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Abstract
Non-cystic fibrosis bronchiectasis is increasingly described in the paediatric population. While diagnosis is by high-resolution
chest computed tomography (CT), chest X-rays (CXRs) remain a first-line investigation. CXRs are currently insensitive in their
detection of bronchiectasis. We aim to determine if quantitative digital analysis allows CT features of bronchiectasis to be
detected in contemporaneously taken CXRs. Regions of radiologically (A) normal, (B) severe bronchiectasis, (C) mild airway
dilation and (D) other parenchymal abnormalities were identified in CT and mapped to corresponding CXR. An artificial neural
network (ANN) algorithm was used to characterise regions of classes A, B, C and D. The algorithm was then tested in 13 subjects
and compared to CT scan features. Structural changes in CT were reflected in CXR, including mild airway dilation. The areas
under the receiver operator curve for ANN feature detection were 0.74 (class A), 0.71 (class B), 0.76 (class C) and 0.86 (class D).
CXR analysis identified CT measures of abnormality with a better correlation than standard radiological scoring at the 99%
confidence level.

Conclusion: Regional abnormalities can be detected by digital analysis of CXR, which may provide a low-cost and readily
available tool to indicate the need for diagnostic CT and for ongoing disease monitoring.

What is Known:

* Bronchiectasis is a severe chronic respiratory disorder increasingly
recognised in paediatric populations.

* Diagnostic computed tomography imaging is often requested only afier
several chest X-ray investigations.

What is New:

» We show that a digital analysis of chest X-ray could provide more
accurate identification of bronchiectasis features.
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Introduction Methods
Non-cystic fibrosis bronchiectasis is a progressive condi-  Subjects

tion characterised by abnormal bronchial dilation, associ-
ated with frequent bacterial infections and inflammatory
airway damage. Chest computed tomography (CT) is the
gold standard for diagnosis and monitoring [1, 2].
Bronchiectasis is an increasingly recognised problem, es-
pecially in populations where access to a diagnostic CT is
not possible or practicable [3]. Since 2000, in New
Zealand, hospitalisation rates for bronchiectasis overall
have increased by 45% and mortality by 88% [4]. At diag-
nosis children already have severe disease, with 81% bilat-
eral and 64% with 3 or more lobes involved [5], suggesting
delayed referral. All children have had a prior chest X-ray
(CXR) and some have had many. The sensitivity of CXR
for bronchiectasis is low at 37% with specificity of 95%
[6]. However, strong correlations between CXR and CT
scoring of bronchiectasis have been reported [7, 8]. CXR
has been shown to be more sensitive to early lung disease
than pulmonary function testing [8], and persistent paren-
chymal densities in CXRs have been related to the eventual
development of bronchiectasis [9, 10].

Modern CXRs are obtained digitally so can be
analysed on pixel-by-pixel basis. Digital analyses of
CXR have been developed to aid diagnosis of lung can-
cer, tuberculosis, covid-19 and other lung diseases but
have focused on adult imaging [11-14]. These methods
could potentially aid radiological interpretation of CXRs
as they can highlight possibly abnormal lung parenchymal
features. For example, regions of the lung that appear
more or less homogeneous than expected or have certain
textural properties (e.g. lines/circles). Just a small number
of studies have digitally assessed CXRs in paediatric pop-
ulations [15, 16], focusing on pneumonia. Digital assess-
ment of CXR has performed as well in detecting paediat-
ric pneumonia as similar analyses in an adult population
[16, 17], indicating that digital analysis of paediatric
CXRs is feasible. Such analysis of CXRs in those at risk
of bronchiectasis could provide low-cost screening to sug-
gest further investigation.

The aim of this study was to develop a proof-of-concept
digital analysis of CXR imaging informed by a same day
standardised chest CT. We hypothesised that this automated
analysis could detect bronchiectasis in CXR. Ultimately this
capability could lead to earlier referral, prior to chronic symp-
toms developing, for the definitive CT diagnosis in appropri-
ate children. To reduce heterogeneity (including differing
ages, etiologies and CT protocols), we elected to develop
and test the analysis in a well-characterised cohort of 5-year-
old children with mild to moderate bronchiectasis due to cys-
tic fibrosis (CF) where a single radiological protocol had been
used [18].
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Twenty-four children with CF were enrolled from diagnosis
after newborn screening to final study outcomes at 5 years of
age in New Zealand. These were a subset of the ‘Australasian
Cystic Fibrosis Bronchoalveolar Trial (ACFBAL)’ which ex-
plored the effectiveness of bronchoalveolar lavage in directing
treatment of respiratory infection in young children with CF
[18]. The 24 subjects had mean body mass index of 15.5
(range 12.6-17.6) and all but one had pancreatic insufficiency.
Positive cultures for the final BAL/ever grown in respiratory
cultures included 63%/100% Staphylococcus aureus, 50%/
96% Haemophilus influenza, 17%/71% Streptococcus
pneumoniae, 17%/46% Moraxella catarrhalis, 8%/29%
Pseudomonas aeruginosa, 4%/13% Stenotrophomonas
maltophilia and 38%/75% Aspergillus fumigatus. The sub-
jects had treatment for infection using standard study proto-
cols [18], and courses of antibiotics were prospectively re-
corded with the participants having a mean 9.6 days (range
0-38 days) intravenous therapy prior to the final chest CT.
Pulmonary function was recorded by standard spirometry
using American Thoracic Society criteria with percent predict-
ed and z-scores calculated from British reference values [18].
Satisfactory results were available for 21/24 subjects (the re-
maining 3 were excluded from analysis for pulmonary func-
tion but not radiological scoring). Mean forced expiratory vol-
ume in 1 s (FEV1) was 92.5% predicted (range 67—126%) and
mean forced vital capacity (FVC) was 96% (range 66—136%).

Radiology and scoring

The ACFBAL outcomes included a CXR and chest CT con-
ducted at a time of health stability, as described previously
[18]. All children were 5 years old at the time of imaging. In
brief, a low-dose high-resolution CT with 1-mm collimation
scans at intervals of 10 mm, 120 kVp, 50 mA, 1 s from apex to
base was obtained using a Siemens Sensation 64 machine
(Siemens, Forchheim, Germany) and reconstructed using the
b70 kernel. All underwent general anaesthesia with lungs in-
flated to 25 cm H,O for inspiratory scans. All scans were of
good diagnostic quality. An erect posteroanterior and
lateral CXR was taken on the same day. The time between
CT and CXR was not recorded, but as all were in the same
day, they were acquired < 24 h apart. CT and CXRs were
matched but de-identified. The CT was scored independently
in the original ACFBAL study at the Erasmus Medical Centre,
Rotterdam, The Netherlands (see acknowledgements) using
the modified Brody-II CF chest CT score [19]. Brody-II pro-
vides a total score of up to 234, comprising 0—72 for bronchi-
ectasis, 0-54 for airway wall thickening, 0-36 for mucous
plugging, 0-54 for parenchymal disease and 0-18 for air
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trapping. CXRs were scored by a paediatric radiologist at
Starship Children’s Hospital, Auckland, New Zealand using
the Brasfield score [20, 21] which starts with a total of 25 and
deducts 0—4 each for air trapping, linear markings and nodular
cystic lesions and 0-5 each for general severity and large
lesions.

Global assessment of CT features and mapping to CXR

Features of bronchiectasis were extracted from CT, (1) to pro-
vide non-subjective classification of disease status and (2) to
isolate regions within the same subject’s CXR that correspond
with each feature. The lung field was segmented from both
inspiratory CT and CXR using semi-automated algorithms
(Supplementary Material A). Airways in CT were individual-
ly measured to determine whether bronchiectasis was present,
as defined previously [22]. Airway lumen diameter (LD), air-
way outer diameter (AOD) and artery (vessel) diameter (VD)
were measured along their shortest axis using an electronic
calliper tool. Before measurement, images were enlarged to
400% zoom and the window width and level set to 1500 and
—450 Hounsfield units (HU), respectively. Airway wall thick-
ness (AWT) was calculated using AWT = (AOD — LD)/2. The
mean ratios of airway lumen to artery diameter (LD/VD) and
airway wall thickness to arterial diameter (AWT/VD) were
also calculated. All clearly visible airway and blood vessel
pairs passing perpendicularly to the imaging plane (with a
circular appearance) and with airway lumen diameter >
0.5 mm were measured. An individual airway was considered
to be bronchiectatic if LD/VD > 1. As variation in chest CT
pixel intensity at the whole lung scale has been shown to
reflect parenchymal changes reflective of disease [23], global
metrics (mean, standard deviation and coefficient of variation
of pixel intensities) were calculated within the lung region in
both CT and CXR.

In each set of CT images, regions of the lung were
manually classified using OsiriX software (http://www.
osirix-viewer.com/). Regions were divided into 4 types:
(A) radiologically normal, (B) definitive bronchiectasis
features, (C) dilated airway and blood vessel pairs, and/
or mild airway wall thickening, but not meeting criteria
for bronchiectasis using the methods of Long et al. [22],
and (D) ‘other’ parenchymal abnormalities. A region was
classified as (C) if it contained a single dilated airway
(defined by LD/VD), but was only classified as (B) if
multiple airways were present meeting bronchiectatic di-
lation, or a region comprising multiple airways be seg-
mented from CT where bronchiectasis was present
throughout. A 3D map of each CT image with regions
of structural abnormality identified was generated to use
as a gold standard and each feature was mapped to a PA
projection (Fig. 1a and b) to identify the same regions in
each individual’s CXR.

Feature detection in CXR

Following segmentation (Fig. 1c), the CXR lung field was
split into regularly sized blocks of pixels for classification
(Fig. 1d). Block sizes of 8 x 8, 15 x 15 and 20 x 20pixels
were assessed, to determine an optimal pixel block size
for feature detection. Each pixel block was classified as
A, B, C or D depending on comparison with CT (Fig. le).
If more than 40% of the block was classified as B, C or D
the whole block was classified to that category.
Otherwise, as the area could not be classified as normal
but contained only a small proportion of abnormal tissue,
it was excluded. Excluded blocks equated to less than
0.05% of the total being neglected (total number of blocks
within the lung region is 2500-3000 blocks for each sub-
ject). For each pixel block, 39 textural features were com-
puted. These features were chosen based on a similar
study which aimed to detect lung fibrosis in CT [24]
and include histogram statistics, co-occurrence matrix fea-
tures, run-length matrix features and a Gabor filter bank
(Supplementary Material B). An artificial neural network
(ANN) analysis was conducted (Supplementary Material
B), to determine the optimal set of image features and
block size. A training set of 11 subjects was chosen at
random, providing at 20 x 20 pixel block resolution a
total of 14,546 pixel blocks to train the ANN. The re-
maining 13 subjects were used as a test cohort with the
CXRs mapped first and checked with the CT findings as
the gold standard second.

Statistics

Clinical characteristics, radiology scores and pulmonary func-
tion tests are expressed as means and standard deviations
when normally distributed (ascertained by Kolmogorov-
Smirnov test) and medians and ranges when not. To compare
means, the Student’s #-test was used when distributions were
normal and the Wilcoxon rank sum test when not. A Pearson
correlation analysis was conducted to assess linear correla-
tions between variables. When more than two measures were
compared, or for comparison between multiple observations
of the same measure, analysis of variance (ANOVA) was
employed. A level of p = 0.05 was used to indicate statistical
significance. Statistical analysis was conducted using IBM
SPSS software (SPSS Inc., Chicago, USA).

Ethical approval
Ethical approval for this study was obtained from the New

Zealand Northern X Ethics Committee (NTX/12/EXP/018)
and caregiver consent obtained.
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Fig. 1 Methodological steps for identifying regions of CXR for
classification. a Abnormal regions are identified on CT and b mapped
to the posteroanterior projection. ¢ The lung shape is segmented from
CXR images and d split into a grid of evenly sized squares. e Each

Results
Radiological scoring and assessment of CT and CXR

The CT (Brody-II) scores for this cohort were 3.2 £ 2.7%
(range 0—12.3%) indicating mild lung disease. The compo-
nent scores for bronchiectasis were 4.7 + 5.4% (range 0—
26.0%), airway wall thickening 0.6 £ 1.3% (range 0—
5.6%), mucous plugging 2.6 + 3.3% (range 0-11.1%), pa-
renchymal abnormalities 3.7 £ 2.9% (range 0-9.3%) and
air trapping 3.2 + 2.7% (range 0-50.0%). Assessment of
imaging in this cohort has been performed previously [18],
and a brief summary of relationships between radiological
scoring and pulmonary function is provided as
Supplementary Material D.

Global assessment of CT and CXR features

The overall mean ratio of airway lumen to vessel diameter,
LD/VD, measured directly from CT was 0.9 + 0.1. This
was slightly elevated but not significantly different (p =
0.23) compared with the same measurements in healthy
5-year olds from a previous study [22], further indicating
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square is classified by comparison to the posteroanterior CT projection,
and classification of normal and abnormal regions conducted by an
artificial neural network analysis

mild lung disease in this cohort. LD/VD correlated with the
bronchiectasis component of the Brody-II score (r = 0.92,
p =0.005) and with CXR (Brasfield) scores (r =—-0.47, p =
0.01). LD/VD correlated with the prior number of days of
IV therapy (r = 0.48, p = 0.02) but again not with lung
function (FEV1% predicted » = —0.32, p = 0.17 or FVC%
predicted » =—0.35, p = 0.17). The airway wall thickness to
vessel diameter ratio, AWT/VD, correlated with the total
Brody-II score (r = 0.44, p = 0.03) but, as in other studies
[22, 25], had no significant relationship with other mea-
sures of lung health.

Mean lung density was —797 HU, comparable to a pre-
vious estimate for inspiratory lung density in children of
this age [26]. CT density coefficient of variation (defined
as the ratio of standard deviation to the mean) correlated
with both FEV1% predicted (» = 0.45, p = 0.05) and
FVC% predicted (r = 0.66, p = 0.002). These relationships
imply that reduced heterogeneity (for example areas of air
trapping, consolidation) was linked to a reduced lung func-
tion. The coefficient of variation calculated from CXRs is
correlated with the corresponding CT measure (r = 0.47, p
=0.05) but CXR heterogeneity was not sensitive enough to
reflect changes in lung function.
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Fig. 2 Receiver operating 1
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Feature detection in CXR

Preliminary analysis of the textural features in CXRs allowed
reduction from 39 to 6 features to classify each image
(Supplementary Material B). The optimal classification for
the 11 test subjects was determined by the use of 20 x 20-
pixel blocks for analysis and by including 500 neurons in the
ANN. The receiver operating characteristic (ROC) is shown in
Fig. 2 with areas under the ROC curve of 0.74 (A—normal
tissue), 0.71 (B—definitive bronchiectasis), 0.76 (C—airway
dilation alone) and 0.86 (D—other parenchymal abnormali-
ties). In the 13 test subjects, the CXRs were classified and the
percentage of tissue classified as abnormal was determined.
Table 1 shows sensitivity and specificity for each BX feature
identified indicating the performance of classification of each
block in CXR. Specificity was greater than 80% in all cases.
The sensitivities for the three lung abnormalities that were

Table 1 Sensitivity and specificity of the automated algorithm in
identifying each of the bronchiectasis features analysed. As the most
common misidentification (34% of all blocks) was between
physiologically similar features, we also provide a sensitivity and
specificity for identification as bronchiectasis (B and C combined)

Abnormality Sensitivity ~ Specificity
Definitive bronchiectasis (B) 60% 92%
Airway dilation (C) 56% 84%
Parenchymal abnormalities (D) 100% 85%
Combined bronchiectasis features (B and C) 77% 81%

1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

looked for ranged from 56 to 100%, with identification of
parenchymal abnormalities having the highest sensitivity.
The lowest sensitivities were due to misidentification of de-
finitive bronchiectasis (B) as dilated airways (C) and vice
versa (34% of all misidentified blocks). These features are
morphologically similar, and the sensitivity of the algorithm
in identifying bronchiectasis (B and C combined) is calculated
to be 77%. Our automatically generated percentage of abnor-
mal tissue in each CXR had greater correlation with CT mea-
sures of abnormality than radiologist scoring of CXRs in these
test subjects (Fig. 3). Using the methods of Zou [27] and
comparing Brasfield scoring and our method as dependent
correlations, we confirmed that our method provided better
correlation with AWT/LD, LD/VD and the total Brody score
at the 99% confidence level.

Discussion

We have conducted a proof-of-concept quantitative assess-
ment of chest CT and CXRs to identify early-stage bronchi-
ectasis in CXR. Chest CT scans are well documented to be
more sensitive to early structural changes than CXRs and
remain the gold standard for diagnosing bronchiectasis and
other parenchymal changes in both the CF and non-CF bron-
chiectasis populations [1, 2]. However, CXRs are the more
frequent and earlier investigation, are often repeated to deter-
mine resolution or persistence of early lung disease, and are
more accessible to the community at large. A CT scan can be
unaffordable and impractical in remote communities who

@ Springer



3176

Eur J Pediatr (2021) 180:3171-3179

Fig. 3 a, ¢, e Correlations a 038 b 038
between CT features of 036 X 0.36 X
b.ronchlectams and the number of 034 X ) X 034 X X
pixel blocks detected by our X . X . X
. 0.32 X ->< 032 | el gé
automated algorithm as abnormal o X o e, X
in 13 unseen subjects, and b, d, f < 03 o o3| e
the same CT features correlated 2028 o S 028 r=-0.38, p=0.86 )
with Brasfield scores in the same 026 | . % 0.26 X
13 subj(.ects.. In each case, the o2a % Xx r=0.70, p=0'02 024 X X %
correlation is more significant 022 X 022
using the automated analysis, ’ X
than the semi-quantitative radio- 02 02 °
. 0 10 20 30 40 50 60 18 19 20 21 22 23 24
logical assessment N )
% blocks identified as abnormal tissue Brasfield score (CXR)
14 14
c d
12 X 12 X
1 X RIS 1] e S
......... X X
Q08 x. % § 0 08
3 a
o6 =06
0.4 - - 0.4 _ -
r=0.71, p=0.004 r=-0.47, p=0.01
0.2 0.2
o ! o !
0 10 20 30 40 50 60 18 19 20 21 22 23 24
% blocks identified as abnormal tissue Brasfield score (CXR)
e 14 f
12 X 12 . _
= r=0.71, p=0.01 _ r=-0.60, p=0.03
£ 10 €10
S 5
S % . S e %
> e e e,
Zs o g
= X X o X z X T %
£ Sor 5.0 TR
o - x o
2 | e X X X 2 %
0 X 0 X
0 20 30 40 50 60 18 19 20 21 22 23 24

nonetheless have a high prevalence of chronic suppurative
lung diseases including bronchiectasis [3]. Even in our setting,
by time of bronchiectasis diagnosis children had chronic re-
spiratory symptoms for a median of 38 months (2.9—7 years in
3 studies), 75% had hospital admissions at a median age of 1
year, with diagnosis at median age of 5.2 years and typically
already had a number of CXRs [5, 28, 29]. While repeated
low-dose chest CT is emerging for regular monitoring [30]
and as an intervention trial outcome [31], increasing life ex-
pectancy in children with CF and bronchiectasis may temper
the feasible frequency of this investigation [32]. Improving
CXR sensitivity to predict the presence of significant structur-
al damage—notably bronchiectasis—would improve the util-
ity for screening, encouraging early referral and potentially
have a role in more accurate disease monitoring over time.
We mapped areas of interest on the CT scan in the training
set (half of the cohort) into four types—‘normal’, “bronchiec-
tasis’, ‘dilated airway/bronchial wall thickening’ or ‘other’
parenchymal abnormalities and converted this into the
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% blocks identified as abnormal tissue

Brasfield score (CXR)

equivalent CXR. Specific airway and artery lumen and diam-
eter measurements for all visible airway and artery pairs en-
sured accuracy of bronchiectasis assessment in CT. We were
able to determine 6 features that could be assessed in small
blocks of CXR images to identify each type of classified tis-
sue. The CXR analysis in our test cohort showed ROC curves
ranging 0.71-0.86 for the 4 types of parenchymal appearance
when compared to chest CT. The correlation between this
analysis and quantitative CT measures of severity was superi-
or to the correlation of traditional CXR scoring methods.
Sensitivity of the algorithm to definitive bronchiectasis, air-
way dilation and parenchymal abnormalities ranges from 56
to 100%, with 77% sensitivity when considering the algo-
rithms ability to detect bronchiectasis (B and C combined).
All calculated sensitivities are higher than the 37% previously
reported in CXR [6], and calculated sensitivities and specific-
ities are comparable to other automated algorithms that aim to
detect disease features in CXR in other applications (typical
ranges sensitivity 56-97%, specificity 36-95%) [33]. There
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is, in general, a trade-off between sensitivity and specificity in
algorithms of this type. Future improvements to this algorithm
to suppress unwanted features in CXR such as the ribs may
enable improved sensitivity in the future, while maintaining
comparable specificity.

The LD/VD ratios calculated here, representing the extent
of airway dilation, correlated strongly with Brody II score.
This is consistent with a previous study in more severe dis-
ease, which found a strong relationship between the two mea-
sures [34]. The LD/VD, the bronchiectasis component of the
Brody-II score, and Brasfield scores all correlated strongly
with the number of days of IV therapy suggesting a relation-
ship to a clinical marker of disease severity in this cohort.
Relationships between pulmonary function and CT scoring
only become apparent when significant structural changes
have already occurred [5, 34]. In this cohort, lower lung func-
tion relates to decreased heterogeneity in lung tissue that could
arise from large regions of air trapping or consolidation, sug-
gesting these changes, rather than emerging bronchiectasis
(low-level airway dilatation) drive early pulmonary function
loss.

Our cohort was carefully selected to eliminate possible
confounders. Bronchiectasis is the main structural damage
underlying CF lung disease [1, 25]. We chose a young popu-
lation likely to have early disease only, who had undergone a
standardised protocol chest CT scan at a single age of 5 years
imaged at a single centre. Previous studies have shown con-
tradictory findings regarding correlation between age and air-
way dilation in children older than 2 years [25], perhaps due to
different methods of airway sampling or centre effects. A non-
CF bronchiectasis cohort was likely to be of different ages, has
undergone varied protocols for CT scan acquisition and often
already has severe disease at diagnosis. Larger prospective
testing of these feature detecting algorithms in a more diverse
dataset would provide important next steps toward a tool for
bronchiectasis detection by CXR.

We have not addressed whether this type of CXR analysis
for the presence of bronchiectasis provides an advantage over
careful clinical assessment for a chronic wet cough. However,
we already have evidence that children have prolonged cough
for many years before progressing to the diagnostic investiga-
tion (chest CT) and instigation of correct management [5, 28,
29]. Shortening this delay, especially by using a cheap option
such as CXR analysis, would be beneficial. Furthermore, the
variability of CXRs is likely to be greater than CTs due to a
wider range of equipment in a greater number of community
and hospital settings. CXRs are also inherently noisy with ribs
superimposed over the lung structure and the cardiac region
was neglected in this study given the heart’s dense opacity
influence on the texture of lung tissue in this region. This
means that bronchiectasis in the cardiac region would be
missed using the technique as applied there. Techniques to
account for variability in image protocols and other difficulties

in computationally assessing CXRs have been discussed in
detail [35], and a key improvement may be the implementa-
tion of rib suppression algorithms or algorithms that account
for the presence of the heart in imaging. Finally, one study has
described that the airway as being significantly smaller than
the adjoining vessel in the younger paediatric age group sug-
gesting that the current criteria derived from adult studies may
already underestimate the presence of bronchiectasis [36].

Our proposed methodology improves upon standard radio-
logical assessment of CXRs for bronchiectasis, providing pre-
liminary evidence that digital analysis of CXR is feasible as a
tool to screen for potential bronchiectasis early in disease pro-
gression and in community settings. We note that for wide-
spread use, particularly in primary care, some additional test-
ing of the algorithms may be necessary. For example, all
CXRs and chest CT scans considered here were acquired in
a single hospital setting, on the same machines, as is common
in many digital analyses of similar imaging [11-14]. There
may be variations in resolution and quality of CXR between
sites that would need to be corrected for. Integrating assess-
ment algorithms with CXR systems also presents a challenge;
however, ‘telehealth’ or offsite interpretation has become
commonplace in the pandemic experience of covid-19 and is
more widely used now than previously, so this would not be
seen as a significant hurdle.

In conclusion, we believe automated analysis of digital
CXR in children is possible and can be used to improve the
sensitivity to detect early bronchiectasis disease. A chest CT
scan remains the gold standard for diagnosis of bronchiectasis
but CXRs will continue to play a role, being more accessible
and more frequently used. This automated assessment of CXR
provides a means to improve the outcome of a test that is done
frequently and is freely available to most communities.
Enhancing interpretation to evolving chronic lung disease
using simple measures of CXR textures will improve their
utility encouraging early referral for definitive investigations
and enhance their use for more accurate monitoring over time.
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FVC, Forced vital capacity; LD, Airway lumen diameter; VD, Vessel
diameter
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