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The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer
ratio (csMTR) on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray
matter pathology in multiple sclerosis (MS). Twenty-five MS patients and 12 matched controls were recruited
from theMSClinic of theMontreal Neurological Institute. Anatomical andmagnetization transfer ratio (MTR) im-
ages were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along
meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive
of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex
level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction
are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as
well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of
csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as
well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical
MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients cor-
relatedwith clinical disability. Overall, our findings supportmulti-surface analysis of csMTR as a sensitivemarker
of cortical sub-pial abnormality indicative of demyelination in MS patients.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is now widely recognized that standard MR imaging of multiple
sclerosis (MS) can visualize only a fraction of the disease burden in cor-
tical gray matter (cGM). In particular, conventional MRI applied at the
clinically accessible MRI field strengths of 1.5 or 3 Tesla (T) cannot ade-
quately detect the cortical gray matter pathology observed in postmor-
tem studies, even though cGMpathology is believed to play a significant
role in both cognitive dysfunction (Nielsen et al., 2013; Papadopoulou et
al., 2013) and worsening clinical symptoms (Cohen-Adad et al., 2011;
Nielsen et al., 2013; Mainero et al., 2015). This inability of standard
MRI to visualize cortical pathology may partially contribute to the rela-
tively weak association between MRI-visible lesions and clinical status.

A further complicating factor is that the spatial resolution and
contrast of standard MRI scans at 1.5 T and 3.0 T are insufficient to
detect the important sub-pial demyelination that appears to exist
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preferentially along the outer layer of the cortex (Peterson et al.,
2001). To date, cortical sub-pial demyelination has only been visually
observed in-vivo using ultra-high field (UHF) MRI at 7 T (Mainero et
al., 2009; Cohen-Adad et al., 2011; Nielsen et al., 2012). For example, re-
cent 7 T MRI studies employing T2⁎ mapping have demonstrated longer
T2⁎ values suggestive of demyelination along the layers of the cortex in
MS patients (both RRMS and SPMS) compared to controls (Mainero et
al., 2015). Regrettably, UHF MRI (≥7 T imaging) is not feasible for
large-scale MS clinical trials in the foreseeable future. Currently, there
is only one 7 T human MRI system in Canada and approximately 50
worldwide. In contrast, over 2500 3 T systems operate globally. Since
multi-center trials required for late stage drug development in MS in-
volve hundreds of clinical sites around the world, 1.5 or 3 T systems re-
main the only clinically feasible options presently available. The current
inability of these systems to efficiently visualize and quantify the extent
of cortical pathology remains a major impediment to assessing its re-
sponse to disease modifying therapies.

In this study, we address these issues usingmulti-surface, longitudi-
nal measurements of magnetization transfer ratio (MTR) at the
clinically-accessible MRI field strength of 3 T. MTR imaging is a semi-
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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quantitative MRI technique that is sensitive to the relative degree of
myelination in brain tissue (Dousset et al., 1992). It has been applied ex-
tensively in MS white matter research (Campi et al., 1996; Filippi et al.,
1998; Pike et al., 1999; Rocca et al., 1999).More recently, several studies
have demonstrated the utility of cortical MTRmapping for tracking de-
myelination in MS both in vivo and in post-mortem tissue samples
(Schmierer et al., 2004; Chen et al., 2013; Derakhshan et al., 2014).
Our previous work (Derakhshan et al., 2014) at 1.5 T, as well as the
work of Samson et al. (2014), suggest subtle cortical demyelination ef-
fects can be monitored using MTR projected onto the cortical surface.

The vertex level analysis conducted in our study is supplemented by
cortical surface region of interest (ROI) analysis for assessing anatomi-
cally-localized regions of the cortex where group-level, age-related de-
cline in csMTR of MS patients exceeds that of controls. A number of
previous studies have shown that age-related decline in MTR occurs in
the white matter of healthy subjects (Silver et al., 1997; Schiavone et
al., 2009; Newbould et al., 2014). One study identified a quadratic de-
crease inMTR in selected regions of cortical graymatter that occurs pre-
dominantly after 40 years of age in healthy control subjects (Mascalchi
et al., 2014). To date, however, no link between sub-pial demyelination
and subject age of MS patients has been found.

We test the hypothesis that the relative difference in csMTR existing
between cortical surface layers in patients correlates with clinical dis-
ability in MS, as measured by the Expanded Disability Status Scale
(EDSS) (Kurtzke, 1983). Lastly, we compare csMTR values in manually
segmented cortical lesions to normal-appearing gray matter (NAGM).

2. Materials and methods

2.1. Study design

Twenty-five patients with MS and 12 age and sex-matched controls
were recruited from theMultiple Sclerosis Clinic of theMontreal Neuro-
logical Institute and Hospital between November 2009 and November
2010. Subject recruitment was part of a larger ongoing, longitudinal
study of cortical demyelination in MS. To this end, 18 patients and 10
controls were imaged at baseline, as well as at a two-year time point
to evaluate longitudinal changes in cortical MTR. Overall, the total num-
ber of examinations included in our analysis was 65.

Patient inclusion criteria were as follows: (i) subjects must have
been between the ages of 20 and 70 and (ii) must have had a diagnosis
ofMS according to the 2005McDonald criteria (Polman et al., 2005). Pa-
tients were not scanned within two months of a clinical relapse. All pa-
tients were on a stable treatment regime (i.e. they were not in the
process of changing treatment and had no immediate plans to start or
change treatment). There were no restrictions on the type of disease-
modifying therapies used by the patients enrolled in the study. Of the
25 patient data sets analyzed, 21 had a diagnosis of relapsing-remitting
MS (RRMS), while four had a diagnosis of secondary progressive MS
(SPMS). The mean age of patients at baseline was 48, with ages ranging
from 28 to 67. All MS patients enrolled in the study were clinically eval-
uated within three months of their scan date by a senior neurologist at
the Multiple Sclerosis Clinic of the Montreal Neurological Institute and
Hospital. At the time of evaluation, the EDSS score of each patient was
determined. Written informed consent was obtained from all patients
and controls; the research was approved by the Research Ethics Board
of the Montreal Neurological Institute.

2.2. Imaging protocol

Imaging was performed on a 3 T MRI scanner (Siemens Healthcare,
Erlangen, Germany) using a volume coil for radiofrequency (RF) excita-
tion and a 12 channel coil for signal reception. Axial T1-weighted images
were acquired using a 3D spoiled gradient-recalled echo sequence with
the following scan parameters: TR= 20ms, TE= 5ms, flip angle = 27
degrees, field of view = 256 × 192 × 192 mm3, matrix dimensions =
256 × 192 × 192, isotropic spatial resolution of 1 mm3 and total scan
time = 9 min and 38 s. The T1-weighted images were used for cortical
surface reconstruction, cortical/white matter lesion segmentation and
normalized brain volume measurements.

Four additional contrasts, also employed for lesion segmentation,
were collected: Axial 2D, T2-weighted images were acquired using a
turbo spin-echo (TSE) sequence with TR = 4500 ms, TE = 83 ms,
echo spacing = 9.18 ms, turbo factor = 11, field of view =
256 × 256 × 180 mm3, matrix dimensions = 256 × 256 × 60, in-
plane resolution of 1 mm2, slice thickness = 3 mm, and total scan
time = 3 min and 47 s; Sagittal 3D FLAIR images acquired using an in-
version-prepared variable flip angle TSE sequence with TI = 2200 ms,
TR = 6 s, TE = 355 ms, echo spacing = 3.3 ms, turbo factor = 141,
field of view = 256 × 256 × 176 mm3, matrix dimensions =
256 × 192 × 176, isotropic 1 mm3 spatial resolution, GRAPPA accelera-
tion factor R = 2 in the first phase encode direction and total scan
time = 8 min and 50 s; Axial 2D, proton density weighted images
were acquired using a TSE sequence with TR = 2200 ms, TE = 10 ms,
echo spacing = 10.2 ms, turbo factor = 4, field of view =
256 × 256 × 180 mm3, matrix dimensions = 256 × 192 × 60, in-plane
resolution of 1 mm2, slice thickness = 3 mm, and total scan time =
4 min and 48 s; Sagittal 3D double inversion recovery (DIR) images
were acquired with a variable flip angle TSE readout, TI = 3000 ms,
TR = 7.5 s, TE = 323 ms, echo spacing = 3.02 ms, turbo factor = 256,
field of view = 288 × 243 × 180 mm3, matrix dimensions =
256 × 192 × 176, isotropic 1.5 mm3 spatial resolution, GRAPPA acceler-
ation factor R = 2 in the first phase encode direction and total scan
time = 6 min and 53 s.

Magnetization transfer ratio (MTR) maps were produced based
on (i) an axial gradient echo acquisition with a Gaussian off-resonance
saturation pulse +1200 Hz away from the water resonance (Sat)
and (ii) a second identical acquisition without the saturation pulse
(NoSat). Both the MTR sequences utilized a 3D acquisition with TR =
33 ms, TE = 3.81 ms, flip angle = 10 degrees, field of view =
256× 192 × 192mm3, matrix dimensions= 256 × 192 × 192, isotropic
1 mm3 spatial resolution, and GRAPPA acceleration factor R = 2 in the
first phase encode direction. The acquisition time for each of the MTR
sequences was 6 min and 34 s. To calculate MTR maps, both images
were registered to the space of the T1-weighted imageusing a hierarchi-
cal linear registration (Collins et al., 1994). At each voxel, MTR was cal-
culated from the Sat and NoSat image intensities as 100 × (NoSat −
Sat) / NoSat.

2.3. Image processing

Cortical surface meshes along the white matter and pial surfaces
were first generated based on the T1-weighted image volumes of each
patient at each time point using the standard FreeSurfer analysis pipe-
line (Dale et al., 1999; Fischl et al., 1999a,b), version 5.1.0. All cortical
surface reconstructions were visually inspected, with manual correc-
tions applied if necessary. The FreeSurfer longitudinal analysis pipeline
was then used to create unbiased, longitudinally consistent cortical sur-
faces for the two time points in our study. Based on the resultant white
matter and pial surfaces, intermediate surfaces were generated at 25%
(outer), 50% (mid) and 75% (inner) depth intervals along a Euclidean
distance vector linking a vertex on thepial boundary and thewhitemat-
ter surface (Fig. 1) utilizing in-house developed software. To avoid par-
tial volume contamination from cerebrospinal fluid and white matter
that would occur if the pial and white matter boundaries themselves
were used, the outer and inner surfaces were defined at depths of 25%
and 75% respectively. Note that, in Fig. 1, the green line may not appear
halfway between the red and yellow surfaces at all points because we
are only looking at a particular 2D slice from a 3D volume.

To evaluate theMTRalong each surface,MTR imageswere registered
to the space of the T1-weighted image and blurred along the surfaces by
employing a 2D geodesic smoothing kernel with a full-width at half



Fig. 1. Representative cortical surface reconstruction examples. Segmentation of the inner (cyan), mid (light green) and outer (pink) cortical surface layers based on the initial FreeSurfer
pial andwhitematter surfaces derived from the longitudinal FreeSurfer pipeline.MR images correspond to one slice froma normal control subject for (A) T1-weighted anatomical scan and
(D)MTRmap. Panels B, C, E and F displaymagnified views of cortical sulci and gyri. Themid cortex (light green) is located along a Laplacian boundary, halfway between the red and yellow
surfaces in 3D space. Note that, in the figure, the light green surface layer may not appear to be exactly halfway between the red and yellow surfaces at all points because the figure
demonstrates only a 2D slice from a 3D volume.
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maximum (FWHM) of 10 mm. Lerch and Evans (2005) have shown
that, for quantitative surface-based analysis, 2D geodesic smoothing is
preferentially sensitive and reduces partial volume errors and bias com-
pared to conventional 3D isotropic smoothing. Previous research in our
lab identified that, at 1.5 T, a geodesic smoothing kernel with a full
width at half maximum (FWHM) of 10mmpreferentially detects medi-
um to large areas of sub-pial abnormality suggestive of cortical sub-pial
demyelination (Derakhshan et al., 2014). In addition tomeasuringmag-
netization transfer ratio along the cortex, FreeSurfer-based cortical
thickness measurements were carried out.

The baseline normalized brain volumeof each subjectwasmeasured
using the SIENAX tool from the FSL software package (Jenkinson et al.,
2012). White matter MS lesions were automatically segmented
employing a Bayesian classifier (Francis, 2005). Following this, a re-
search radiologist having over 10 years experience (J.M.), manually
corrected any errors in the white matter lesion masks.

For cortical lesion segmentation, labels were drawn manually in
each slice if regions included at least 3 contiguous voxels with hypo-in-
tensity on T1-weighted images and a corresponding hyper-intensity on
T2-weighted, FLAIR and DIR images. All cortical lesionswere segmented
by a research radiologist having over 10 years of experience (J.M.), using
a multi-contrast reading protocol. The cortical lesion masks were then
registered to the MTR maps to allow comparison of the mean MTR in
cortical lesions to that in the corresponding cortical regions of controls.
The white and gray matter masks derived from the Bayesian classifier
were used to calculate mean MTR in normal-appearing cortical gray
matter (NACGM) and in normal-appearing white matter (NAWM).
The mean MTR in these tissues was compared between patients and
controls using a Welch's two-sample t-test.

2.4. Surface and volume based statistical analyses

To perform statistical analysis at the group level, all cortical surface
reconstructions were non-linearly registered to the coordinate space
of the FreeSurfer average template (Dale et al., 1999). Subsequently,
vertex-wise statistical analysis of MTR differences between MS patients
and controls was carried out using a general linearmixed-effectsmodel.
The mixed-effects model included fixed effects terms for both age and
group (either MS or controls), as well as a random subject-specific ef-
fects term that induced equal correlations between observations of
the same subject. Since the mixed effects model was evaluated at each
individual vertex, correction for multiple comparisons was carried out
to yield accurate statistical results. In our study, this was performed
using the resampling-based false discovery rate strategy introduced by
Yekutieli and Benjamini (1999), Benjamini and Yekutieli (2001). False
discovery rate (FDR) correction was performed using a q-value thresh-
old of 0.1. Such a q-threshold defines the fraction of false positives toler-
able in statistical analyses. The mixed effects model was used because
measurements of MTR at baseline and two-year time points were
strongly correlated. Not all subjects imaged at baseline were able to re-
turn for a follow-up scan, leading to missing data. Specifically, 18 out of
the total 25 MS patients and 10 out of 12 controls returned for scans at
the second time point. The mixed-effects model, with a random subject
effect, accounted for missing data at the follow-up scan. The aforemen-
tioned statistical analysis was applied for all three cortical surface layers
(inner, mid and outer – defined as cyan, light green and pink in Fig. 1).

To augment the above analyses, we tested the hypothesis that MS
patients exhibit a significantly greater reduction in csMTR on the
outer surface compared to the inner surface, when accounting for the
natural gradient of MTR values in controls. Specifically, the average
csMTR at each vertex of the controls was subtracted from the surfaces
of each MS patient. The result was then normalized by the mean
csMTR in controls and used as input to a general linear mixed model.
This procedure increased the number of degrees of freedom (df =
130) compared to the tests between patients and controls on a single
surface (df = 62). As a result, additional explanatory variables were
able to be included in the mixed-effects model for between-surface
analysis. Specifically, the resultant model included fixed effects for
age, EDSS, white matter lesion load and normalized brain volume at
baseline, as well as a random subject-specific effect.

In addition to the vertex-wise analysis discussed above, we applied
ROI-level analyses to investigate: (i) group-level, age-related decline
in csMTR of MS patients relative to controls and (ii) age-adjusted,
group mean differences in csMTR between MS patients and controls.
For this purpose, surface-based ROIs from the Desikan-Killiany atlas
(Desikan et al., 2006) were employed. Calculating mean surface
csMTR within these ROIs increases the effective SNR relative to ver-
tex-based analyses. We hypothesized this would allow better detection
of age-related reductions of csMTR. For each ROI, a mixed model analy-
sis with fixed effects terms for age and group (either MS or controls), as
well as a random subject-specific effect was carried out. The mixed
model analysis was conducted independently for the left hemisphere,
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the right hemisphere and both hemispheres combined. For the com-
bined hemispheres, an additional fixed effect specifying the hemisphere
for each subject was included. Multiple comparisons correction of the
ROI data was performed using FDR with a q threshold of 0.05.

3. Results

3.1. Subject demographic and clinical information

The mean age of patients in our study was 48.5 ± 9.5 and the mean
age of controls was 42.1 ± 11.8. The control group consisted of 12 sub-
jects imaged at baseline and 10 subjects at the second year time point.
The MS patient group consisted of 25 subjects at baseline and 18 sub-
jects at the second year time point. Additional demographic details, in-
cluding gender, median baseline white matter lesion load and EDSS are
presented in Table 1.

3.2. Whole-brain MTR

Our first analysis examined the mean csMTR across the entire cere-
brum. This was used to discern differences in cerebral cortical
myelination patterns between MS patients and controls. Only the base-
line time point data was used for this analysis. Examples of baseline
time point csMTR along the inner, mid and outer cortical boundaries
for MS patients and controls are displayed in Fig. 2A. The natural gradi-
ent in cortical myelination is appreciable, based on the decreasing MTR
values (darker green colours) seen when moving from the inner to the
outer cortical boundaries. The mean cerebral csMTR of MS patients
compared to controls is summarized in the bar plots of Fig. 2B. Mean
csMTR of patients was significantly reduced (p b 0.05) on the mid and
outer cortices. The expected natural gradient in csMTR from inner to
outer cortex was also observed in these plots - decreasing from the
inner to the outer boundary. The csMTR of controls decreased by 2.78
MTR units from the inner to the outer surface, while the csMTR of pa-
tients decreased by 3.52 units The absolute differences between the
inner cortex and the mid cortex (0.55 MTR units for controls, 1.36
units for patients) were significantly (p b 0.05) smaller than those be-
tween the mid cortex and the outer cortex (2.23 units for controls,
2.16 units for patients).

3.3. Surface-based MTR at the vertex level on individual surfaces

Localized reductions in csMTR of patients compared to controls
along the inner, mid and outer cortical surface boundaries are identified
with colour overlays in Fig. 3. Regions of significant csMTR reduction in
MS patients compared to controls are indicated by the blue colours in
the thresholded t-statistic maps (Fig. 3B). The vertex-wise analysis
shown in Fig. 3 used a generalmixedmodel analysis with a fixed age co-
variate and a random subject covariate. The largest areas of sub-pial
MTR abnormality were identified along the outer cortical boundary.
The percentage of affected cortical surface area, as defined by our false
discovery rate multiple comparisons correction, decreased from
27.18% along the outer surface to 7.24% along the inner surface (Fig.
3). The largest areas of reduced csMTR on the outer cortical boundary
Table 1
Demographic and clinical data.
Demographic and clinical data for our study cohort (all data showing error estimates represen

Variable Controls

Number of participants 12 at baseline time point, 10 at
Sex (M/F) 4/8 at baseline time point, 4/6 a
Baseline age, mean (range) 42.10 (22–60)
Baseline EDSS, mean (range) Not applicable
Baseline normalized brain volume (mL), mean ± std. dev. 1473.10 ± 91.22
Baseline white matter lesion load (mL), median (range) Not applicable
extended along the superior temporal, parahippocampal, superior/infe-
rior parietal and posterior cingulate cortices, aswell as in the precuneus,
cuneus and precentral gyrus of both hemispheres. Translaminar differ-
ences in csMTR (those regionswhichwere significant on all cortical sur-
face layers) were also identified across cortical regions in the left
parahippocampal and inferior parietal cortices, as well as in the right
posterior cingulate cortex.
3.4. Brain parcellation approach for evaluating age-related changes in
csMTR

The relationship between layer-specific csMTR and patient age in
three selected brain ROIs (precentral cortex, posterior cingulate cortex
and precuneus), parcellated using the Desikan-Killiany FreeSurfer atlas
(Desikan et al., 2006), is displayed in Fig. 4A–C. These three ROIs were
chosen because of their anatomical and functional roles in large-scale
brain networks and also because of the patterns we observed in either
(i) significantly reduced group-average csMTR or (ii) significant age-re-
lated reductions in csMTR of patients compared to controls. Age was
used as an independent variable in the mixed model regression of Fig.
4. This allowed csMTR of both patients and controls to be easily visual-
ized on the same graph. All correlation coefficients and p-values pre-
sented in Fig. 4A–C were derived from mixed-model analysis at the
ROI level. The blue (precentral cortex), red (posterior cingulate) and or-
ange (precuneus) data points represent individual subjects at either
baseline or two-year time points. For clarity, baseline and two-year
time points for each individual patient are connected by dotted lines.
The bold dotted lines in Fig. 4A–C identify the linear regression model
fit, the solid black lines represent the change in csMTR of controls as a
function of age and the light gray shaded area indicates the 95% confi-
dence intervals of each fit. The corresponding regression slopes and p-
values in all other parcellated brain regions showing either (i) signifi-
cantly reduced mean csMTR or (ii) significant age-related reductions
in csMTR of patients compared to controls are displayed in Table 2.

In Fig. 4B, in the outer layer of the posterior cingulate cortex, a signif-
icant age-related reduction in csMTR was observed in MS patients com-
pared to controls (p b 0.05 and significant after multiple comparisons
correction using the false discovery rate technique with a threshold of
q= 0.1). In the middle layer of the posterior cingulate cortex, a trend to-
wards significant age-related csMTR reduction was observed (p b 0.05,
but not found to be significant after multiple comparisons correction
with q = 0.1). Age-related reduction in csMTR along the inner layer of
the posterior cingulate cortex was not significant and no trend was ob-
served. In the outer cortical layer of the precuneus, a trend was noted in
the age-related reduction of csMTR (p = 0.014, but not significant after
multiple comparisons correction). Age-related reductions in csMTR
were not observed along the middle or inner layers.

Inside the cortical ROIs that showed either statistically significant
age-related decreases in csMTR or trends in csMTR decrease, there
was an average 0.092 MTR units/yr decrease on the outer surface. In
contrast, in corresponding ROIs along the mid and inner cortex, the av-
erage annual decreases were 0.039 MTR units/yr and 0.046 MTR units/
yr respectively.
t mean ± standard deviation). EDSS refers to the Expanded Disability Status Scale.

Patients

second year time point 25 at baseline time point, 18 at second year time point
t second year time point 7/18 at baseline time point, 5/13 at second year time point

48.48 (28–67)
2.92 (0–8)
1452.70 ± 95.01
34.8 (8.7–48.0)



Fig. 2.Cortical surfaceMTRmaps at three cortical depths. (A)Representative csMTR smoothedalong the inner,mid and outer cortical boundaries for controls (left column) andMSpatients
(right column). The MTR values are windowed between 0 and 60 MTR units. (B) Mean MTR across the inner, mid and outer surfaces for the whole brain. Error bars represent standard
deviations (*represents p b 0.05). The inter-hemispheric cut has been masked-out (blacked-out regions) to remove spurious MTR values from this region.
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The columns labeled “main effect” in Table 2 identify in bold all the
ROIs where csMTR of patients was lower, on average, compared to con-
trols. Specifically, in the pars opecularis, rostral anterior cingulate, ros-
tral middle frontal and lateral orbitofrontal cortices, the average
csMTR was significantly reduced only along the outer surface. Likewise,
in the caudal anterior cingulate, precentral and postcentral cortices,
only the outer and middle cortical bands showed significantly reduced
csMTR.

Cerebral mean MTR in normal-appearing cortical gray matter
(NACGM), cortical gray matter lesions and normal-appearing white
Fig. 3. Vertex-wise t-statistical map comparison between MS patients and controls. Fig. 3A sho
regions of significant MTR decrease in patients compared to controls. The maps in Fig. 3B have
q=0.05. Consequently, the corresponding colour bar in Fig. 3B has been thresholded to only sh
been masked-out (blacked-out regions) to remove spurious MTR values from this region.
matter (NAWM) are compared in Table 3. The mean NACGM MTR did
not differ between patients and controls, while the NAWM in MS pa-
tients was significantly reduced compared to healthy controls at the
level p b 0.05. The mean cortical gray matter lesion MTR, 34.57 ±
2.60, was significantly reduced (p b 0.05) compared to the MTR in the
corresponding matched locations in controls (36.39 ± 0.97). For
leukocortical lesions, only the portion of the lesion existing within the
cortical gray matter was used to calculate the mean MTR values.
NACGM included all cortical gray matter tissue without a radiologically
identified lesion.
ws group registered, t-statistical maps for inner, mid and outer cortical surfaces displaying
been multiple comparisons-corrected using the false discovery rate (FDR) technique with
ow the relevant t-statistical values above the FDR threshold. The inter-hemispheric cut has



Fig. 4. Age-related decreases in cortical surfaceMTR in the precentral cortex, posterior cingulate and precuneus. Regional cortical surfaceMTR decrease as a function of age in our subject
cohort. Results are displayed for the three selected ROIs in (A) the precentral cortex (frontal lobe), (B) posterior cingulate (cingulate cortex) and (C) precuneus (parietal lobe). The blue
(precentral cortex), red (posterior cingulate) and orange (precuneus) data points represent individual subjects at either baseline or two-year time points. For clarity, baseline and two-year
time points for each individual patient are connected by dotted lines. The bold dotted lines in Fig. 4A–C identify the linear regressionmodel fit; the solid black lines represent the change in
csMTR of controls as a function of age and the light gray shaded area indicates the 95% confidence intervals of each fit. Correlation coefficients were derived frommixed-model analysis at
the ROI level. The p-values displayed on each plot are derived from a mixed model analysis, with fixed effects terms for age, group (either MS or controls) and hemisphere, as well as a
random subject-specific effect.

863D.A. Rudko et al. / NeuroImage: Clinical 12 (2016) 858–868
3.5. Surface-based MTR at vertex level using the difference in MTR between
surfaces

Using a vertex-wise analysis, we also explicitly examined the rela-
tive differences in csMTR between the three cortical surfaces. When
all csMTR values were corrected for the natural gradient in csMTR that
existed in controls, only the difference between the outer and inner
csMTR proved significant (using FDR multiple comparisons correction
with q= 0.05). This result is shown in Fig. 5. Significant light blue clus-
ters in the thresholded t-statistic maps of Fig. 5 identify regions where
the relative decrease in csMTR along the inner surface exceeded that
on the outer surface. Clustered, light blue regions exist in the left supe-
rior frontal cortex and pars opecularis, as well as in the right superior
frontal cortex. The relative decrease in csMTR was greater along the
outer cortex (orange/yellow clusters) in the left supramarginal and infe-
rior parietal cortices, as well as in the left and right superior andmiddle
temporal lobes.

Fig. 6 shows thresholded t-statistical maps of regions where the rel-
ative csMTR difference between outer and inner cortical MTR of MS pa-
tients (corrected for the natural patterns of MTR in controls) was
correlated with EDSS. Values are significant after multiple comparisons
correction with q= 0.05 and after co-varying for normalized brain vol-
ume, white matter lesion load, global cortical thickness, global cortical
MTR and age. The strongest associations with EDSS were identified in
large clusters located in the (A) precuneus, (B,C) superior frontal and
(D) rostral anterior cingulate cortices (red squares). Significant t-values
were also observed in the vicinity of the primary motor strip, as well as
in the left superior frontal, supramarginal, lateral orbitofrontal cortices.

4. Discussion

Cortical pathology may be a substrate of cognitive impairment
(Nelson et al., 2011; Nielsen et al., 2013; Papadopoulou et al., 2013)
and worsening clinical symptoms in patients with MS (Cohen-Adad et
al., 2011;Nielsen et al., 2013). Indeed, areas of sub-pial abnormality sug-
gestive of diffuse sub-pial demyelination have been measured by in-
creases in quantitative T2⁎ and T2⁎-weighted signal intensity obtained
with UHF 7 T MRI. Such sub-pial abnormalities have previously been
linked to increased neurological disability based on both EDSS and the
Multiple Sclerosis Severity Score (MSSS) (Nielsen et al., 2013; Mainero
et al., 2015). However, UHF MRI will likely not be available for large-
scale MS clinical trials in the near future. Moreover, even with gradient
echo-based T2⁎ mapping at 7 T, the current scan times required for
performing sub-millimeter imaging of whole-cerebrum cortical laminae
with good signal-to-noise ratio and limited artifacts are on the order of
30–45 min (Mainero et al., 2009; Nielsen et al., 2013; Mainero et al.,
2015).

Clearly, there is a need for fast, efficient quantitativeMRImethods to
track cortical pathology in MS clinical studies at accessible field
strengths. Cortical MTR has previously been suggested as a quantitative
marker of sub-pial demyelination inMS (Crespy et al., 2011; Chen et al.,
2013; Derakhshan et al., 2014; Samson et al., 2014). Accordingly, in this



Table 2
Mixed-model analysis of csMTR reductions. Amixedmodelwith age, random subject, and age× group covariate termswas employed. In the case of thehemisphere-combined data, afixed
effect for hemisphere and an interaction between hemisphere and subject index was also included. The columns entitled ‘Age, MTR unit/yr’ identify both the magnitude of age-related
decline of csMTR in MS patients and whether this decline was significant relative to control subjects. The bold font indicates significant values after correction for multiple comparisons.
Italic font indicates trends.

Region Left hemisphere Right hemisphere Combined hemispheres

Main effect Age, MTR unit/yr (pval) Main effect Age, MTR unit/yr (pval) Main effect Age, MTR unit/yr (pval)

Pars opecularis (inner) 0.404 −0.0464 (0.315) 0.938 −0.0434 (0.268) 0.452 −0.057 (0.062)
Pars opecularis (mid) 0.409 −0.0264 (0.493) 0.866 −0.0311 (0.329) 0.454 −0.031 (0.210)
Pars opecularis (outer) 0.0172 −0.0564 (0.304) 0.0147 −0.0777 (0.169) 4.80e-4 −0.071 (0.068)

Posterior cingulate (inner) 0.0152 −0.0760 (0.149) 0.0283 −0.0800 (0.113) 8.38e-4 −0.078 (0.028)
Posterior cingulate (mid) 0.0187 −0.0676 (0.171) 0.0216 −0.0665 (0.128) 8.19e-4 −0.067 (0.037)
Posterior cingulate (outer) 0.0021 −0.1164 (0.0396) 0.0076 −0.1027 (0.070) 3.27e-5 −0.109 (0.006)

Precuneus (inner) 0.0765 −0.0271 (0.528) 0.0672 −0.060 (0.159) 9.11e-3 −0.0481 (0.106)
Precuneus (mid) 0.0535 −0.021 (0.569) 0.0407 −0.038 (0.301) 3.98e-3 −0.032 (0.209)
Precuneus (outer) 5.67e-3 −0.0834 (0.133) 3.25e-3 −0.101 (0.061) 3.82e-5 −0.094 (0.014)

Rostral ant. cingulate (inner) 0.319 −0.0033 (0.952) 0.744 −0.0466 (0.269) 0.311 −0.023 (0.492)
Rostral ant. cingulate (mid) 0.445 −0.0075 (0.870) 0.814 −0.0463 (0.210) 0.445 −0.030 (0.307)
Rostral ant. cingulate (out) 0.137 −0.065 (0.287) 0.112 −0.0836 (0.146) 0.025 −0.083 (0.047)

Rostral Middle frontal (inner) 0.459 −0.0121 (0.772) 0.364 −0.00795 (0.850) 0.22 −0.015 (0.605)
Rostral middle frontal (mid) 0.216 −0.0586 (0.148) 0.472 −0.00805 (0.818) 0.65 −0.032 (0.235)
Rostral middle frontal (outer) 0.0314 −0.00894 (0.798) 0.335 −0.0353 (0.479) 0.04 −0.025 (0.402)

Supramarginal (inner) 0.0489 −0.013 (0.798) 0.114 −0.019 (0.701) 0.011 −0.019 (0.584)
Supramarginal (mid) 0.0537 −0.007 (0.868) 0.181 −0.021 (0.571) 0.017 −0.015 (0.568)
Supramarginal (outer) 3.53e-3 −0.084 (0.127) 6.62e-3 −0.067 (0.222) 4.74e-4 −0.076 (0.046)

Caudal ant. cingulate (inner) 0.205 −0.0166 (0.761) 0.147 −0.0532 (0.403) 0.048 −0.038 (0.361)
Caudal ant. cingulate (mid) 0.0846 −0.0509 (0.333) 0.0846 −0.0509 (0.333) 1.54e-3 −0.003 (0.002)
Caudal ant. cingulate (outer) 2.34e-3 −0.0732 (0.1889) 0.0339 −0.0618 (0.266) 1.86e-4 −0.067 (0.083)

Precentral (inner) 0.860 −0.0181 (0.661) 0.362 −0.0102 (0.826) 0.677 −0.0116 (0.645)
Precentral (mid) 0.0685 −0.0534 (0.228) 0.219 −0.0297 (0.468) 0.0268 −0.0420 (0.155)
Precentral (outer) 0.015 −0.0122 (0.791) 0.018 −0.0766 (0.195) 7.26e-4 −0.0446 (0.231)

Paracentral (inner) 0.077 −0.0229 (0.665) 0.030 −0.0356 (0.412) 5.24e-3 −0.0328 (0.326)
Paracentral (mid) 0.080 −0.0206 (0.659) 0.102 −0.0398 (0.329) 1.50e-2 −0.0334 (0.271)
Paracentral (outer) 0.013 −0.0856 (0.225) 0.017 −0.112 (0.114) 4.49e-4 −0.1018 (0.038)

Postcentral (inner) 0.229 −0.0372 (0.409) 0.579 −0.0634 (0.130) 0.1975 −0.0544 (0.0714)
Postcentral (mid) 0.0508 −0.0250 (0.518) 2.78e-2 −0.0413 (0.221) 2.82 e-3 −0.0339 (0.176)
Postcentral (outer) 9.49e-3 −0.0162 (0.753) 5.36e-3 −0.0561 (0.269) 1.12e-4 −0.0208 (0.558)

Entorhinal (inner) 5.05e-3 −0.0323 (0.581) 3.63e-3 −0.112 (0.0656) 3.31e-5 −0.083 (0.046)
Entorhinal (mid) 1.40e-3 −0.0312 (0.543) 2.68e-3 −0.0830 (0.107) 7.86e-6 −0.059 (0.098)
Entorhinal (outer) 5.58e-4 −0.0676 (0.208) 3.99e-3 −0.0596 (0.186) 5.83e-6 −0.065 (0.062)

Fusiform (inner) 6.78e-3 −0.0890 (0.216) 3.91e-3 −0.1538 (0.0223) 5.95e-5 −0.138 (0.005)
Fusiform (mid) 4.37e-3 −0.0641 (0.265) 2.68e-3 −0.0830 (0.107) 1.40e-5 −0.098 (0.010)
Fusiform (outer) 7.60e-4 −0.0493 (0.272) 3.99e-3 −0.0596 (0.186) 3.69e-7 −0.056 (0.051)

Inf. parietal (inner) 0.0704 −0.0143 (0.769) 0.0373 −0.0419 (0.340) 5.19e-3 −0.022 (0.498)
Inf. parietal (mid) 8.67e-5 −0.0099 (0.746) 0.0136 −0.0189 (0.567) 4.17e-6 −0.019 (0.402)
Inf. parietal (outer) 7.98e-6 −0.0564 (0.180) 9.28e-4 −0.0220 (0.592) 1.87e-8 −0.040 (0.172)

L. orbitofrontal (inner) 0.163 −0.0141 (0.757) 0.467 −0.0398 (0.471) 0.142 −0.013 (0.709)
L. orbitofrontal (mid) 0.392 −0.0052 (0.895) 0.891 −0.0306 (0.473) 0.624 −0.018 (0.525)
L. orbitofrontal (outer) 0.0131 −0.0716 (0.147) 0.170 −0.0572 (0.169) 5.46e-3 −0.062 (0.053)

M. orbitofrontal (inner) 0.0931 −0.0720 (0.253) 0.129 −0.0703 (0.303) 0.021 −0.072 (0.114)
M. orbitofront. (mid) 0.0931 −0.0669 (0.199) 0.139 −0.0481 (0.385) 0.020 −0.057 (0.123)
M. orbitofront. (outer) 0.0170 −0.0939 (0.098) 0.0333 −0.0758 (0.160) 0.001 −0.088 (0.021)

M. temporal (inner) 8.74e-3 −0.1086 (0.0751) 0.0146 −0.1054 (0.0663) 2.56e-4 −0.111 (0.007)
M. temporal (mid) 4.42e-3 −0.0888 (0.0524) 7.83e-3 −0.0553 (0.179) 6.98e-5 −0.073 (0.015)
M. temporal (outer) 1.53e-4 −0.0263 (0.385) 5.80e-4 −0.0308 (0.320) 1.09e-3 −0.021 (0.432)

Table 3
Regional differences in MTR (in MTR units ± standard deviation) between patients and
controls (*p b 0.05 relative to corresponding cortical lesion ROI locations in matched
controls, ◆p b 0.05 relative to control NAWM).

Brain region Healthy controls MS patients

Normal-appearing cortical
gray matter (NACGM) MTR

36.31 ± 0.74 35.80 ± 1.36

Cortical gray matter lesion
MTR regions of interest

36.39 ± 0.97 34.57 ± 2.60⁎

Normal-appearing white
matter (NAWM) MTR

44.33 ± 2.94 41.16 ± 4.08◆

Values in the table represent mean ± standard deviation.

864 D.A. Rudko et al. / NeuroImage: Clinical 12 (2016) 858–868
study, we have utilized cortical surface-based analysis of MTR data to
quantify sub-pial abnormalities suggestive of diffuse sub-pial demyelin-
ation using standard 3 T MRI at a voxel resolution of 1 mm3 isotropic.
We have also explored the use of both individual cortical surface layers
and the relative difference in csMTR between those layers as metrics of
sub-pial demyelination. Additionally, we have quantified the csMTR
values in anatomically parcellated ROIs and manually segmented corti-
cal lesions in order to provide context for our separate voxel-wise
csMTR measurements of diffuse, sub-pial abnormality.

Our results suggest that csMTR maps, particularly those created
using the outer cortical boundary, are capable of identifying a subset



Fig. 5. Vertex-wise statistical maps comparing differences in MTR between cortical surfaces. t-Statistical (Fig. 5A and B) maps displaying between-surface differences in MTR of patients.
This analysis was applied to test the hypothesis that MS patients exhibit a significantly greater reduction in csMTR on the outer surface of the cortex compared to the inner surface, when
accounting for the natural gradient of MTR values in controls. The average csMTR at each vertex of the controls was subtracted from the surfaces of each MS patient. The result was then
normalized by themean csMTR in controls andused as input to a general linearmixedmodelwithfixed effects for age, EDSS,whitematter lesion load, normalizedbrain volumeat baseline,
as well as a random subject-specific effect. The maps in Fig. 5B have been multiple comparisons-corrected using the false discovery rate technique with q = 0.05.
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of cortical pathology that has been identified in post-mortem immuno-
histochemistry (Peterson et al., 2001; Bo et al., 2003; Kutzelnigg et al.,
2005; Magliozzi et al., 2007; Howell et al., 2011). The finding, presented
in Fig. 3, that a larger percentage of outer cortical surface shows de-
creased csMTR compared to the inner surface (from 27.18% along the
outer surface to 7.24% along the inner surface) is in keepingwith recent
observations by Mainero et al. (2015). Our work supports these recent
findings and in addition, extends their scope by utilizing csMTR at mul-
tiple cortical levels. In our study, vertex-level csMTR signal reductions
were observed along the outer cortical surface in the superior temporal,
parahippocampal, superior/inferior parietal, posterior cingulate and
Fig. 6. Thresholded t-statisticalmaps showing regionswhere the relative csMTR difference betw
in controls) was correlated with EDSS. Values are significant after multiple comparisons correc
located in the (A) precuneus, (B,C) superior frontal and (D) rostral anterior cingulate cortices (r
co-variates for normalized brain volume,whitematter lesion load, global cortical thickness, glob
volume.
inferior parietal cortices, as well as in the precuneus, cuneus and
precentral gyrus of both hemispheres. These results are spatially consis-
tent with the patterns of sub-pial demyelination observed in MS pa-
tients in post-mortem histopathology studies (Peterson et al., 2001;
Bo et al., 2003; Kutzelnigg et al., 2005).

In Fig. 4 and Table 2, we have identified parcellated brain regions
that displayed either (i) significantly lower group-average csMTR in pa-
tients compared to controls or (ii) significant age-related decreases in
csMTR in the cortex of MS patients compared to controls. Statistically
significant, age-related reductions in csMTR (and associated trends
shown in italics in Table 2) were generally more prevalent along the
een outer and inner corticalMTR ofMS patients (corrected for the natural patterns of MTR
tion with q = 0.05. The strongest associations with EDSS were identified in large clusters
ed squares). As shown in themixed model equation in the red box at the top of the figure,
al corticalMTR and agewere included in this vertex-wise analysis. nbv=normalized brain
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outer and mid cortex compared to the inner cortex. This supports the
hypothesis that progressive, age-related sub-pial demyelination in MS
may be spatially localized along the outer andmid cortical bands. In par-
ticular, the ROIs defining the medial orbitofrontal, rostral anterior cin-
gulate, paracentral, posterior cingulate, supramarginal and precuneus
cortices showed trends towards age-related csMTR decrease only
along the outer or outer/mid cortex. The rostral anterior cingulate, pos-
terior cingulate andprecuneus are involved in executive function,mem-
ory and processing speed through thalamo-cortical circuits (Leech and
Sharp, 2014). Recent structural and functional MRI studies have identi-
fied tissue damage in the thalamo-cortical circuits linked to cognitive
impairment and clinical disability in MS (Rocca et al., 2003; Mesaros
et al., 2012; Yu et al., 2012; Tona et al., 2014; Tewarie et al., 2015). As
a result, age-related csMTR reductions may be biomarkers of progres-
sive loss of cognitive function and accumulation of clinical disability in
MS through demyelination of cortical nodes in the thalamo-cortical
network.

With reference to the “main effect” columns in Table 2, we identified
significant reductions in csMTR compared to controls in the outer cau-
dal anterior cingulate, precentral and postcentral cortices. However,
no age-related decline was identified in these regions. A common link
between these areas is their high myelin content (Glasser and Van
Essen, 2011; Bock et al., 2013; Glasser et al., 2014). This may suggest
that, in such regions of naturally occurring high myelin content, either
(i) initial demyelination was more severe, so csMTR reached bottom
earlier or (ii) repair mechanisms may have allowed cortical pathology
to stabilize after an initial period of acute inflammation.

Figs. 5 and 6 illustrate the results of our between-surface, csMTR
analysis. For this analysis, csMTR was calculated relative to the mean
csMTR on each control surface. The result was then used as input to
the longitudinal, linear mixed model with covariates for age, EDSS,
white matter lesion load and normalized brain volume at baseline, in
addition to a random subject-specific effect which induced equal corre-
lations between observations of the same subject. Two hypotheseswere
tested: (i) whether the relative csMTR difference between layers was
significant (Fig. 5) and (ii) whether there was an association between
this difference and EDSS (Fig. 6).

In the group-level maps of Fig. 5, in the superior frontal cortex, pars
opecularis, and right superior frontal cortex, the magnitude of the rela-
tive decrease in csMTR along the inner surface exceeded that seen on
the outer surface (light blue areas in thresholded t-statistic maps).
This may be due to inflammatory processes occurring at the gray
matter/white matter boundary in these subjects (Geurts et al., 2005;
Mainero et al., 2009; Mistry et al., 2014). Indeed, several recent UHF
MRI studies have now recognized the prevalence of leukocortical
(Type I), T2⁎-hyperintense lesions at the gray matter/white matter
boundary (Mainero et al., 2009; Nielsen et al., 2013) and have pointed
to their significant associationwith processing speed as well as learning
and memory as measured by neuropsychological testing (Nielsen et al.,
2013). Areas where the relative decrease along the outer cortex was
larger than that seen on the inner cortex were found in the left
supramarginal and inferior parietal cortices, in addition to the left and
right superior and middle temporal lobes (orange/yellow areas in
thresholded t-statistic maps). These are all highly myelinated regions
of the cortex (Glasser and Van Essen, 2011), supporting the notion
that highly-myelinated areas may be preferred foci of cortical sub-pial
demyelination in MS.

In Fig. 6, we have highlighted regions where the relative difference in
csMTR between the outer and inner cortex correlated with EDSS. Highly
significant correlations were observed in the left and right rostral anteri-
or cingulate and precuneus, as well as in the left superior frontal cortex.
These regions are broadly associatedwithmotor and sensory processing.
The rostral anterior cingulate has also been implicatedwith learning and
problem solving (Allman et al., 2001), while the superior frontal gyrus
has been related to coordinated action of the sensory processing net-
works (Goldberg et al., 2006, 2007). The precuneus is subdivided
according to its functionality into (i) an anterior sensorimotor area
which is connected with the premotor and somatosensory cortices
(This could explain the association between reduced outer csMTR and
EDSS) and (ii) a cognitive/associative central area linked to both inferior
parietal lobule and prefrontal cortical regions (Margulies et al., 2009).
The EDSS score itself is weighted towards motor disability which sup-
ports the association in our datawith reduced outer csMTR inmotor net-
works. EDSS scores have been repeatedly associated with sensorimotor
impairments (Zackowski et al., 2009; Zhuang et al., 2015), supporting
the sensorimotor network spatial correlations in Fig. 6.

Using high-resolution 7 T data from a multi-echo gradient echo se-
quence, Mainero et al. recently observed correlations between in-
creased T2⁎ (indicative of demyelination) and neurological disability
defined by EDSS and MSSS (Mainero et al., 2015). The greatest associa-
tion was observed on the outer cortical surface for both EDSS andMSSS.
However, the reported correlations between surface-based T2⁎ andMSSS
were very sparse. Further, when usingwhitematter lesion load as a nui-
sance factor in their vertex-wise general linear model, Mainero et al.
found that a number of surface-based correlations with EDSS were re-
moved (Mainero et al., 2015). In our work, white matter lesion load
was also used as a nuisance covariate, but it had no effect on the clus-
ter-wise correlations with EDSS (Fig. 6). This may indicate that csMTR
is a more stable measure of the cortical pathology that distinctly con-
tributes to neurological disability measured using EDSS.

Mapping of any quantitative MRI parameter (be it MTR, T2⁎ or any
othermetric) on cortical surface layerswith a resolution of 1mm isotro-
pic is inherently challenging due to the thickness of the human cerebral
cortex (varying between 1 and 4.5 mm). As shown in Fig. 1, the multi-
layer cortical surface reconstruction in our study is robust in most re-
gions having thicknesses N3 mm. For regions with thickness b3 mm,
the smoothed values of csMTR along the inner and middle surface
may be partially redundant. However, it should be noted that the direct
statistical tests performed in this study examined either (i) the differ-
ence between corresponding vertex points in MS patients and controls
or (ii) the difference in csMTR between the inner and outer cortical
boundaries. Since the same surface reconstruction was carried out for
both patients and controls and the inner and outer cortical boundaries
were generally well separated, we believe the vertex-based, statistical
analysis we employed in this study was indeed robust.

Linking cortical MTR signal to underlying sub-pial myelin content
also is subject to some confounds. Previous work has demonstrated
that MTR on the cortical surface is an indicator of sub-pial demyelin-
ation in ex-vivo brain tissue (Chen et al., 2013). However, suchMTR im-
aging of sub-pial myelin is still an indirect measure because it is
weighted by the T1 relaxation time, the homogeneity of B1+ excitation
and off-resonance saturation pulses, and the MRI sequence parameters
(Helms et al., 2008). Future research will investigate the use of magne-
tization transfer saturation (Helms et al., 2008) and bound pool fraction
mapping (Davies et al., 2004) as alternatives to MTR for potentially
more precise measurements of cortical myelin content.

In Table 3we comparedmeanMTR in NACGMbetween patients and
controls. No significant differences between patients and controls were
found in this assessment, suggesting that sub-pial demyelination is not
a completely global, whole-cerebrumeffect. Instead, our data from Fig. 3
suggest it typically occurs in localized clusters in the vicinity of the pri-
mary motor strip, posterior cingulate gyrus, precuneus and cuneus, in
addition to the inferior parietal and superior temporal lobes. Significant
reductions in MTR were observed between lesion locations in patients
compared to corresponding ROIs in controls,while controlling for spatial
variations in csMTR. Although the application of a multi-contrast read-
ing protocol, including DIR, allowed detection of many leukocortical
lesions in our study, we recognize not all cortical lesions are faithfully
detected using 3 T MRI. Therefore, the MTR values cited for cortical
lesions in Table 3 correspond to those for a subset of cortical lesions.

The NAWMMTR (i.e.meanwhitematter MTR not including lesions)
of patients in our study was significantly lower than that of controls,
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suggesting patients in our study may have significant loss of myelin in
cerebral whitematter. The relationship between NAWMdemyelination
and cortical pathology remains an open area of research. In their com-
prehensive diffusion MRI and histopathology-based work, Kolasinski
et al. (2012) demonstrated cell or axonal loss in a given white matter
brain area may give rise to anterograde or retrograde degeneration in
cortical areas distant from the site of initial whitematter tissue damage.
Further research is necessary to determine whether the well-recog-
nized white matter inflammatory response observed in MS is linked to
cortical pathology or whether these events occur independently of
one another.

5. Conclusion

Multi surface-based MTR at the clinically accessible field strength of
3 T identifies cortical sub-pial abnormality suggestive of demyelination
in MS patients. Our results suggest that parcellation of the brain using
theDesikan-Killiany surface-based atlas allows identification of regional
decreases in csMTR compared to controls. Using this information may
allow better stratification of early changes in myelination of the cortex
and more efficacious detection of treatment response.
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