmark in terms of angular error. The red 

dotted line denotes the number of peaks per voxel for PSOCT. As indicated by the black 

dashed line (Fig. 5B), there was a clear separation between PINV (above the line) and PCA 

(below the line). FS-DSI was situated at the knee of the curve, and PCA reconstructions 

with an acceleration factor of R=3 were closest to FS-DSI, regardless of the sample that was 

used as the training data set. PINV reconstructions displayed reduced angular errors, but also 

had significantly more peaks per voxel than PSOCT. Thus, we conclude that CS-DSI with a 

combination of R=3 acceleration and PCA reconstruction preserved the accuracy of FS-DSI 

with respect to the reference PSOCT orientations, but without introducing spurious peaks.

3.3. Effect of SNR on reconstruction error metrics

Fig. 6A shows the slice-wise mean angular errors with respect to PSOCT, plotted against 

the SNR of the corresponding slice. Error bars indicate the standard error. The CS 

reconstructions included here used acceleration R=3 and dictionaries trained on high-SNR 

data from each sample. The curves for CS-DSI reconstructions closely resembled those 

of FS-DSI (green line) throughout the entire volume, with less than 2.52° variation in 

mean angular errors between all DSI reconstructions in each slice. FS-DTI (red line) had 

significantly greater errors than both FS-DSI and CS-DSI and showed a sharp increase in 

error as SNR decreased. The DSI angular errors were relatively robust to decreased SNR.

Table 3 shows statistics from the linear regressions of the mean angular error against SNR. 

The slopes were noticeably flatter for FS-DSI (−0.24° per unit SNR, p=0.051) and CS-DSI 

reconstructions (−0.28 to −0.46° per unit SNR, p<0.003) than FS-DTI (−1.20° per unit SNR, 

p=0.00011).

For comparison, Fig. 6B shows the slice-wise mean RMSE in PDFs between each CS-DSI 

reconstruction and the fully sampled DSI data, as a function of SNR. The mean RMSE was 

calculated from the real part of the diffusion PDFs and averaged across all WM voxels in 

each slice. Error bars depict the standard error. Statistics from the linear regressions of the 
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RMSE versus SNR are also given in Table 3. All reconstructions exhibited a strong negative 

correlation between RMSE and SNR (r=0.99, p<0.001) and showed a nearly linear increase 

in RMSE as SNR decreased (Fig. 6B), with consistent linear regression slopes (−0.66 to 

−0.96% RMSE per unit SNR). It should be noted that the linear fit of SNR likely smoothed 

the observed relationship, but that notwithstanding, the correlation between SNR and CS 

RMSE remained markedly apparent across all reconstructions.

3.4. Effect of SNR on dictionary training

After observing that CS reconstructions at acceleration R=3 using high-SNR training data 

performed nearly as well as FS-DSI in terms of angular error, we tested whether this 

was also true with low-SNR training data. The bar plot in Fig. 7 compares the effect of 

training data SNR on the mean angular error of CS reconstructions at acceleration R=3 

across all WM voxels analyzed. The CS reconstructions included here used one of the 

R=3 undersampling masks (out of the 9 undersampling masks used for Figs. 4–6). All CS 

reconstructions exhibited greater mean angular error when using low-SNR than high-SNR 

training data, although the extent of differences varied depending on the training sample and 

reconstruction method. Specifically, PCA was more sensitive to the SNR level of the training 

data than PINV.

3.5. Accuracy of resampled q-shell data

Results from q-shell approximation are shown in Fig. 8. The average relative NRMSE of 

each resampled diffusion-weighted volume with respect to the acquired shell data (Fig. 8, 

top left) are plotted for NUFFT(FS) and NUFFT(CS) reconstructions (solid and dashed 

lines, respectively). The corresponding statistics are given in Table 4. NUFFT(FS) and 

NUFFT(CS) had nearly identical mean relative NRMSE for all shells (Table 4). The 

errors increased slightly as the b-value of the target shell increased, but were below 1 

on average, for all shells. These results indicated that the resampling introduced negligible 

errors when compared to the variance between the two repeated acquisitions resulting 

from imaging noise. Additionally, resampling the undersampled q-space data without CS­

DSI reconstruction yielded relative NRMSE values 2-to 3-fold larger than NUFFT(CS) 

(Supplemental Information; Fig. S4, Table S1), indicating that dense grid q-space sampling, 

whether acquired with FS-DSI or recovered with CS-DSI, is essential for accurate q-shell 

approximation.

Fig. 8B shows images of one slice from the b=0 volumes (left column) and one randomly 

selected DWI from each shell (three right-most columns). Both the NUFFT(FS) and 

NUFFT(CS) slices (middle and bottom rows, respectively) closely resembled the acquired 

multi-shell slices, illustrating that accurate resampling was possible using both FS-DSI and 

CS-DSI q-space data. Note that the b=0 images for the NUFFT(FS) and NUFFT(CS) data 

were the same.

Fig. 9 displays microstructural maps obtained from DKI fitting of multi-shell data from 

sample 1B. The maps fitted using the NUFFT(FS) (middle row) and NUFFT(CS) (bottom 

row) data showed good agreement with the maps fitted using the acquired multi-shell 

data (top row). Kurtosis maps (MK, AK, RK; 3 right-most columns) were nearly identical 
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between the acquired and NUFFT data. Minor increases in FA were observed in the lower 

half of the NUFFT(CS) map (second column from the left). All maps displayed similar 

features in regions of WM, as well as in subcortical (thalamus, right side of slice; putamen, 

bottom middle of slice) and cortical (left side of slice) GM regions.

4. Discussion

In this study we performed post mortem validation of CS-DSI and its ability to approximate 

both grid- and shell-based diffusion sampling schemes. In one set of experiments, we 

evaluated the accuracy of diffusion orientation estimates obtained from CS-DSI by 

comparing them to microscopic-resolution reference measurements of fiber orientations 

from optical imaging. This is in contrast to previous in vivo validations that used simulated 

or fully sampled DSI data as the ground truth (Bilgic et al., 2013; Menzel et al., 2011; 

Paquette et al., 2015). Our results suggest that error metrics based on the difference between 

CS and fully sampled DSI in q-space may underestimate the accuracy of CS-DSI in 

capturing the underlying fiber geometry of the tissue. Specifically, although the difference 

in the PDFs obtained from CS and fully sampled DSI increases noticeably as the SNR 

decreases (Fig. 6B), this translates to only a minor increase of the angular error of the 

peak orientations with respect to ground-truth measurements from optical imaging (Fig. 6A). 

Note that these trends were observed both for reconstructions that tended to add spurious 

diffusion peaks (PINV) and for those that did not (PCA), hence the robustness of the angular 

error as a function of SNR did not appear to be explained by the number of peaks. The 

increasing error between PDFs obtained from CS and fully sampled DSI as SNR decreases 

is likely exacerbated by the fact that the fully sampled data are also corrupted by increasing 

levels of noise. This illustrated the importance of having objective measurements of the 

ground-truth anatomy from an independent modality, such as the optical imaging used here.

We employed two dictionary-based algorithms for CS reconstruction and investigated 

the effects of training data and undersampling rate on the accuracy of estimated fiber 

orientations. We found that PCA reconstruction at an acceleration factor of R=3 retained 

the fiber orientation accuracy of the fully sampled DSI data (Fig. 4), without introducing 

spurious peaks (Fig. 5). Its performance was as good when the training data for the 

dictionary came from a different sample than the test data as it was when the training 

and test data came from the same sample. However, we also found that it was important to 

use high-SNR training data to achieve this performance (Fig. 7).

The PINV method achieved low angular errors at all acceleration factors and for all training 

samples (Fig. 4). However, it did so at the cost of significant increases in the number 

of reconstructed peaks (Fig. 5B), particularly at higher acceleration factors. Increases in 

the angular error and in the number of peaks can be thought of as losses of sensitivity 

and specificity, respectively. Therefore, both types of error are undesirable. Based on our 

findings, we recommend a CS acceleration factor of R=3 and PCA reconstruction, as this 

combination achieved both low angular error and low number of spurious peaks.

At an acceleration factor of R=3, the CS-DSI scheme comprises 171 diffusion-encoding 

gradient directions. This brings its acquisition time in line with those of state-of-the­
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art, multi-shell, high angular resolution diffusion imaging (HARDI) acquisitions. Our 

findings suggest that CS-DSI allows us to approximate both a fully sampled, 514-direction 

DSI scheme (via CS reconstruction) and multi-shell schemes (via q-space resampling). 

Traditionally, HARDI vs. DSI has been framed as a choice between two mutually exclusive 

approaches, but this does not have to be the case. We have previously shown that fully 

sampled DSI data can be resampled onto q-shells (Jones et al., 2020). Here we show that 

an accelerated CS-DSI scheme also allows resampling onto arbitrary q-shells (of course, 

to within the limits placed by the bmax of the DSI acquisition). We find that both the 

q-space approximation error (Table 4, Fig. 8) and the microstructural measures obtained 

after resampling the data onto q-shells (Fig. 9) are comparable between CS and fully 

sampled DSI data.

The findings of recent validation studies suggest that DSI may provide more accurate fiber 

reconstructions than single- or multi-shell acquisition schemes. DSI produced more accurate 

fiber orientation estimates in simulations (Daducci et al., 2013) and comparisons to optical 

imaging measurements (Jones et al., 2020), as well as more accurate tractography when 

compared to ground-truth anatomic tracing in non-human primates (Maffei et al., 2021; 

Maffei et al., 2020). The present study shows that a sparsely sampled CS-DSI protocol 

preserves the high angular accuracy of fully sampled DSI. It also preserves the flexibility 

of resampling the data onto q-shells at arbitrary b-values, to facilitate analyses that require 

shelled data, such as DKI (Jensen et al., 2005), neurite orientation dispersion and density 

imaging (Zhang et al., 2012), etc. At the same time, it allows direct reconstruction of the 

full EAP. This allows a wider range of analyses to be performed. For example, diffusion 

PDFs have been previously used to characterize age-related WM demyelination (Fatima et 

al., 2013), delineate pathological tissue lesions in patients with multiple sclerosis (Assaf et 

al., 2002), and map in vivo axon caliber in the human brain (Hori et al., 2016). Furthermore, 

we have recently shown that diffusion EAPs may be used to improve the decision making of 

tractography algorithms (Yendiki et al., 2020) or reconstruct generalized anisotropy profiles 

that provide contrast between different gray- and white-matter structures (Jones et al., 2021).

In regard to the dictionary-based CS algorithms that we investigated, our findings indicate 

that dictionary generalizability differs between the PINV and PCA methods, and that the 

extent of these differences depends on both the CS acceleration factor (Fig. 4) and the 

training data SNR (Fig. 7). One potential factor contributing to these differences may be the 

ways in which PDFs are represented within the algorithms. PCA performs reconstructions 

in a reduced-dimensionality space consisting of only the T principle components that 

describe the greatest variance in the training PDFs, and the optimal number of components 

T decreases at higher acceleration factors in order to improve the conditioning of the 

pseudoinverse in the least-squares reconstruction (Bilgic et al., 2013). In our experiments, 

T was around 20 at acceleration R=3 and less than that at higher accelerations, which are 

moderately lower than the optimal in vivo parameters. Intuitively, reducing the number of 

principal components subsequently limits the ability to describe finer scale details in PDFs, 

and, together with the extremely undersampled q-space data used at high accelerations, 

likely hinders the level of detail in such reconstructions. In contrast, PINV operates directly 

on the training PDFs themselves, exploiting the prior information encoded in the dictionary 

Jones et al. Page 15

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



atoms to bypass sparsity constraints. Together, these differences may contribute to the 

different behavior of PINV and PCA as the acceleration factor increases.

The PINV method investigated here uses a dictionary containing PDFs from a slice 

of fully sampled training data, without any further training. An alternative approach is 

to use a dictionary trained with the K-SVD algorithm (Aharon et al., 2006), which 

enhances the sparsity level of PDF representations and is a fraction of the size of the 

PINV dictionary, allowing up to a 50% reduction in computation time. Regardless of the 

dictionary, reconstructions are performed using the Tikhonov-regularized pseudoinverse. 

Previous comparisons between PINV using a 3191-column dictionary and PINV(K-SVD) 

using a 258-column dictionary reported nearly identical reconstruction quality in terms of 

RMSE, as well as equivalent representational power between the two dictionaries (Bilgic et 

al., 2013). Although we did not include results from PINV(K-SVD) here, we did perform 

CS reconstructions and angular error analysis for PINV(K-SVD). We observed very similar 

results to PINV, both in terms of RMSE with respect to fully sampled data and in terms 

of angular error with respect to PSOCT. It is possible that the behavior of the PINV 

reconstruction that we observed in these experiments was related to the optimization of the 

Tikhonov regularization parameter λ. The optimal λ was selected to minimize the RMSE in 

PDFs with respect to FS-DSI, which may have been sub-optimal in terms of spurious peaks.

4.1. Relation to previous studies

Much work has been devoted to accelerating dMRI acquisitions. Some approaches modify 

imaging sequences to allow multiple image slices to be acquired simultaneously. Multi-slice 

parallel imaging techniques, such as simultaneous multi-slice (SMS) (Setsompop et al., 

2012a,b, 2018), simultaneous image refocusing (SIR) (Reese et al., 2009), and multiplexed 

(SMS+SIR) EPI, have played a crucial role in reducing the time required to sample a single 

location in q-space. These approaches are complementary to CS, which aims to reduce the 

number of q-space locations that need to be sampled. Thus SMS or multiplexed EPI can be 

combined with CS to achieve even higher accelerations (Setsompop et al., 2013).

Several methods for CS-DSI reconstruction have been proposed. Menzel et al. (2011) 

used wavelet and total variation (TV) penalties on PDFs combined with random Gaussian 

undersampling patterns, and concluded that angular and radial diffusion properties were 

preserved at R=4 acceleration. Paquette et al. (2015) performed a joint comparison of 

different wavelet-based sparsifying transforms and q-space sampling strategies, and found 

the best results when using a “uniform-angular, random-radial” undersampling mask 

combined with discrete wavelet transform (DWT). Both Menzel et al. and Paquette et al. 

used fixed transforms to generate sparse signal representations. Conversely, Bilgic et al. 

(2012) proposed CS-DSI using adaptive PDF dictionaries, combining the K-SVD algorithm 

(Aharon et al., 2006) for dictionary training with the FOcal Underdetermined System Solver 

(FOCUSS) algorithm (Gorodnitsky and Rao, 1997) to solve the CS problem. While this 

approach yielded reduced reconstruction errors compared to fixed transforms, the iterative 

FOCUSS reconstruction resulted in full brain computation times on the order of days. This 

bottleneck was addressed in subsequent work (Bilgic et al., 2013), where two dictionary­

based, L2-regularized methods were introduced that reduce computation times down to 
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seconds per slice. They provide fast, simple formulations while preserving reconstruction 

quality compared to Dictionary-FOCUSS. One of the key findings from (Bilgic et al., 2013) 

was that forcing the PDFs to remain in the range of a dictionary was more important 

than the sparsity constraints imposed on the transform coefficients. In other words, the key 

to good reconstructions lies in the prior information encoded in a dictionary, and not the 

regularization norm that is applied on the dictionary transform coefficients.

We have previously used the present PSOCT analysis framework (and sample 1A from 

this work) in an extensive validation study (Jones et al., 2020). In that work, we assessed 

the accuracy of fiber orientations estimated from various dMRI orientation reconstruction 

methods and sampling schemes, including DSI, single-, and multi-shell. The DSI results 

are somewhat different between the two studies because the DSI ODF reconstruction is 

different. In Jones et al. (2020), DSI reconstructions were performed with the DSI Studio 

toolbox (http://dsistudio.labsolver.org), and used filtered q-space signals (Hanning window, 

width=16) with default parameters (e.g., zero-padded 16 × 16 × 16 q-space grid, ODF 

integration lower/upper bounds of 0.25× and 0.75×FOV), and a ODF peak threshold of 0.01 

(1%). Here, we used a different approach for ODF reconstruction, imposed a (slightly) more 

stringent peak threshold (5%) and included a peak separation threshold. These factors likely 

contributed to the ~1–2° increases in mean angular error reported here compared to previous 

results. Nonetheless, the angular errors in this work were similar to the best performing 

reconstructions in Jones et al. (2020), namely DSI and generalized q-sampling imaging 

(GQI) (Yeh et al., 2010) with the fully sampled DSI data and q-ball imaging (QBI) (Tuch, 

2004; Aganj et al., 2010) with single- and multi-shell data, which were between ~17° and 

~19°.

This work analyzed the dictionary-based CS-DSI methods introduced by Bilgic et al. (2013), 

however there were several technical differences between these works that should be noted. 

First, in terms of data acquisition, we used DSI data from ex vivo human brain samples 

acquired at 9.4T with a 4-channel surface Rx coil, whereas Bilgic et. al. used in vivo DSI 

from the 3T Connectom system with a custom 64-channel head coil (Keil et al., 2013). 

These differences did not have an apparent effect on the dictionary-based CS-DSI methods. 

First, the CS algorithms yielded similar results when using ex vivo training and test data 

as when using in vivo training and test data. Whether the same would also be true when 

using ex vivo training data and in vivo test data (or vice versa) has yet to be investigated. 

Such an approach may be of interest as long, ex vivo acquisitions can be a way to collect 

very high-SNR training data. Second, while both studies generated dictionaries with PDFs 

from a single slice of fully sampled data, a single slice of our ex vivo samples covers only 

a small anatomical region, whereas a slice of in vivo data covers an entire cross-section 

of the brain. Given that our training samples were cut from different anatomical locations, 

one might expect that local microstructural differences between training and test samples 

might pose challenges for dictionary generalizability. However, our findings showed that 

high-quality reconstructions could be obtained using training and test data from different 

samples (Fig. 7), indicating that our ex vivo dictionaries possess the representational power 

to generalize across samples. Indeed, the “residual” (Bilgic et al., 2013) between ex vivo 
PDF dictionaries, i.e., the energy of the part of one dictionary that cannot be represented by 
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another, was negligibly small (~10−12), confirming that dictionaries from different samples 

possess equivalent representational power.

4.2. Limitations

The present study did not evaluate all possible methods for CS-DSI reconstruction. 

However, it included one method that achieved good performance on all metrics (PCA 

on R=3), and highlighted the two different ways in which performance can degrade as the 

acceleration factor increases (Fig. 5B). The PCA method exhibited diminishing performance 

in terms of angular error, a measure of sensitivity, while the PINV method exhibited 

significant increases in peaks per voxel, a decrease in specificity (Fig. 5B). These results 

could be used as a benchmark for future CS-DSI methods, as well as for similar deep 

learning-based approaches for reconstructing sparse q-space samplings (Golkov et al., 2016; 

Gibbons et al., 2019). These approaches may allow even more efficient acceleration and 

preserve accuracy at acceleration factors greater than R=3.

The two dictionary-based CS-DSI reconstruction methods that we evaluated here use 

discrete EAP representations and L2-regularized algorithms. We studied these methods 

because they are fast, reconstructing an entire slice in a matter of seconds, and easy to 

implement, using dictionaries of fully sampled PDFs without any additional training, and 

having only one free parameter to determine. However, there are various other CS-DSI 

methodologies that utilize other basis functions (e.g., discrete cosine transform, discrete 

wavelet transform) or approaches to solving the underdetermined CS problem (e.g., L1­

regularized methods such as equality constrained or regularized Dictionary-FOCUSS). 

While the L2-regularized dictionary-based CS-DSI methods investigated here were shown 

to provide comparable reconstruction quality to both fixed transforms and iterative L1­

regularized methods (Bilgic et al., 2013), those evaluations were mostly based on RMSE 

with respect to fully sampled DSI data. Analyzing the fidelity of other CS-DSI algorithms 

in the framework presented here could be valuable, but the lengthy computation times 

accompanying iterative algorithms would ultimately limit their utility. We opted to focus 

our investigation on the two dictionary-based CS methods, PCA and PINV, which 

were computationally tractable and thus enabled us to thoroughly study the effects of 

experimental factors on their performance.

In this work, we used PSOCT to obtain ground-truth measurements of fiber orientations. 

There are several other techniques that have been used to assess the accuracy of 

dMRI orientation estimates. For a comprehensive discussion of their relative merits and 

weaknesses, we refer the reader to a recent review (Yendiki et al., 2021). One approach is to 

extract orientations from myelin-stained sections (Leergaard et al., 2010; Choe et al., 2012; 

Schilling et al., 2017; Seehaus et al., 2015) or from confocal microscopy of slices stained 

with DiI, a fluorescent dye (Budde and Frank, 2012). Quantification of 3D orientations has 

been reported with Dil stained slices (Schilling et al., 2018; Schilling et al., 2016; Khan et 

al., 2015). When using histological stains, the fiber orientation angles have to be obtained 

either by manual tracing or by an image processing step such as structure-tensor analysis. 

This step may introduce a source of error.
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Optical imaging based on light polarization is a label-free approach that provides direct 

measurements of fiber orientations by exploiting the intrinsic optical property of tissue 

birefringence. In addition to PSOCT, polarized light imaging (PLI) also uses birefringence to 

measure axonal orientations (Mollink et al., 2017; Henssen et al., 2019; Axer et al., 2011). 

However, unlike PSOCT, PLI requires tissue to be sectioned and mounted before imaging. 

This can lead to severe tissue distortions that demand a complex registration framework to 

correct (Majka and Wójcik, 2016; Ali et al., 2017, 2018). PSOCT images the blockface of 

tissue before slicing, greatly reducing tissue distortions and allowing accurate volumetric 

reconstructions.

The PSOCT technique has its own limitations. Notably, the optic axis orientation 

measurements do not describe the 3D orientation, but rather its projection onto the imaging 

plane. Fibers oriented orthogonal to the imaging plane have small in-plane components and 

may introduce uncertainty into the PSOCT optic axis measurements. Such fibers would also 

exhibit low retardance. To avoid biases from through-plane fibers, we only analyzed WM 

voxels with high retardance. In a previous study using an identical procedure, we showed 

that the in-plane angular errors between dMRI and PSOCT were consistently between 10° 

and 20°, regardless of the through-plane component of the dMRI orientations (Jones et al., 

2020). This suggests that our in-plane angular errors are not biased by the presence of 

through-plane diffusion. Finally, the 2D angular errors in our PSOCT studies agree with 

both the 2D and 3D angular errors reported in studies that used histological staining, further 

supporting the validity of in-plane angular errors as a measure of accuracy (Yendiki et al., 

2021).

There are ways to bypass the 2D nature of the PSOCT optic axis measurements to 

interrogate 3D orientations. One possibility is to apply structure tensor analysis to PSOCT 

volumetric intensity data (Wang et al., 2015, 2011). Alternatively, 3D fiber orientations 

can be obtained by collecting PSOCT optic axis measurements with multiple light 

incidence angles on the tissue surface and using these measurements to infer the through­

plane orientation. This approach has been previously demonstrated in biological tissue 

(Ugryumova et al., 2009; Ugryumova et al., 2006; Liu et al., 2016).

5. Conclusion

We have demonstrated that, when utilized in an appropriate manner, dictionary-based 

CS-DSI reconstructions can reduce acquisition times by a factor of 3 while preserving 

the accuracy of DSI fiber orientation estimates with respect to PSOCT. In particular, 

given an adequate SNR level of the training data, the PCA method produced high-fidelity 

reconstructions that reliably maintained the angular accuracy of fully sampled DSI data, 

without introducing spurious peaks. We also demonstrated that we could tolerate a sizeable 

increase in the RMSE between PDFs obtained from CS-DSI and fully sampled DSI data, 

without incurring a large decrease in the accuracy of the peak orientations with respect to 

the axonal orientations measured with optical imaging. This underscores the importance 

of having access to ground-truth measurements of fiber architecture from a modality that 

is independent of water diffusion and MRI measurement noise. Finally, we showed that a 

sparsely sampled CS-DSI acquisition, combined with q-space resampling, could be used 
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to approximate not only fully sampled DSI but also multi-shell data with high accuracy, 

while keeping the acquisition time short. Our findings confirm the viability of CS-DSI as 

a technique for accelerating DSI acquisitions, while permitting a wide range of analyses 

that require either grid- or shell-based dMRI data. They also provide useful benchmarks for 

future development of undersampled q-space acquisition and reconstruction techniques.
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Abbreviations:

dMRI diffusion magnetic resonance imaging

DWI diffusion weighted image

DSI diffusion spectrum imaging

DTI diffusion tensor imaging

PDF probability density function

EAP ensemble average propagator

PSOCT polarization sensitive optical coherence tomography

SNR signal-to-noise ratio

CS compressed sensing

FS fully sampled

PGSE pulsed gradient spin echo

EPI echo planar imaging

FT Fourier transform

HARDI high angular resolution diffusion imaging

ODF orientation distribution function

WM white matter

GM gray matter
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ROI region of interest

GQI generalized q-sampling imaging

QBI q-ball imaging

PCA principal component analysis

PINV pseudoinverse

NUFFT nonuniform fast Fourier transform

RMSE root mean square error

FA fractional anisotropy

FOCUSS FOCal Underdetermined System Solver

Gmax maximum gradient amplitude

References

Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N, 2010. Reconstruction of the orientation 
distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn. 
Reson. Med 64 (2), 554–566. [PubMed: 20535807] 

Aharon M, Elad M, Bruckstein A, 2006. K-SVD: an algorithm for designing overcomplete dictionaries 
for sparse representation. IEEE Trans. Signal Process 54 (11), 4311–4322.

Ali S, Rohr K, Axer M, Amunts K, Eils R, Wörz S, 2017. Registration of ultra-high resolution 3D PLI 
data of human brain sections to their corresponding high-resolution counterpart. In: Proceedings of 
the IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

Ali S, Wörz S, Amunts K, Eils R, Axer M, Rohr K, 2018. Rigid and non-rigid registration of polarized 
light imaging data for 3D reconstruction of the temporal lobe of the human brain at micrometer 
resolution. Neuroimage 181, 235–251. [PubMed: 30018015] 

Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, Segev Y, Hendler T, Korczyn AD, 
Graif M, 2002. High b-value q-space analyzed diffusion-weighted MRI: application to multiple 
sclerosis. Magn. Reson. Med 47 (1), 115–126 An Official Journal of the International Society for 
Magnetic Resonance in Medicine. [PubMed: 11754450] 

Axer H, Beck S, Axer M, Schuchardt F, Heepe J, Flücken A, Axer M, Prescher A, Witte OW, 2011. 
Microstructural analysis of human white matter architecture using polarized light imaging: views 
from neuroanatomy. Front. Neuroinform 5, 28. [PubMed: 22110430] 

Basser PJ, Mattiello J, LeBihan D, 1994a. Estimation of the effective self-diffusion tensor from the 
NMR spin echo. J. Magn. Reson. Ser. B 103 (3), 247–254. [PubMed: 8019776] 

Basser PJ, Mattiello J, LeBihan D, 1994b. MR diffusion tensor spectroscopy and imaging. Biophys. J 
66 (1), 259–267. [PubMed: 8130344] 

Bilgic B, Chatnuntawech I, Setsompop K, Cauley SF, Yendiki A, Wald LL, Adalsteinsson E, 2013. 
Fast dictionary-based reconstruction for diffusion spectrum imaging. IEEE Trans. Med. Imaging 32 
(11), 2022–2033. [PubMed: 23846466] 

Bilgic B, Setsompop K, Cohen-Adad J, Yendiki A, Wald LL, Adalsteinsson E, 2012. Accelerated 
diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn. Reson. 
Med 68 (6), 1747–1754. [PubMed: 23008145] 

Boas DA, Wang H, Magnain C, Fischl B, 2017. Polarization-sensitive optical coherence tomography of 
the human brain connectome. SPIE Newsroom 10 (2.1201701): 006834.

Budde MD, Frank JA, 2012. Examining brain microstructure using structure tensor analysis of 
histological sections. Neuroimage 63 (1), 1–10. [PubMed: 22759994] 

Jones et al. Page 21

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Choe AS, Stepniewska I, Colvin DC, Ding Z, Anderson AW, 2012. Validation of diffusion tensor MRI 
in the central nervous system using light microscopy: quantitative comparison of fiber properties. 
NMR Biomed. 25 (7), 900–908. [PubMed: 22246940] 

Daducci A, Canales-Rodrı EJ, Descoteaux M, Garyfallidis E, Gur Y, Lin YC, Mani M, Merlet S, 
Paquette M, Ramirez-Manzanares A, 2013. Quantitative comparison of reconstruction methods 
for intra-voxel fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33 (2), 384–399. 
[PubMed: 24132007] 

De Boer JF, Hitzenberger CK, Yasuno Y, 2017. Polarization sensitive optical coherence tomography–a 
review. Biomed. Opt.Express 8 (3), 1838–1873. [PubMed: 28663869] 

De Boer JF, Milner TE, Gemert MJC, Stuart Nelson J, 1997. Two-dimensional birefringence imaging 
in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett 22 (12), 
934–936. [PubMed: 18185711] 

Donoho DL, 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289–1306.

Fan C, Yao G, 2013. Imaging myocardial fiber orientation using polarization sensitive optical 
coherence tomography. Biomed. Opt. Express 4 (3), 460–465. [PubMed: 23504508] 

Fatima Z, Motosugi U, Hori M, Onodera T, Ishigame K, Yagi K, Araki T, 2013. Age-related white 
matter changes in high b-value q-space diffusion-weighted imaging. Neuroradiology 55 (3), 253–
259 10.1007/s00234-012-1099-4. [PubMed: 23053002] 

Fessler JA, Sutton BP, 2003. Nonuniform fast Fourier transforms using min-max interpolation. IEEE 
Trans. Signal Process 51 (2), 560–574.

Garyfallidis E, Brett M, Amirbekian B, Rokem A, Walt SVD, Descoteaux M, Nimmo-Smith I, 
2014. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform 8, 8. [PubMed: 
24600385] 

Gibbons EK, Hodgson KK, Chaudhari AS, Richards LG, Majersik JJ, Adluru G, DiBella EVR, 2019. 
Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging 
using deep learning. Magn. Reson. Med 81 (4), 2399–2411. [PubMed: 30426558] 

Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Sämann P, Brox T, Cremers D, 2016. 
Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. 
Imaging 35 (5), 1344–1351. [PubMed: 27071165] 

Gorodnitsky IF, Rao BD, 1997. Sparse signal reconstruction from limited data using FOCUSS: a 
re-weighted minimum norm algorithm. IEEE Trans. Signal Process 45 (3), 600–616.

Grisot Giorgia, Haber Suzanne, Yendiki Anastasia, 2021. Diffusion MRI and anatomic tracing in the 
same brain reveal common failure modes of tractography. NeuroImage 239, 118300. doi:10.1016/
j.neuroimage.2021.118300. [PubMed: 34171498] 

Guo S, Zhang J, Wang L, Stuart Nelson J, Chen Z, 2004. Depth-resolved birefringence and differential 
optical axis orientation measurements with fiber-based polarization-sensitive optical coherence 
tomography. Opt. Lett 29 (17), 2025–2027. [PubMed: 15455768] 

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O, 2008. Mapping the 
structural core of human cerebral cortex. PLoS Biol. 6 (7), e159. [PubMed: 18597554] 

Henssen DJHA, Mollink J, Kurt E, Dongen R, Bartels RHMA, Gräβel D, Kozicz T, Axer M, Walsum 
AMVC, 2019. Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7 
T diffusion MRI combined with microscopy polarized light imaging. Brain Struct. Funct 224 (1), 
159–170. [PubMed: 30293214] 

Hori M, Kamiya K, Nakanishi A, Fukunaga I, Miyajima M, Nakajima M, Suzuki M, Suzuki Y, 
Irie R, Kamagata K, Arai H, Aoki S, 2016. Prospective estimation of mean axon diameter and 
extra-axonal space of the posterior limb of the internal capsule in patients with idiopathic normal 
pressure hydrocephalus before and after a lumboperitoneal shunt by using q-space diffusion MRI. 
Eur. Radiol 26 (9), 2992–2998 0.1007/s00330-015-4162-9. [PubMed: 26694062] 

Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K, 2005. Diffusional kurtosis imaging: the 
quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. 
Reson. Med 53 (6), 1432–1440 An Official Journal of the International Society for Magnetic 
Resonance in Medicine. [PubMed: 15906300] 

Jones R, Grisot G, Augustinack J, Magnain C, Boas DA, Fischl B, Wang H, Yendiki A, 
2020. Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive 

Jones et al. Page 22

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optical coherence tomography in ex vivo human brain. Neuroimage 214, 116704. doi: 10.1016/
j.neuroimage.2020.116704. http://www.sciencedirect.com/science/article/pii/S1053811920301919. 
[PubMed: 32151760] 

Jones R, Tian Q, Maffei C, Augustinack J, Nummenmaa A, Huang S, Yendiki A, 2021. Generalized 
anisotropy profiles distinguish cortical and subcortical structures in ex vivo diffusion MRI. Proc. 
Intl. Soc. Mag. Res. Med. (ISMRM)

Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL, 2013. 
A 64-channel 3T array coil for accelerated brain MRI. Magn. Reson. Med 70 (1), 248–258. 
doi: 10.1002/mrm.24427. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.24427. [PubMed: 
22851312] 

Khan AR, Cornea A, Leigland LA, Kohama SG, Jespersen SN, Kroenke CD, 2015. 3D structure 
tensor analysis of light microscopy data for validating diffusion MRI. Neuroimage 111, 192–203. 
[PubMed: 25665963] 

Lacerda LM, Sperl JI, Menzel MI, Sprenger T, Barker GJ, Dell’Acqua F, 2016. Diffusion in realistic 
biophysical systems can lead to aliasing effects in diffusion spectrum imaging. Magn. Reson. Med 
76 (6), 1837–1847. [PubMed: 26714794] 

Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M, 1986. MR imaging 
of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. 
Radiology 161 (2), 401–407. [PubMed: 3763909] 

Leergaard TB, White NS, Crespigny AD, Bolstad I, D’Arceuil H, Bjaalie JG, Dale AM, 2010. 
Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. 
PLoS One 5 (1), e8595. [PubMed: 20062822] 

Lefebvre J, Delafontaine-Martel P, Lemieux P, Descoteaux M, Petit L, Lesage F, 2021. Localization 
and imaging of white matter fiber crossings in whole mouse brains using diffusion MRI and 
serial blockface OCT. Proc. SPIE 11629, Optical Techniques in Neurosurgery, Neurophotonics, 
and Optogenetics 1162927.

Liewald D, Miller R, Logothetis N, Wagner HJ, Schüz A, 2014. Distribution 
of axon diameters in cortical white matter: an electron-microscopic study 
on three human brains and a macaque. Biol. Cybern 108 (5), 541–557. 
doi: 10.1007/s00422-014-0626-2. https://www.ncbi.nlm.nih.gov/pubmed/25142940 https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4228120/. [PubMed: 25142940] 

Liu CJ, Black AJ, Wang H, Akkin T, 2016. Quantifying three-dimensional optic axis using 
polarization-sensitive optical coherence tomography. J. Biomed. Opt 21 (7), 070501.

Lustig M, Donoho DL, Santos JM, Pauly JM, 2008. Compressed sensing MRI. IEEE Signal Process. 
Mag 25 (2), 72–82.

Lustig M, Donoho D, Pauly JM, 2007. Sparse MRI: the application of compressed sensing for rapid 
MR imaging. Magn. Reson. Med 58 (6), 1182–1195 An Official Journal of the International 
Society for Magnetic Resonance in Medicine. [PubMed: 17969013] 

Maffei C, Girard G, Schilling KG, Adluru N, Aydogan DB, Hamamci A, Yeh FC, Mancini M, Wu 
Y, Sarica A, Teillac A, Baete SH, Karimi D, Lin YC, Boada F, Richard N, Hiba B, Quattrone 
A, Hong Y, Shen D, Yap PT, Boshkovski T, Campbell JSW, Stikov N, Pike GB, Bendlin BB, 
Alexander AL, Prabhakaran V, Anderson A, Landman BA, Canales-Rodríguez EJZ, Barakovic M, 
Rafael-Patino J, Yu T, Rensonnet G, Schiavi S, Daducci A, Pizzolato M, Fischi-Gomez E, Thiran 
JP, Dai G, Grisot G, Lazovski N, Puente A, Rowe M, Sanchez I, Prchkovska V, Jones R, Lehman 
J, Haber S, 2020. The IronTract challenge: validation and optimal tractography methods for the 
HCP diffusion acquisition scheme. Proc. Int. Soc. Magn. Reson. Med. (ISMRM)

Maffei C, Girard G, Schilling KG, Aydogan DB, Adluru N, Zhylka A, Wu Y, Mancini M, Hamamci 
A, Sarica A, Karimi D, Yeh FC, Yildiz ME, Gholipour A, Quattrone A, Quattrone A, Yap PT, 
de Luca A, Pluim J, Leemans A, Prabhakaran V, Bendlin BB, Alexander AL, Landman BA, 
Canales-Rodríguez EJZ, Barakovic M, Rafael-Patino J, Yu T, Rensonnet G, Schiavi S, Daducci 
A, Pizzolato M, Fischi-Gomez E, Thiran JP, Dai G, Grisot G, Lazovski N, Puch S, Ramos M, 
Rodrigues P, Prchkovska V, Jones R, Lehman J, Haber S, Yendiki A, 2021. New insights from the 
irontract challenge: simple post-processing enhances the accuracy of diffusion tractography. Proc. 
Int. Soc. Magn. Reson. Med. (ISMRM)

Jones et al. Page 23

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S1053811920301919
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.24427
https://www.ncbi.nlm.nih.gov/pubmed/25142940
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228120/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228120/


Majka P, Wójcik DK, 2016. Possum —a framework for three-dimensional reconstruction of brain 
images from serial sections. Neuroinformatics 14 (3), 265–278. [PubMed: 26687079] 

Menzel MI, Tan EKT, Khare K, Sperl JI, King KF, Tao X, Hardy CJ, Marinelli L, 2011. Accelerated 
diffusion spectrum imaging in the human brain using compressed sensing. Magn. Reson. Med 66 
(5), 1226–1233. [PubMed: 22012686] 

Merlet S, Paquette M, Deriche R, and Descoteaux M. 2012. “Ensemble average propagator 
reconstruction via compressed sensing: discrete or continuous bases?”. ISMRM 20th Annual 
Meeting.

Mollink J, Kleinnijenhuis M, Walsum AMC, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, 
Jenkinson M, Pallebage-Gamarallage M, Ansorge O, 2017. Evaluating fibre orientation dispersion 
in white matter: comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 
157, 561–574. [PubMed: 28602815] 

Paquette M, Gilbert G, Descoteaux M, 2016. Optimal DSI reconstruction parameter recommendations: 
better ODFs and better connectivity. Neuroimage 142, 1–13. [PubMed: 27480623] 

Paquette M, Merlet S, Gilbert G, Deriche R, Descoteaux M, 2015. Comparison of sampling strategies 
and sparsifying transforms to improve compressed sensing diffusion spectrum imaging. Magn. 
Reson. Med 73 (1), 401–416. [PubMed: 24478106] 

Preibisch S, Saalfeld S, Tomancak P, 2009. Globally optimal stitching of tiled 3D microscopic image 
acquisitions. Bioinformatics 25 (11), 1463–1465. [PubMed: 19346324] 

Reese TG, Benner T, Wang R, Feinberg DA, Wedeen VJ, 2009. Halving imaging time of whole brain 
diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in 
EPI. J. Magn. Reson. Imaging 29 (3), 517–522 An Official Journal of the International Society for 
Magnetic Resonance in Medicine. [PubMed: 19243032] 

Reuter M, Diana Rosas H, Fischl B, 2010. Highly accurate inverse consistent registration: a robust 
approach. Neuroimage 53 (4), 1181–1196. [PubMed: 20637289] 

Ruiz-Lopera S, Restrepo R, Cannon TM, Villiger M, Bouma BE, Uribe-Patarroyo N 2021. 
“Computational refocusing in polarization-sensitive optical coherence tomography with phase 
unstable systems.” Proc. SPIE 11630, Optical Coherence Tomography and Coherence Domain 
Optical Methods in Biomedicine XXV, 116300E.

Schilling KG, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW, 2018. Histological 
validation of diffusion MRI fiber orientation distributions and dispersion. Neuroimage 165, 200–
221. [PubMed: 29074279] 

Schilling K, Gao Y, Janve V, Stepniewska I, Landman BA, Anderson AW, 2017. Can increased spatial 
resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed. 30 (12), e3787.

Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW, 2016. Comparison of 
3D orientation distribution functions measured with confocal microscopy and diffusion MRI. 
Neuroimage 129, 185–197. [PubMed: 26804781] 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden 
C, Saalfeld S, Schmid B, 2012. Fiji: an open-source platform for biological-image analysis. Nat. 
Methods 9 (7), 676. [PubMed: 22743772] 

Seehaus A, Roebroeck A, Bastiani M, Fonseca L, Bratzke H, Lori N, Vilanova A, Goebel R, Galuske 
R, 2015. Histological validation of high-resolution DTI in human post mortem tissue. Front. 
Neuroanat 9, 98. [PubMed: 26257612] 

Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, Keil B, Tisdall MD, 
Hoecht P, Dietz P, Cauley SF, Tountcheva V, Matschl V, Lenz VH, Heberlein K, Potthast A, Thein 
H, Van Horn J, Toga A, Schmitt F, Lehne D, Rosen BR, Wedeen V, Wald LL, 2013. Pushing 
the limits of in vivo diffusion MRI for the human connectome project. Neuroimage 80, 220–233. 
doi: 10.1016/j.neuroimage.2013.05.078. https://www.ncbi.nlm.nih.gov/pubmed/23707579. https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3725309/ https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3725309/pdf/nihms484864.pdf. [PubMed: 23707579] 

Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL, 2012. 
Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63 (1), 
569–580. [PubMed: 22732564] 

Jones et al. Page 24

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/23707579
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725309/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725309/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725309/pdf/nihms484864.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725309/pdf/nihms484864.pdf


Setsompop K, Fan Q, Stockmann J, Bilgic B, Huang S, Cauley SF, Nummenmaa A, Wang F, Rathi 
Y, Witzel T, 2018. High-resolution in vivo diffusion imaging of the human brain with generalized 
slice dithered enhanced resolution: Simultaneous multislice (g S lider-SMS). Magn. Reson. Med 
79 (1), 141–151. [PubMed: 28261904] 

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL, 2012. Blipped-controlled 
aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor 
penalty. Magn. Reson. Med 67 (5), 1210–1224. [PubMed: 21858868] 

Stejskal EO, Tanner JE, 1965. Spin diffusion measurements: spin echoes in the presence of a time­
dependent field gradient. J. Chem. Phys 42 (1), 288–292.

Tian Q, Rokem A, Folkerth RD, Nummenmaa A, Fan Q, Edlow BL, McNab JA, 2016. Q-space 
truncation and sampling in diffusion spectrum imaging. Magn. Reson. Med 76 (6), 1750–1763. 
[PubMed: 26762670] 

Tobisch A, Stirnberg R, Harms RL, Schultz T, Roebroeck A, Breteler M, Stöcker T, 2018. Compressed 
sensing diffusion spectrum imaging for accelerated diffusion microstructure MRI in long-term 
population imaging. Front. Neurosci 12, 650. [PubMed: 30319336] 

Tuch DS., 2004. Q-ball imaging. Magn. Reson. Med 52 (6), 1358–1372 An Official Journal of the 
International Society for Magnetic Resonance in Medicine. [PubMed: 15562495] 

Ugryumova N, Gangnus SV, Matcher SJ, 2006. Three-dimensional optic axis determination using 
variable-incidence-angle polarization-optical coherence tomography. Opt. Lett 31 (15), 2305–
2307. [PubMed: 16832467] 

Ugryumova N, Jacobs J, Bonesi M, Matcher SJ, 2009. Novel optical imaging technique to determine 
the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive 
optical coherence tomography. Osteoarthr. Cartil 17 (1), 33–42.

Villiger M, Braaf B, Lippok N, Otsuka K, Nadkarni SK, Bouma BE, 2018. Optic axis mapping with 
catheter-based polarization-sensitive optical coherence tomography. Optica 5 (10), 1329–1337. 
[PubMed: 31214632] 

Wang H, Akkin T, Magnain C, Wang R, Dubb J, Kostis WJ, Yaseen MA, Cramer A, Sakad ž i ć S, 
Boas D, 2016. Polarization sensitive optical coherence microscopy for brain imaging. Opt. Lett 41 
(10), 2213–2216. [PubMed: 27176965] 

Wang H, Black AJ, Zhu J, Stigen TW, Al-Qaisi MK, Netoff TI, Abosch A, Akkin T, 2011. 
Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence 
tomography based tractography. Neuroimage 58 (4), 984–992. [PubMed: 21771662] 

Wang H, Lenglet C, Akkin T, 2015. Structure tensor analysis of serial optical coherence scanner 
images for mapping fiber orientations and tractography in the brain. J. Biomed. Opt 20 (3), 
036003. [PubMed: 25741662] 

Wang H, Magnain C, Wang R, Dubb J, Varjabedian A, Tirrell LS, Stevens A, Augustinack JC, 
Konukoglu E, Aganj I, 2018. as-PSOCT: volumetric microscopic imaging of human brain 
architecture and connectivity. Neuroimage 165, 56–68. [PubMed: 29017866] 

Wang H, Zhu J, Reuter M, Vinke LN, Yendiki A, Boas DA, Fischl B, Akkin T, 2014. Cross-validation 
of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in 
human medulla oblongata. Neuroimage 100, 395–404. [PubMed: 24954840] 

Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM, 2005. Mapping complex tissue 
architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med 54 (6), 
1377–1386. [PubMed: 16247738] 

Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WYI, Dai G, Pandya DN, Hagmann 
P, D’Arceuil H, Crespigny AJ, 2008. Diffusion spectrum magnetic resonance imaging (DSI) 
tractography of crossing fibers. Neuroimage 41 (4), 1267–1277. [PubMed: 18495497] 

Yao G, Duan D, 2020. High-resolution 3D tractography of fibrous tissue based on polarization­
sensitive optical coherence tomography. Exp. Biol. Med 245 (4), 273–281.

Yeh FC, Wedeen VJ, Tseng WYI, 2010. Generalized ${q} $-sampling imaging. IEEE Trans. Med. 
Imaging 29 (9), 1626–1635. [PubMed: 20304721] 

Yendiki A, Jones R, Dalca A, Wang H, Fischl B, 2020. Towards taking the guesswork (and the errors) 
out of diffusion tractography. Proc. Int. Soc. Magn. Reson. Med. (ISMRM)

Jones et al. Page 25

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yendiki A, Aggarwal M, Axer M, Howard AFD, van Cappellen van Walsum AM, Haber SN, 
2021. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. 
BioRxiv doi: 10.1101/2021.04.16.440223. 2021.04.16.440223 https://www.biorxiv.org/content/
biorxiv/early/2021/04/19/2021.04.16.440223.full.pdf.

Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC, 2012. NODDI: practical in vivo neurite 
orientation dispersion and density imaging of the human brain. Neuroimage 61 (4), 1000–1016. 
[PubMed: 22484410] 

Jones et al. Page 26

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.biorxiv.org/content/biorxiv/early/2021/04/19/2021.04.16.440223.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2021/04/19/2021.04.16.440223.full.pdf


Fig. 1. 
Overview of sample identification and data acquisition. Ex vivo human brain samples were 

extracted from coronal slabs (dashed rectangles) and dMRI data were acquired at 9.4T. 

Single slices from b=0 scans are shown for each sample. Samples 1A and 1B were cut 

from different anatomical locations of the same brain, and sample 2 was extracted from a 

different brain. Following dMRI, a piece of sample 1A was cut and imaged with PSOCT (A, 

right). Sample 1A, which contained the corpus callosum (CC), internal capsule (IC), external 

capsule (EC), caudate and putamen, was used as the test dataset. Each of samples 1A, 1B, 

and 2 were used as training datasets.
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Fig. 2. 
dMRI acquisition and SNR. (A) Bottom: A surface receive coil was used in dMRI 

acquisitions. Top: This led to a decrease in sensitivity with increasing distance from the 

coil, as shown in coronal slices from the sample 1A b=0 volume. The same intensity scaling 

was used for all three slices. (B) The b=0 SNR in each coronal slice of sample 1A (solid 

green line) was calculated from the mean (black line) and standard deviation (gray line) of 

signal intensities from a deep WM ROI. A linear regression was performed to find the slope 

of SNR as a function of slice (dotted green line). The left y-axis shows the signal and noise 

intensities, and the right y-axis shows SNR values. The x-axis in indexed by slice number.
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Fig. 3. 
Fiber orientations estimated from dMRI vs. PSOCT. (A) Color-coded maps of PSOCT (top 

left) and dMRI orientations from fully sampled data (top right) and CS-DSI data (bottom). 

(B) Absolute angular error of dMRI orientations with respect to PSOCT. A WM mask was 

created by thresholding the PSOCT retardance (top left). The heat maps were masked to 

include only voxels classified as WM. CS-DSI reconstructions are shown for high-SNR 

training data and one of the CS undersampling masks.
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Fig. 4. 
Mean angular error of dMRI with respect to PSOCT. The plots show average error over 

all WM voxels in sample 1A. For CS-DSI, the error was also averaged over 9 CS 

undersampling masks, with error bars representing standard error of the mean across these 9 

masks. Results are grouped by training sample (sample 1A, blue; sample 1B, purple; sample 

2, yellow) and CS method. Bar shades correspond to acceleration factor (R=3, 5, 9). All 

CS-DSI reconstructions used high-SNR training data from each sample. Mean angular errors 

from FS-DTI (red) and FS-DSI (green) are shown on the far left for comparison.
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Fig. 5. 
Number of reconstructed ODF peaks. (A) Average number of ODF peaks per WM voxel 

from fully sampled (green bar) and CS reconstructed (blue, purple, and yellow bars) DSI 

data, and the average number of PSOCT FOD peaks per voxel (red dashed line). CS 

results show the average from the 9 volumes reconstructed with different CS undersampling 

masks. Error bars display the standard error. (B) Number of ODF peaks per voxel as a 

function of the mean angular error for fully sampled (green diamond) and CS reconstructed 

q-space data. The red dashed line indicates the average number of PSOCT FOD peaks per 

voxel. Circle markers correspond to PINV, and triangle markers correspond to PCA. Marker 

colors are the same as the bar plots in (A). Error bars indicate the standard error. PINV 

reconstructions (above black dashed line) produced more peaks and lower angular errors 

than PCA (below black dashed line). Most dMRI reconstructions produced more peaks per 

voxel than was observed in PSOCT. The CS-DSI reconstructions that were closest to FS-DSI 

on both axes were PCA with acceleration R=3.
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Fig. 6. 
Reconstruction error as a function of SNR. (A) Average angular error of FS-DSI, FS-DTI, 

and CS-DSI with respect to reference axonal orientations from PSOCT. (B) Average RMSE 

in PDFs between CS-DSI and FS-DSI. Each error metric is averaged across all WM voxels 

in each slice and plotted against the SNR of the corresponding b=0 dMRI slice. Line colors 

and styles correspond to different dMRI reconstructions. For CS reconstructions, each error 

metric was averaged across 9 CS undersampling masks, with error bars showing the standard 

error of the mean across the 9 masks. For CS-DSI, line colors denote different training 

samples and line styles denote different CS reconstruction methods. All CS reconstructions 

used an acceleration factor of R=3 and high-SNR training data.
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Fig. 7. 
Effect of the SNR of the training data on angular error. Mean angular error across all 

analyzed WM voxels for CS reconstructions at acceleration R=3. Dictionaries were trained 

using either high-SNR (“H”, light shade) or low-SNR (“L”, dark shade) slices from sample 

1A (blue), sample 1B (purple), or sample 2 (yellow). Results from FS-DTI (red) and FS-DSI 

(green) are shown on the far left. Error bars show standard error across voxels.
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Fig. 8. 
Results from NUFFT q-space resampling. (A) Relative normalized root-mean-square 

(NRMSE) from q-space resampling of FS-DSI (light shade) and CS-DSI (dark shade) grid 

q-space data for DWIs from the b=4,000 (green), 12,000 (red), and 20,000 s/mm2 (blue) 

shells. (B) Example slices of representative DWIs from acquired (top row), resampled FS­

DSI (middle row) and resampled CS-DSI (bottom row) multi-shell data. The same grayscale 

display window was used for each column.
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Fig. 9. 
Microstructural maps extracted from multi-shell dMRI data. Representative slice showing 

color-encoded FA, FA, MK, RK and AK maps (from left to right, respectively) from DKI 

fitting of shells 1 and 2, for acquired multi-shell data (top row), FS-DSI data resampled onto 

shells (middle row), and CS-DSI data resampled onto shells (bottom row) data. Overall, the 

maps from resampled data exhibited good agreement with the maps fitted on the acquired 

data.
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Table 2

Angular error of dMRI orientations. Mean angular errors of dMRI with respect to PSOCT across all analyzed 

WM voxels. CS-DSI reconstructions used high-SNR training data from each sample. For CS-DSI, standard 

errors of the mean are also shown, computed over the 9 CS undersampling masks.

Angular error (degrees)

FS-DTI 26.10

FS-DSI 18.25

PCA PINV

Training sample 1A

R=3 18.64 ± 0.11 17.71 ± 0.30

R=5 19.25 ± 0.16 17.95 ± 0.14

R=9 20.16 ± 0.40 18.36 ± 0.26

Training sample 1B

R=3 18.43 ± 0.25 17.37 ± 0.32

R=5 19.69 ± 0.30 17.31 ± 0.16

R=9 21.10 ± 0.33 17.30 ± 0.17

Training sample 2

R=3 18.81 ± 0.29 16.97 ± 0.33

R=5 22.37 ± 0.92 16.25 ± 0.18

R=9 26.48 ± 1.73 16.89 ± 0.52
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Table 4

Error of NUFFT q-space resampling. Relative NRMSE over white matter voxels from all directions of each 

q-shell.

Shell b-value (s/mm2) Relative NRMSE (mean +/− standard deviation)

NUFFT(FS) NUFFT(CS)

4000 0.78 +/− 0.073 0.78 +/− 0.064

12,000 0.83 +/− 0.11 0.83 +/− 0.11

20,000 0.97 +/− 0.27 0.95 +/− 0.29
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