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Abstract

Motivation: DNA methylation patterns are well known to vary substantially across cell types or

tissues. Hence, existing normalization methods may not be optimal if they do not take this into

account. We therefore present a new R package for normalization of data from the Illumina

Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently

published funNorm method, and introducing cell-type or tissue-type flexibility.

Results: funtooNorm is relevant for data sets containing samples from two or more cell or

tissue types. A visual display of cross-validated errors informs the choice of the optimal number of
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components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated

in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where

methylation patterns have unique inter-tissue variability.

Availability and Implementation: An R package is available at https://github.com/GreenwoodLab/

funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org.

Contact: celia.greenwood@mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recently, a normalization method was introduced by Fortin et al.

(2014) specifically designed for the Illumina Infinium Human

Methylation 450 BeadChip (Illumina 450 K) and implemented in

Bioconductor’s minfi package(Aryee et al., 2014). The percentile-

specific adjustments in funNorm are the key feature allowing batch

effects and technical artefacts to have non-constant influence across

the range of signal strengths.

However, since methylation patterns may differ substantially

across cell types or tissues leading to cell- (or tissue)-type-specific

quantiles, optimal normalization adjustments should capture this.

Here we present an R package for normalization of Illumina 450 K

data, funtooNorm (an extension of the ideas in funNorm) applicable

to such heterogeneous data sets.

2 Methods

Key features of funtooNorm and funNorm are identical, i.e. nor-

malization adjustments are estimated via regression models

applied to a series of quantiles of the probe-type-specific signals in

each sample. Covariates, derived from the control probes, capture

variation not associated with the biological signals of interest. In

funtooNorm, an augmented covariate matrix is constructed by

including interactions between cell-type or tissue-type indicators and

the average signal from each control probe type. Either principal com-

ponent regression (PCR) or partial least squares regression (PLS)

(Tenenhaus, 1998) can be fit (the type.fits option); as in funNorm,

normalized methylation values are based on predictions from linear

interpolations between the analyzed percentiles (see Supplemental

Methods).

The function, funtoonorm, operates in two distinct modes:

• Normalization mode: When validate¼FALSE, normalization of

the data is performed for a chosen number of components in the re-

gressions. The model-fitting step requires only a set of quantiles for

each sample, and hence is efficient both computationally and in

memory usage. Calculations can be performed in a modular fash-

ion; intermediary results can be saved by setting appropriate flags.
• Cross-validation mode: When validate¼TRUE, a graphical dis-

play of root mean squared errors (RMSE) obtained with cross-

validation facilitates choice of an appropriate number of compo-

nents (Fig. 1). Plots are provided for both PCR and PLS fits.

Three data sets are used to illustrate performance (Supplemental

Table S1). In the Replication Data Set, methylation was meas-

ured in ten healthy individuals who contributed 2–3 samples of

each of whole blood, buccal swab and dried blood spots, includ-

ing a mixture of technical and biological replicates. In the

Systemic Autoimmune Diseases Data (SARDS), monocytes and

CD4þT-cells from incident patients were separated from whole

blood, with repeated samples drawn before and after 6 months of

immunosuppressive treatment. For the Gestational Diabetes

Data (GD), one technical replicate sample was available for each

of fetal placenta and cord blood tissues. Agreement—within a tis-

sue or cell type—is measured by the average (over probes) of the

squared intra-replicate set differences, summed over distinct

individuals.

3 Results

Figure 1 displays the cross-validation RMSE plot for the Replication

Data set with PCR. The optimal number of components varies

across the percentiles and signals; evidently there is substantial im-

provement in mean squared error from 2 to 3 components.

Technical replicate agreement was improved with funtooNorm

compared to funNorm (Supplemental Figs S1 and S2, Supplemental

Tables S2 and S3). Agreement improved by substantially for technical

replicates of whole blood, blood spots, and fetal placenta tissues,

although there was little difference between the methods for buccal

swabs or cord blood. For biological replicates, we saw improvements

of 10-20% in many tissues. Performance was particularly good for

probes on the X chromosome. Supplemental Figure S3 shows that the

distribution across probes of the differences between tissue types is

distinct on the X chromosome; this is captured by our augmented

covariate matrix. A similar argument explains enhanced performance

for some probe annotations (Supplemental Fig. S4). Performance on

the Y chromosome was poor, since with only 416 probes, a quantile-

based model fit is overly complex; we recommend the simpler method

implemented in funNorm for this chromosome.

Fig. 1. Root mean square error from cross-validation comparing different num-

bers of components in funtooNorm on the Replication Data Set. Separate

model fits are implemented for A and B signals, and for different probe types
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4 Discussion

Most methylation studies today are designed to detect inter-

individual differences, rather than inter-tissue differences.

Improved normalization of datasets containing multiple tissues

can be expected to translate into increased power to detect asso-

ciations of interest, due to the inferred reduction in residual

error; funNorm and this extension funtooNorm are designed

with this goal in mind.
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