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Objective. Hua-Feng-Dan (HFD) is a Chinese medicine for stroke. This study is to predict and verify potential molecular targets
and pathways of HFD against stroke using network pharmacology. Methods. The TCMSP database and TCMID were used to
search for the active ingredients of HFD, and GeneCards and DrugBank databases were used to search for stroke-related target
genes to construct the “component-target-disease” by Cytoscape 3.7.1, which was further filtered by MCODE to build a core
network. The STRING database was used to obtain interrelationships by topology and to construct a protein-protein interaction
network. GO and KEGG were carried out through DAVID Bioinformatics. Autodock 4.2 was used for molecular docking.
BaseSpace was used to correlate target genes with the GEO database. Results. Based on OB >30% and DL >0.18, 42 active
ingredients were extracted from HFD, and 107 associated targets were obtained. PPI network and Cytoscape analysis identified 22
key targets. GO analysis suggested 51 cellular biological processes, and KEGG suggested that 60 pathways were related to the
antistroke mechanism of HFD, with p53, PI3K-Akt, and apoptosis signaling pathways being most important for HFD effects.
Molecular docking verified interactions between the core target (CASP8, CASP9, MDM2, CYCS, RELA, and CCND1) and the
active ingredients (beta-sitosterol, luteolin, baicalein, and wogonin). The identified gene targets were highly correlated with the
GEO biosets, and the stroke-protection effects of Xuesaitong in the database were verified by identified targets. Conclusion. HFD
could regulate the symptoms of stroke through signaling pathways with core targets. This work provided a bioinformatic method
to clarify the antistroke mechanism of HFD, and the identified core targets could be valuable to evaluate the antistroke effects of
traditional Chinese medicines.

Xiang), Borneolum syntheticum (Bing Pian), and Santalum
album L. (Tan Xiang). HFD also contains cinnabar, realgar,

Hua-Feng-Dan (HFD) is a classical Chinese medicine
preparation for the treatment of neurological disorders
since the Ming dynasty. After more than 370 years of
historical inheritance, it is listed as the National Protection
Heritage in 1950 and is still in clinical use today. HFD
consists of Aconitum coreanum (Bai Fu Zi), Arum ternatum
Thunb. (Ban Xia), Arisaema erubescens (Tian Nan Xing),
Aconiti Radix (Chuan Wu), Curcumae Radix (Yu Jin),
Gastrodia elata (Tian Ma), Nepeta cataria (Jing Jie),
Atractylodes japonica (Cang Shu), Perilla frutescens (Zi Su),
Crotonis fructus (Ba Dou), Moschus moschiferus (She

and other minerals. As a famous traditional Chinese
medicine, it has excellent therapeutic effects on stroke,
hemiplegia, epilepsy, mouth-eye crookedness, and other
head wind and encephalopathy. It is recorded in “Yi Fang
Ju Lei,” “Ying Tong Bai Wen,” etc.

Modern pharmacological studies have shown that
HFD has a protective effect on a variety of central nervous
system injury and neuroinflammation models. HFD
protects mice from bacterial lipopolysaccharide (LPS)
plus neurotoxin MPTP toxicity [1] and ameliorates LPS
plus pesticide rotenone-induced neuroinflammation and
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dopaminergic neuron loss in rats [2]. HFD also has
modulatory effects on gut microbiota (submitted), which
are in line with the clinical experience and theory of
traditional Chinese medicines.

Chinese herbal medicine preparations are composed of
many different compounds with various structures and
functions, and all components act together on multiple targets
instead of a specific target to achieve therapeutic effects and to
reduce toxicity. Some of the components act as the main
medicine (JUN), some as secondary medicine (Zou), some as
complementary medicine (Chen), and some as guide-drug
(Shi) [3]. HFD is such an example, and the traditional recipe of
HEFD is more effective than the modified (removing cinnabar
and/or realgar) recipe in protecting against LPS-induced
neuroinflammation in neuron/microglia cultures [4] and in
animals [2]. Thus, to illustrate the antistroke mechanism of
HFD more systematically and comprehensively, this research
intends to analyze and expound the potential molecular
mechanisms of HFD based on system pharmacology. As an
emerging discipline, systems pharmacology includes many
disciplines such as systems biology, systems pharmacology/
toxicology, computational biology, and network analysis,
which break the traditional framework (drug-target-disease) to
a multilevel network (disease-phenotype-gene-drug) and ex-
plore the correlation between drugs and diseases from the
perspective of wholeness and systematic view, corresponding to
the theory of holistic view and dialectical treatment of tradi-
tional Chinese medicine [5, 6].

In this work, the active molecules in HFD were identified
that transcend the physiological barriers and interact with
the network targets. We aim to use a comprehensive network
pharmacology-based approach to investigate the mecha-
nisms of how HFD exerts therapeutic effects on stroke, and
the built network was further verified by correlating with the
GEO database of antistroke Chinese medicine.

2. Materials and Methods

2.1. Establishment of a Database of HFD Target Genes and
Stroke-Related Genes. Through the Traditional Chinese
Medicine Systems Pharmacology (TCMSP) database (https://
temspw.com/tcmsp.php) [7] and the Traditional Chinese
Medicines Integrated Database (TCMID) (http://119.3.41.228:
8000/tcmid/) [8], the components and target genes of 13
Chinese herbal medicines of HFD were retrieved from two
databases satisfying the criteria of oral bioavailability (OB)
greater than or equal to 30% and drug-likeness (DL) greater
than or equal to 0.18% [9, 10]. Stroke-related genes were
collected through the GeneCards database (https://www.
genecards.org/MyGenes/) and the DrugBank database
(https://www.drugbank.ca/) using the keyword “Stroke.”

2.2. Establishment of Ingredients and Chinese Herbal Medi-
cines Network. Candidate potential ingredients and herbals
of HFD were retrieved and screened from TCMSP retrieved
and TCMID database. All the ingredients and their quan-
titative targets were visualized analysis using Cytoscape 3.7.1
software [11].
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2.3. Intersection Target Constructions of HFD and Stroke.
HFD targets and stroke targets were transferred to uniform
generic names through the UniProt database (https://www.
uniprot.org/). The “Draw Venn Diagram” online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/)  was
used to input the previously collected HFD genes and stroke
genes to achieve common genes [12].

2.4. Construction of the Ingredient-Target-Disease Interaction
Network of HFD and Stroke. The previously collected active
ingredients were combined, and the frequent targets of HFD
and stroke were visually analyzed using Cytoscape 3.7.1
software.

2.5. Constructions of the Protein-Protein Interaction (PPI)
Network Map. The previously collected common targets
were entered into the STRING online database (https://
string-db.org/), the species were selected as “Homo sapi-
ens,” and the obtained “tsv” file was imported into Cytoscape
3.7.1 software for further analysis of the core network.

2.6. Core Network Constructions. In the previously obtained
“tsv” file, the top twenty-two targets were selected in the
number of nodes, and the “R” 4.0.2 software was run to draw
a histogram. Then, the obtained “tsv” file was imported into
Cytoscape 3.7.1 software. The MCODE plug-in was run to
analyze the core network, and the network ranked first was
selected for the next analysis [13].

2.7. GO and KEGG Pathway Enrichment Analysis.
DAVID online database (https://david.ncifcrf.gov/) was
used to perform gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
analysis to reflect the biological process, molecular function,
cellular component, and pathway of HED in the treatment of
stroke. The results are displayed in a bar chart or bubble
chart. The smaller the p value is, the higher the degree of
enrichment is; the larger the count is, the more genes are
enriched on it [14].

2.8. Molecular Docking. First, the top 6 core target genes
were selected, and the compounds that might regulate these
targets were reviewed. The two-dimensional (2D) structure
diagrams of these compounds were downloaded through the
PubChem database and imported into the Chem3D software
to draw three-dimensional structure diagrams and optimize
energy and save them in mol2 format. Then, the files were
imported into AutoDockTools-1.5.6 software to add the
charge and display rotatable keys and then saved in pdbqt
format. Next, the protein crystal structures corresponding to
the core target genes were downloaded from the PDB da-
tabase, imported into PyMOL software to remove water
molecules and heteromolecules, imported into Auto-
DockTools-1.5.6 software to add hydrogen atoms, saved to
pdbqt format, and imported into Discovery Studio 3.5 Client
software to search for active pockets. Finally, the compound
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is used as a ligand, and the protein corresponding to the core
target gene is used as a receptor for molecular docking.
PyMOL software and Discovery Studio 3.5 Client were used
to analyze and interpret the results.

2.9. Correlation with the GEO Database. BaseSpace Corre-
lation Engine (BSCE) (https://www.illumina.com/products/
by-type/informatics-products/basespace-correlationengine.
html; formerly NextBio) is an RNA sequencing and
microarray database curated over 23,000 scientific studies to
get data-driven answers for genes, experiments, drugs, and
phenotypes for the research. The 26 key targets analyzed by
the MCODE plug-in were individually input into BSCE for
curated studies, followed by filtering with the keyword
“stroke” and then combined as the “template.” Using
“Chinese medicine” and “stroke” for curated studies, there is
one study using Xuesaitong against MOCA-induced stroke
in mice with two biosets and a summary p value by the
Running Fisher test. The —log(p value) was calculated and
VLOOKUP with the “template” to make a correlation. This
method provides a correlation of the overlapping genes
between DEGs and biosets curated in BSCE [15]. Biosets that
were positively correlated with the DEGs were predicted to
produce similar effects, either directly or indirectly; the
larger the —log(p value), the higher the degree of similarity.
Biosets that were negatively correlated with DEG were
predicted to produce opposite effects. The Treeview 1.6
(https://download.cnet.com/TreeView/3000-2352_4-756660
05.html) was used to visualize differences [16,17].

The multistep strategy flow chart in Figure 1 was con-
structed to explain the method of the manuscript.

3. Results and Analysis

3.1. HFD Active Ingredients and Chinese Herbal Medicine
Network. The 13 Chinese herbal medicines of HFD were
searched through the TCMSP and TCMID databases, and
there were 42 active ingredients that met the screening
conditions (OB >30%, DL >0.18), including 3 in Typhonii
rhizoma, 10 in Arum ternatum Thunb, 5 in Aconiti Radix, 3
in Curcumae Radix, 3 in Crotonis fructus, 1 in Borneolum
syntheticum, 5 in Atractylodes lancea (Thunb.) D¢, 9 in
Schizonepetae herba, 1 in Moschus moschiferus, 3 in San-
talum album L., 4 in Gastrodia elata, 5 in Arisaematis
rhizoma, and 11 in Perilla frutescens as shown in Figure 2.

3.2. Intersection Targets of HFD and Stroke. According to the
42 active ingredients of HFD, 121 targets were retrieved in
the TCMSP database. 7408 and 49 targets were achieved by
searching for “Stroke” in GeneCards and DrugBank data-
bases, respectively. The targets obtained above were entered
into the Venn database to obtain a common target, as shown
in Figure 3. 106 targets were intersected by HFD and
GeneCards and 15 targets were intersected by HFD and
DrugBank. A total of 107 targets were analyzed for the next
step.

3.3. Ingredient-Target-Disease Interaction Network of HFD
and Stroke. The 42 active ingredients of HFD collected
before and 107 intersection genes of HFD and stroke were
imported into Cytoscape 3.7.1 software for visual analysis.
As shown in Figure 4, green is the active ingredient and
purple is the target, showing the active ingredient direct
relationship network with target diseases and HFD.

3.4. Core Network. The previously collected 107 common
targets were entered into the STRING online database, the
species were selected as “Homo sapiens,” and the obtained
“tsv” file was imported into Cytoscape 3.7.1 software, as
shown in Figure 5(a) (one target has not connected with
others, which cannot be displayed). The 22 targets in pink
are the first-ranked core networks analyzed by the MCODE
plug-in. The 22 targets are entered into the Cytoscape 3.7.1
software to show the network relationship, as shown in
Figure 5(b). The “tsv” file was used to run the “R” 4.0.2
software to draw a histogram, and the first 20 targets of the
number of nodes were selected to display as shown in
Figure 5(c).

3.5. Constructions of the Protein-Protein Interaction (PPI)
Network Map. The 22 core targets selected by the MCODE
plug-in were entered into the STRING database for PPI
network analysis (Figure 5(d)). There were 22 nodes and 194
edges in the PPI network, and the average node degree is
17.6, the number of the expected edges is 56, the average
local clustering coeflicient is 0.887, and the PPI enrichment
p value is <1.0e — 16. Besides, in all the nodes in Figure 5, the
darker the color is, the more important it was.

3.6. GO Analysis and KEGG Pathway Enrichment Analysis.
R language was used for GO analysis and KEGG analysis.
Based on the DAVID database, it was used to analyze the
core intersection genes of HFD and stroke. Go analysis
includes a biological process (BP), cell composition (CC),
and molecular function (MF). Fifty-one significant changes
in biological processes were screened, and the top 20 were
displayed as bar graphs (Figure 6(a)). KEGG pathway en-
richment analysis screened 60 signal pathways with signif-
icant enrichment of core genes, of which the top 20 were
selected and represented by a bubble chart (see Figure 6(b)).

3.7. Verification of the Interaction between Active Ingredients
and Target Genes. Through in-depth analysis, the three
most important signaling pathways, apoptosis, phos-
phatidylinositol-3 kinase (PI3K)/AKT, and P53 signaling
pathway, were selected. The genes enriched in the
abovementioned pathways include 14 genes in the core
genes, in which the six genes were in two or more of the
pathways (Figure 7(a)). The top 6 core target genes trace
ingredients back to 9 (Figure 7(b)), and 9 kinds of herbs
contain these ingredients (Figure 7(c)).

Molecular docking was used for verification of the inter-
action between active ingredients and target genes. The results
obtained by the molecular docking software are shown in


https://www.illumina.com/products/by-type/informatics-products/basespace-correlationengine.html
https://www.illumina.com/products/by-type/informatics-products/basespace-correlationengine.html
https://www.illumina.com/products/by-type/informatics-products/basespace-correlationengine.html
https://download.cnet.com/TreeView/3000-2352_4-75666005.html
https://download.cnet.com/TreeView/3000-2352_4-75666005.html

P e R

Evidence-Based Complementary and Alternative Medicine

HEFD active ingredient

Tevo ¢ |

1 Step 1
Stroke target

[

HEFD target

- - -

q Cytoscape 3.7.1

Ingredient-target-disease
interaction network

S - ————————————— - = - -

% AutoDock

Molecular docking

¢

.....

P .

GEO DataSets

A e T -
1 @ Top score gene D : J \
| STRING ~ Awcooe 7 X |
1 0 % 1 ' Construct core gene ]

: Core gene @ E 1 .. 7

\ a ’l :

_______________________________ '

ﬂ I

1

1

1

©®and @ |

1

1

. 1

KEGG: signal pathway OnenCrane | CORRELATON !

! Core target | DAoL B ENGINE v :

1

1

1

1

1

1

1

[ ——

D ——

! Validation

CASP8, CASP9, MDM2, CYCS, REKA, CCND1

,-
I
I
I
I
I
I
]
I
]
I
\

]

I

I
- I
GEODataSels v| 11 Step3

I

:

I

1

e

L T .

- ---

FiGgure 1: Technological road-map of HED.

Supplementary Table 1. From the results, the lowest binding
free energy of beta-sitosterol and caspase-8 was —8.64 kcal/mol.
There are Alkyl/Pi-Alkyl hydrophobic interactions between
Ile257, His317, Cys360, and beta-sitosterol. Among them,
His317 and Cys360 belong to the active site of the caspase-8
protein. In addition, there were three hydrogen bonds: Lys253,
Tyr324, Asp319, and beta-sitosterol; there was van der Waals
force between Asp363, GIn358, Arg260, Arg4l3, Tyr4l2, and
beta-sitosterol. On the other hand, the lowest binding free
energy of beta-sitosterol and caspase-9 was -9.0 kcal/mol, and
there are hydrophobic interactions between His237, Cys287,
Argl78, Argl80, Phe351, Pro357, and beta-sitosterol. His237
and Cys287 are the key amino acid residues in the active site of
the caspase-9 protein. There are van der Waals interactions
between Thr179, Thrl81, Lys358, Serl83, Ser36l, Aspl86,
GIn285, Gly182, and beta-sitosterol (Figure 8(a)). The lowest
binding free energy of luteolin and MDM2 was —6.97 kcal/mol,
there were 9 hydrogen bond forces between Tyr100, His96,

Ile19, GInl8, GIn24, and luteolin, and there was a carbon-
hydrogen bond between I1e99 and luteolin. In addition, there
was a Pi-Cation hydrophobic force between His96 and luteolin,
and there is a Pi-Sigma hydrophobic force between Leu54 and
luteolin (Figure 8(b)). The lowest binding free energy of bai-
calein and Cycs was —7.35 kcal/mol, and there were Pi-Sigma
and Pi-Alkyl hydrophobic interactions between Ile81, Lys72,
Pro71, and baicalein. At the same time, 6 hydrogen bonds are
established between baicalein and Lys72, Phe82, and Val83.
There are also carbon-hydrogen bonds between Ile81, Asn70,
and Pro7land baicalein. The lowest binding free energy of
baicalein and Rela was —7.01 kcal/mol, and there were 8 hy-
drogen bonds between Ser97, Ile95, Arg93, His96, Cys90, and
baicalein. In addition, there were Pi-Pi/Pi-Alkyl hydrophobic
interactions between Tyr85, Lys78, and baicalein. GIn99,
Asn100, Phe98, Leu89, and baicalein had van der Waals forces
(Figure 8(c)). The lowest binding free energy of luteolin and
CCND1 was —7.35 kcal/mol. Leu65, Ala187, His158, and Pro79
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FIGURE 3: Intersection targets’ Venn diagram of HFD and stroke.

had hydrophobic interactions with luteolin. There were 6
hydrogen bonding forces between Cys68, Cys73, Val77, Glu74,
Phe78, Glu75 and luteolin. Glu69, Lys72, Thr184, and luteolin
also have van der Waals forces (Figure 8(d)).

3.8. Correlation with GEO Database. Figure 9 shows 26 core
gene targets from Figures 5(b) and 5(c) in correlation with
the GEO curated database (keyword: stroke) based on the
MOCA stroke model [17] (GSE61616). The selected 26
targets were highly correlated with brain stroke database
across curated studies (Figure 9). Xuesaitong treatment
reversed all of these changes, indicating that these molecules
were valid biomarkers for the therapeutic effects of Chinese
medicine against stroke. The correlation of —log(p-values)
>4 or <—4 with the 26 gene targets in 153 gene biosets (17
GSE studies) except for Igf2 (2.92) was provided as Sup-
plementary Table 2D.

4. Discussion

In this study, the active ingredients and potential targets of
HFD in the treatment of stroke were studied through net-
work pharmacology. 42 active substances were identified by
TCMSP and TCMID (OB=>30%, DL>0.18); 107 targets
were identified with GeneCards and DrugBank. MCODE
screened out 22 target genes, STRING constructed 194 Edges
in PPI, GO analyzed 51 biological processes, and KEGG
enriched 60 significantly related pathways. Molecular
docking of 6 targets with 4 active ingredients provided an in-
depth analysis of network pharmacology. In addition, the 26
targets from Figures 5(b) and 5(c) were highly correlated
with the GEO database, and the antistroke effects of Xue-
saitong in the database were verified with these targets. It
suggests that the key genes screened in this study may be-
come a potential biomarker for evaluating stroke severity
and stroke treatment efficacy of Chinese medicines.
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Since its creation in the Ming Dynasty, HFD has played
an important role in the improvement of stroke and post-
stroke symptoms. The formulation of HFD has been con-
tinuously improved; for example, through the fermentation,
the macromolecules could be degraded into small molecular
substances by microorganisms to improve the bioavail-
ability, and the processing by the “Shui-Fei method” is
important to reduce the toxicity of heavy metals such as
cinnabar and realgar. In recent years, studies have dem-
onstrated that the safety of HFD is different from envi-
ronmental mercury and arsenic compounds [18-21].
However, the mechanism of HFD has not been fully
elucidated.

Due to the complexity of the components of traditional
Chinese medicine, it is difficult to fully discuss the mech-
anism of HFD in the treatment of brain diseases through the
point-to-point research model of “the animal model-signal
pathway,” which requires a lot of tedious work and away
from the theory of traditional medicine. Network phar-
macology studies may provide a novel approach by con-
structing a drug-target-disease network from the perspective
of the intersection of drugs and disease regulation, through

the analysis of the action network, the representative active
ingredients are screened, and the target genes are verified by
molecular docking, to reveal the active ingredients and
mechanism of HFD action in stroke prevention and
treatment.

In this study, the HFD recipe was first screened by
TCMSP and TCMID database, and 13 herbs and 42 in-
gredients were obtained. Subsequently, 107 interactions with
GenCard and DrugBank were found. The core network was
obtained through Cytoscape analysis, which contained 22
genes. Typically, the core gene is considered a key role, so we
have shown up core gene (Figure 5(b)), STRING constructed
194 Edges in PPI, we selected the intersection of the largest
gene interactions which are 26 genes (Figures 5(b) and 5(c)),
and the genes screened by the two methods are highly
similar, suggesting that the analysis results are more
accurate.

GO analyzed 51 biological processes, and KEGG
enriched 60 significantly related pathways. In the KEGG
analysis, the 3 most important signal pathways were selected
through in-depth analysis: apoptosis, phosphatidylinositol-3
kinase (PI3K)/AKT, and P53 signaling pathway. Multiple
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studies have confirmed that apoptosis is initiated in stroke.
Caspase-3, caspase-8, and caspase-9 are important members
of the caspase family; upon receipt of specific stress, cyto-
chrome ¢ released by mitochondria will combine with
procaspase-9/Apaf-1 to activate and cleave caspase-9 [22].
The cleaved caspase-9 further processes other caspase
members, initiates the caspase cascade, and then initiates
apoptosis [23]. Activated caspase-8 synergistically cleaves
and activates the caspase of downstream effector molecules,
such as caspase-1, caspase-3, caspase-6, and caspase-7, and
amplifies the apoptosis signal [24]. PI3K/Akt signaling
pathway participates in various cellular processes, and the
activation of the pathway has been revealed to be implicated
in the occurrence and development of angiogenesis, which
negatively modulates genes that promote thrombogenicity,
vascular permeability, and inflammation, and thereby
protects vascular function [25]. RelA, one of the nuclear
transcription factor kB (NF-xB)/Rel families, plays an im-
portant role in inflammation and immune response, which
may be a PI3K-AKT regulatory signal, which in turn reg-
ulates the apoptosis pathway [26]. On the other hand,
multiple studies have confirmed that drugs can improve
stroke symptoms by regulating the PI3K/Akt pathway [27].
Studies have also reported that PI3K/Akt regulates cell
apoptosis, and activation of the PI3K/Akt pathway after
stroke plays a protective role in neuronal apoptosis [25].
Under pathological conditions of stroke, p53 plays an im-
portant role in the regulation of apoptosis and cell cycle [28].
The increased level of Cyclin chaperone D (cyclin D) levels
affects the process of cells entering the S phase under the
regulation of P53 [9]. The degradation of P53 hinders its role
in the regulation of apoptosis [29]. MDM2 is the ubiquitin
ligase of p53 and plays a central role in regulating the
stability of p53. Akt mediates the phosphorylation of MDM?2
at Ser166 and Ser186, increasing its interaction with p300, so
that MDM?2 mediates the ubiquitination and degradation of

p53 [30]. Phosphorylation of MDM2 also blocks its binding
to p19ARF and increases the degradation of p53 [31].

It can be seen that multiple pathways play an important role
in stroke through their interactions. In order to further verify the
interaction between the 6 core genes and the active ingredients,
the HFD effective ingredients were docked with the target to
molecular events against stroke. Normally, the binding free
energy is lower than —5.0kcal/mol, indicating good binding
activity between the docking molecule and the target, and the
values are lower than —7.0 kcal/mol indicating strong binding
activity, which indicates a significant interaction. As shown by
the results, except for luteolin and MDM2 (6.97 kcal/mol), the
lowest binding free energy between other small molecules and
their targets is all lower than —7.0 kcal/mol.

In order to study this core network in evaluating the
general applicability of traditional Chinese medicine in the
treatment of stroke, the 26 genes from Figures 5(b) and 5(c)
with stroke were curated in the GEO database and then
compared with the GSE biosets related to curated studies using
Chinese medicine against stroke. The -log(p value) was used to
study the correlation of selected genes. The cutoff of —log(p
value) is set at+4 [15]. Under this criterion, 153 gene biosets
from 17 studies in the GEO database were significantly cor-
related with MOCA-induced stroke [17]. In Figure 9, the GSE
database for brain stroke included mice GSE30655 [32],
GSE35338 [33], GSE13353 [34], GSE 51566 [35], rat GSE 61616
[17], GSE21136 [36], GSE41453 [37], and GSE 17929 [38] and
was used to evaluate the correlation of the built core gene
targets with stroke. All 26 core targets were highly correlated
with the MOCA stroke model [17], and more interestingly,
when treated with antistroke Chinese medicine Xuesaitong, the
increased —log (p values) were returned to the normal, or to the
opposite direction, confirming the therapeutic effects of this
Chinese medicine. It should be mentioned that when there is
one type of “Chinese medicine” and “stroke,” only this study
was curated in the database; and when there is one type of
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site analysis of wogonin (d).

“cinnabar” and “stroke,” the same study appeared. Cinnabar is
an active ingredient in Chinese medicines including HFD and
An-Gong-Niu-Huang Wan for brain diseases [18], and the
effects of cinnabar-containing Chinese medicines against
stroke are worth of further verification.

In summary, this study predicted the active ingredients,
targets, and signal pathways of HFD treatment stroke

through network pharmacology and verified the core in-
gredients and targets, laying a foundation for elucidating the
mechanism of action. It also provides a systematic evalua-
tion of the degree of stroke and the effect of drug treatment.
The selected 26 core targets could be valuable biomarkers to
evaluate the efficacy of HFD and Chinese medicines against
stroke.
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IL6_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
CASP3_GSE35338_Astrocytes of young adult males - 1d after MCAO-induced ischemic stroke _vs_ sham surgery
EGFR_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
MYC_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
CCND1_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
ESR1_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
ERBB2_GSE13353_Blood vessel samples of intraoperative saccular intracranial aneurysms - ruptured _vs_ unruptured
AR_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
FOS_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
CYCS_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
PPARG_GSE30655_Brain hemispheres of ADRB2 knockout - 24hr post middle cerebral artery occlusion _vs_ sham operation
CTNNBT_GSE30655_Brain hemispheres of ADRB2 knockout - 24hr post middle cerebral artery occlusion _vs_ sham operation
MDM2_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
RELA_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
CASP8_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
APP_GSE13353_Biood vessel samples of intraoperative saccular intracranial aneurysms - ruptured _vs_ unruptured
CAV1_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
HIF1A_GSE30655_Brain hemispheres of ADRB2 knockout - 24hr post middle cerebral artery occlusion _vs_ sham operation
PGR_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery acclusion _vs_ sham operation
CASP9_GSE30655_Brain hemispheres of ADRB2 knockout - 24hr post middle cerebral artery occlusion _vs_ sham operation
CCNB1_GSE51566_Dura KITWT - 2d post stroke _vs_ no stroke

PARP1_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation
IGF2_GSE21136_Blood 24hr after 3.3mgikg tPA at 3hr post 2hr MCAO-induced ischemic stroke —vs_ tPA only
ESRZ_GSE41453_Kidneys of hypertensive and stroke prone SHRSP rats - 6 weeks old _vs_ 3 weeks old
HSPBT_GSE30655_Brain hemispheres of wildtype - 24hr post middle cerebral artery occlusion _vs_ sham operation

ALB GSE17929 Brain of rats subiected to middle cerebral arterv occulsion vs sham oberated” GPL341

FIGURE 9: BaseSpace Correlation Engine analysis of 26 target genes with the GSE biosets based on —log (p value) with the MOCA biosets
(GSE61616). Red indicates the upregulation, and blue indicates the downregulation in the style of Target gene_ GSE_biosets. MOCA bioset

(first column) was highly correlated with identified 26 target genes. In MOCA + Xuesaitong treatment (2™

column), all MOCA-induced

target changes were returned to the normal or to the opposite direction (negative correlations).

5. Conclusion

The mechanism of action of HED in stroke involves multiple
compounds, targets, and pathways. HFD could regulate the
symptoms of stroke through signaling pathways with core
targets. This work provided a bioinformatic method to
clarify the antistroke mechanism of HFD, and the identified
core targets could serve as a biomarker to study antistroke
traditional Chinese medicines including mineral-containing
remedies.
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