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Mean-based thresholdingmethods are among the most popular techniques that are used for images segmentation.*resholding is
a fundamental process for many applications since it provides a good degree of intensity separation of given images. Minimum
cross-entropy thresholding (MCET) is one of the widely used mean-based methods for images segmentation; it is based on a
classical mean that remains steady and limited value. In this paper, to improve the efficiency of MCET, dedicated mean estimation
approaches are proposed to be used with MCET, instead of using the classical mean. *e proposed mean estimation approaches,
for example, alpha trim, harmonic, contraharmonic, and geometric, tend to exclude the negative impact of the undesired parts
from the mean computation process, such as noises, local outliers, and gray intensity levels, and then provide an improvement for
the thresholding process that can reflect good segmentation results. *e proposed technique adds a profound impact on accurate
images segmentation. It can be extended to other applications in object detection. *ree data sets of medical images were applied
for segmentation in this paper, including magnetic resonance imaging (MRI) Alzheimer’s, MRI brain tumor, and skin lesion. *e
unsupervised and supervised evaluations were used to conduct the efficiency of the proposed method.

1. Introduction

*resholding is a type of image segmentation that tends to
find a good point to separate heterogeneous regions or group
objects and split them from the background [1]. *e optimal
threshold is the value that indicates the degree of intensity
separation for a given image, for example, in medical images,
that either indicates extreme diseases, or vice versa. To
analyze the features and segmented objects inside the image,
there are two important factors in image intensities on which
the segmentation process depends. *e first factor is the
change ratio in intensity levels and to what extent they are
discontinuous, especially the edges of objects in an image.
*e second factor is to what extent the intensities are the
same. *ese factors are applied to entropic thresholding
[2–5]. Segmentation mainly depends on the threshold value
to separate objects from the background. *e value of the

optimal threshold can be obtained from various methods.
*e mean-based minimum cross-entropy thresholding
(MCET) is one of the frequently used for image segmen-
tation, where various distributions are predicted using the
image histogram [6, 7]. *is paper aims to improve MCET,
by estimating the desired mean values from the image re-
gions. *is contributes to computer-aided diagnosis (CAD)
techniques by improvingMCETfor image segmentation that
aids physicians’ assessment of the degree of the disease.

Computer-aided diagnosis (CAD) systems have signif-
icant potential for diagnosing fatal diseases. Segmentation of
infected foreground in medical images has an important role
in detecting malignant disease, or vice versa [8]. Alzheimer’s
disease (AD) is a gradual neurologic disease in the brain that
produces irreversible loss of neurons. AD leads to tissue loss
throughout the brain that shrinks the size of brain volume.
*e number of affected people is increasing every decade;
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within the next two decades, 1 out of 85 persons will have the
AD by 2050 [9, 10]. CAD systems can help neurologists
discover the early stage of AD. Medical resonance imaging
(MRI) has been confirmed to be very useful in this task [11].
Technically, the CAD system uses MRI to display a useful
comparison between normal and abnormal neurons using
the analysis of certain characteristics in brain images and
thus determine the appearance of atrophied neurons
[12, 13]. Image segmentation is an important technique that
detects infected skin lesions and separates the lesion from
the skin region. To provide reliable diagnosis, CAD systems
tend to observe the early symmetric shape [8, 14]. Moreover,
MRI brain tumor segmentation is a hard task for many
reasons, such as the non-homogeneous intensities around
the tumor, the presence of noises in the background, the
complicated shapes and the fuzzy boundaries, and less
contrast between neighboring brain tissues [15–17]. Stan-
dard segmentation methods of MRI brain tumors are time-
consuming and difficult and provide different results. In this
paper, the proposed model tends to improve the segmen-
tation accuracy of infected foreground in the medical image
for better diagnosing purposes. *e main contributions of
this research are as follows:

(i) Improving minimum cross-entropy thresholding
using different mean filters approaches

(ii) Developing an image segmentation model for ac-
curate and early detection of infected foreground in
medical images

(iii) Handling the challenge of noise and outliers in
images that negatively impact the mean value in the
segmentation model

(iv) Implementing inclusive segmentation algorithm for
various medical images and intensity distributions

2. Related Works

Several studies have been proposed and developed in the
literature for thresholding-based segmentation. Some
studies produced satisfying outputs, and they were dedicated
to a certain type of images [18]. Others rely on image his-
tograms or local properties, for example, local mean value
and the local gradient or the standard deviation. *e most
conjectural approach is global thresholding based on his-
togram components. Here, one threshold is assigned for the
entire image [19]. Global thresholding considers the image
to have a bimodal histogram; therefore, the object can be
segmented and separated from the background, by com-
paring image pixels with a threshold value T [1–4]. Suppose
an image I(x, y) is given with its corresponding histogram.
*e thresholded image is defined as g(x, y), as follows:

g(x, y) �
1 if I(x, y) >T,

0 if I(x, y) ≤T,
􏼨 (1)

where T is the optimal thresholded, g(x, y) is the thresh-
olded image based on the distributed intensities in I(x, y),
and I(x, y) is the original image. *e result is a binary image,
where the pixels equal to 255 correspond to objects, and the

pixels equal to 0 correspond to the background [3, 20].*ere
are various types of global thresholding methods, for ex-
ample, Otsu 1979, proposed by Otsu [3], and its relevant
approaches. *is paper focuses on entropy thresholding
methods and specifically improving minimum cross-en-
tropy thresholding (MCET) because it relies on the mean
values in its technique as shown in equation (4), while Otsu
is based on the mean and the variance.

Entropy is the measure of information components in a
probability distribution [21, 22]. Entropy in images pro-
cessing could be used to measure the division of two classes
and therefore separate the information in images into two
regions by the threshold.*ere are different types of entropy
thresholding methods, for example, maximum entropy
thresholding that maximizes the sum of two class entropies,
fuzzy entropic thresholding that minimizes the sum of the
fuzzy membership, and MCET that minimizes the variance
between two class entropies [7].

2.1. Minimum Cross-Entropy 'resholding (MCET).
Minimum cross-entropy-based thresholding (MCET) de-
scribes the optimum threshold by minimizing the variance
between two class entropies [22]; thus, the result of optimal
threshold t∗ is as follows:

t
∗mint D I, It( 􏼁( 􏼁 � mint(D(t)), (2)

where D(I, It) can be written as D(t) and is determined as
follows:

D(t) � 􏽘

L

i�1
i∗ h(i)∗ log(i) − 􏽘

L

i�1
i∗ h(i)∗ log μ1(t)( 􏼁

− 􏽘
L

i�t+1
i∗ h(i)∗ log μ2(t)( 􏼁,

(3)

where h(i) refers to the histogram of the gray level i for the
range [1, L] and μ1(t) and μ2(t) are the mean values of the
first and the second region, respectively. Since the first term
is a constant for a given image [8]; thus, the objective
function can be written as follows:

n(t) � − 􏽘
t

i�1
i∗ h(i)∗ log μ1(t)( 􏼁 − 􏽘

L

i�t+1
i∗ h(i)∗ log μ2(t)( 􏼁.

(4)

*erefore, this function can be rewritten as follows:

n(t) � C1(t)∗ log μ1(t)( 􏼁 + C2(t)∗ log μ2(t)( 􏼁, (5)

where C1(t) and C2(t) are as follows:

C1(t) � − 􏽘

t

i�1
i∗ h(i), (6)

C2(t) � − 􏽘
L

i�t+1
i∗ h(i). (7)

*is method finds the best distribution for the image
regions of an image based on the probabilistic distribution
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approach. *e Gaussian distribution is not constantly
suitable for symmetric classes in the image histogram due to
the impact of noise and outliers. Mainly, the regions of the
image are considered to be two Gaussian distributions, such
that the value of μ1(t) and μ2(t) are estimated from the
following equations:

μ1(t) �
􏽐

t
i�1 i∗ h(i)

􏽐
t
i�1 h(i)

, (8)

μ2(t) �
􏽐

L
i�t+1 i∗ h(i)

􏽐
L
i�t+1 h(i)

. (9)

In this mean-based method, the final threshold in
equation (1) is computed depending on the mean value
based on Gaussian distribution definition equations (8) and
(9), to be applied on equation (4). *e process of mean
computation in MCET is similar to the approach of
“arithmetic mean” regardless of whether the image histo-
gram has a symmetric distribution or not. *e presence of
noise, local outliers, and gray areas will also be included in
the mean computation and highly impact the calculation in
equation (4).*is case could produce drawbacks in regard to
the final threshold especially due to the direct relationship
between the mean value and the final threshold. *is impact
could lead to a negative effect on segmentation results.

Minimum cross-entropy thresholding was proposed
under the Gaussian distribution for mean estimation
[7, 22, 23]. *e proposed methods showed some satisfying
results with a limitation regarding the steady mean esti-
mation formula that impacts the efficiency of the method
function. *e classical mean value usually includes all in-
tensity levels and unwanted parts of image regions; thus, it
could negatively impact the final threshold of the MCET.
*e method also improved for selecting multilevel threshold
values using particle swarm optimization [21] and an im-
proved human mental search algorithm [24]. Also, it was
proposed for color image segmentation based on exchange
market algorithm [25]. MCET also improved by using
gamma, Gaussian distribution in [8]. Moreover, it was
developed using hybrid distribution including Gaussian and
lognormal [6]. Although the process of mean estimation
remained steady for each selected distribution, the stated
methods were able to achieve the satisfying performance of
segmentation for a certain type of images, with some lim-
itations regarding the computational range for the mean
value.

*e original MCET is not always suitable for various
types of images. Usually, Gaussian-based MCET is suitable
for symmetric distribution. However, some images with
symmetric distribution may face inaccurate segmentation
issues because there can be a randomly distributed noise and
local outliers inside each region in the image and gray in-
tensity levels between the object and the background re-
gions; thus, they can negatively impact the mean
computation for the MCET as shown in Figure 1. *ese
situations are some of the main challenges that can directly
impact the desired threshold because their negative effects
on mean values, as they are included in the classical mean

computation process. MCET method completely relies on
the mean values. Since the mean value is computed in a
simple form, this value is not enhanced enough to be a
much-desiredmean value for this method.*us, it computes
a single value margin of the threshold. *e stated drawbacks
can directly affect the segmentation accuracy. One of the
issues is how much the mean-based MCET is sensitive to
noise and outliers that are included in the mean compu-
tation. *is work ignores any process that tends to change
the original pixels inside image regions. *e goal is to find
new enhanced mean values from these regions. Automati-
cally selecting threshold from histogram gray-level values
has been derived from the viewpoint of differential analysis
including what is the desired mean for each region. *is
paper also tends to evolve MCET toward optimal thresh-
olding technique by estimating new mean values using
different approaches.

3. Proposed Mean Estimation Approaches

According to the stated issues in the introduction and re-
lated work, this paper proposes using existing mean esti-
mation approaches depending on the image filtering
techniques, to be used with histogram version for each class,
and dealing with the pixels in each class assorted vectors.*e
proposed technique uses the mean filters for both μ1 and μ2
values in each class and then obtains a new optimal
threshold as shown in Figure 2. Mean filters are adapted to
be used in histogram version; for example, alpha trimmed in
equation (10) is adapted in equations (11) and (12), which
will eliminate the unwanted parts from histogram regions
and exclude them with specific trim value, as shown in
Figure 3.

In general, noise is distributed at the start and the end of
the histogram, where pepper noise is present at the beginning
of histogram gray level (the lowest gray level), and the salt
noises is present at the end of the histogram (the highest gray
level), as shown in Figure 1. *us, the filtering approaches
such as harmonic, contraharmonic, geometric, and alpha-
trimmed mean filters [1] are used as mean estimators for
MCET since the optimal threshold in this method is com-
pletely dependent on the classical mean value. From this
point, the proposed techniques could provide a good indi-
cation of this relation. *is indication aims to handle the
drawbacks in the related work and improve the MCET
method, as well as define clear formula for mean estimation,
for various kinds of images and pixels distribution.

3.1. Classical Mean Filter. *is filter is called the arithmetic
mean filter and is the simplest mean filter, as shown in
equation (10). It computes the average value of image
g(x, y) in the area defined by Sxy.

􏽢f (x, y) �
1

mn
􏽘

(s,t)∈Sxy

g(s, t). (10)

*e process of mean estimation in the histogram version
is shown in the following equations:
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μ1(t) �
1

Length1
􏽘

i∈Mode1
Mode1(i), (11)

μ2(t) �
1

Length2
􏽘

i∈Mode2
Mode2(i), (12)

where μ1(t) and μ2(t) are the mean values of mode1 (class1)
and mode2 (class2) in the image histogram, respectively. Sxy

refers to the mask in the original filter, and modes 1 and 2
refer to the vectors of pixels in histogram regions, as
explained in Figure 3.

3.2. Alpha-TrimmedMean Filter. *is filter tends to enhance
the mean value, by excluding noises and outliers parts from
histogram regions by applying α-trimming value, as shown in
equation (13).*e intensity levels are treated as a sorted vector,
while mean estimation in the histogram version is shown in
equations (14) and (15). *is filter can handle multiple types of
noise in images, for example, combination of salt and pepper as
well as Gaussian noise, as shown in Figure 1. *is filter could
provide a better mean value for asymmetric pixels distribution.
Moreover, this filter could provide less affected error by outliers
and asymmetries than using normal distribution when it is
used with MCET for image segmentation.

I (x,y)
Input

Proposed Method

Proposed
Technique

µ1 and µ2
Estimation

New Optimal 
Threshold

µ Based 
Thresholding

MCET

This technique can be Harmonic, Contra-Harmonic, 
Geometric, or Alpha Trimmed filters

Output
g (x,y)

Figure 2: Proposed model, where μ1 and μ2 are estimated using mean filters approaches.

i+n i i+1 i+n
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Mode 2 (i)Mode 1 (i)

Mode 1 Mode 2

g (s,t)
0

Sxy

Figure 3: Modes adaptation for mean estimation filters, where the mask Sxy refers to the mask in the original filter, and the modes refer to
vectors of pixels in histogram regions.
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Figure 1: Histogram visualization for the proposed mean estimation techniques, excluding the unwanted areas for mean estimation, for
example, alpha trim with specific d/2 trim value.
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􏽢f (x, y) �
1

mn − d
􏽘

(s,t)∈Sxy

gr(s, t), (13)

where gr(s, t) represent the remaining m∗ n − d pixels after
removing the d/2 highest and d/2 lowest values from the
overall pixels in the region g(s, t) and Sxy represents the set
of coordinates in a rectangular subimage or mask window of
size m∗ n.

*e formula of the alpha-trimmed filter can be rewritten
for the histogram version as follows:

μ1(t) �
1

Length1 − d
􏽘

i∈Mode1
Mode1r(i), (14)

μ2(t) �
1

Length 2 − d
􏽘

i∈Mode2
Mode2r(i), (15)

where Length1 and Length2 represent the lengths in the first
and second regions or modes, respectively; Mode1 and
Mode2 represent the overall pixels in each region that is
similar to the approach of the mask Sxy in equation (13); and
Mode1r(i) and Mode2r(i) represent the remaining pixels of
after excluding the highest d/2 and the lowest d/2 trim values
from vector in Mode1 and Mode2, respectively as shown in
Figure 4. *e modes are treated as sorted vectors, and the
trim value should be applied on each mode, as it can be
noticed that the grayness area represents the highest in-
tensities when the filter is applied on the first mode, and it
represents the lowest intensity when the trim is applied on
Mode2, and the overall intensities that host the salt and
pepper noises will remain the highest and lowest when the
filter applied on Mode1 and Mode2.

*e alpha-trimmed technique can be used for multiple
trim values on both modes. In our proposed method, the
same filter with its trim value should be used for μ1 and μ2 in
each mode in the image histogram.

3.3. Harmonic Mean Filter. *is filter tends to enhance the
mean value, by excluding salt noise, but not for pepper noise,
as shown in equation (16). It does work also with Gaussian
noise; this could provide a good impact if the image has one
of the stated noise.

􏽢f (x, y) �
mn

􏽐(s,t)∈Sxy
1/g(s, t)

. (16)

*eharmonic technique in equation (17) is modified also
to be compatible in histogram versions for mean estimation
of a specificmode, where Length refers to themode length or
histogram region, and mode(i) represents the pixels of that
mode, for example, mode 1 or mode 2, as shown in Figure 3.

μ(t) �
Mode Length

􏽐i∈Mode1/Mode(i)
. (17)

3.4. Contraharmonic Mean Filter. *is filter tends to en-
hance the mean value by eliminating the noises and outliers
areas; this is for image enhancement purposes, as shown in

equation (18). In this work, noise needs to be excluded from
histogram modes for better mean estimation.

􏽢f (x, y) �
􏽐(s,t)∈Sxy

g(s, t)
Q+1

􏽐(s,t)∈Sxy
g(s, t)

Q
. (18)

*is filter in the histogram version can be written as
follows:

μ1(t) �
􏽐i∈Mode1Mode1(i)

Q+1

􏽐i∈Mode1Mode1(i)
Q

, (19)

μ2(t) �
􏽐i∈Mode2Mode2(i)

Q+1

􏽐i∈Mode2Mode2(i)
Q

, (20)

where Mode1 and Mode2 represent the overall pixels for
each class, respectively, and Mode1(i) and Mode2(i) are the
vectors of pixels in each class, respectively, as shown in
Figure 3.*eQ value of the contraharmonic filter represents
the order of the filter; this filter is used to exclude salt and
pepper noises in the image, where positive Q excludes
pepper noise and negativeQ excludes salt noise, but not both
noises, as well as contraharmonic reduces to the classical
arithmetic mean if Q is equal to 0 and reduces to harmonic
mean filter if Q is equal to −1. Changing the value of Q
according to the proposed mean estimation technique can
impact the desired threshold inMCET; hence, at some point,
it tends to handle the drawbacks from the classical mean.

3.5. Geometric Mean Filter. Geometric mean filter tends to
lose less image details in the image enhancement process,
but this is not our case, while in segmentation, the aim is to
focus on mean estimation for the thresholding method, as
shown in equation (21).*is filter restores the mean value by
using product operation. *is filter is proposed to compare
its impact with the other filters. Knowing that the geometric
mean filter achieves smoothing comparable to the arithmetic
mean filter, which could provide less effect than the pre-
viously stated filters.*is filter is adapted similarly to be used
with histogrammodes for mean estimation in equation (22).

0 0 0 0 i+n
Mode 1 sorted vector of pixels

a�er excluding highest and
lowest gray levels

Mode 1r (i)

gr (s,t)

Sxy

Mode 1 Mode 2

2550

Figure 4: Modes adaptation for alpha-trimmed mean estimation,
where the mask Sxy refers to the mask in the original filter, the
modes refer to vectors of pixels in histogram regions, and r refers to
the remaining pixels.
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􏽢f (x, y) � 􏽙
(s,t)∈Sxy

g(s, t)
⎤⎥⎥⎥⎥⎥⎦

1/mn

,
⎡⎢⎢⎢⎢⎢⎣ (21)

μ(t) � 􏽙
i∈Mode

Mode(i)⎡⎣ ⎤⎦
1/Mode Length

, (22)

where Mode is the region in the image histogram,
Mode(i) is the pixels in that region, and Mode_Length is the
length of the vector of that mode.

Algorithm 1 shows the single proposed filter experiment
when applied on MCET, and for other proposed filter ap-
proaches, each filter is to be computed based on their
equations, as explained in Section 4 in Algorithm 2.

4. Performance Measure

*e segmentation results from the improved minimum
cross-entropy thresholding and the original version were
compared and evaluated based on the supervised and un-
supervised evaluation. *ese measurements have values that
lie between 0 and 1, where the value that is close to 1 refers to
a good segmentation result, and vice versa. *e overall
framework of our proposed method is shown in Figure 5. In
unsupervised evaluation, the segmentation results were
compared with characteristics of the original image, such as
image uniformity, regions contrast, and inter-region dis-
parity. In supervised evaluation, the segmentation results
were compared with its references or ground truths images.

4.1. Unsupervised Evaluation. Without any a priori infor-
mation, it is possible to evaluate the quality scores of seg-
mentation results, by using unsupervised evaluation based
on the statistics in each region in the segmentation result and
its original image. For region segmentation, the various
measurement takes into account the uniformity, region
contrast, and inter-region disparity.

4.1.1. Image Uniformity. *ismeasurement tends to indicate
the quality of the thresholding method, by computing region
uniformity based on the variance. *is measurement is
proposed by Levine et al. [26] and discussed by [8]. *e IU is
defined in the following equation:

IU � 1 −
σ12(t) − σ22(t)

Z
, (23)

where σ12(t) and σ12(t) are the variance of R1 and R2, re-
spectively, as shown in Figure 1, and Z is calculated as shown
in the following equation:

Z �
Imax − Imin( 􏼁

2

2
, (24)

where Imax and Imin are the minimum and maximum in-
tensity levels, respectively.

4.1.2. Region Contrast. *ismeasurement tends to check the
adjacent regions and indicate the high contrast [8]; thus, it
evaluates the quality of the segmented image. For a given t:

RC(t) �
|μ1(t) − μ2(t)|

μ1(t) − μ2(t)
, (25)

where μ1(t) and μ2(t) are the estimated mean values of two
regions in the image histogram.

4.1.3. Inter-Regions Disparity. *is measurement uses the
interior contrast and the external contrast in its evaluation
[27], as shown in equations (26) and (27), respectively,
where c(s, t) is the contrast between two pixels s and t, as
shown in equation (28):

CI(i) �
1
Ai

􏽘
s�Ri

Max c(s, t), t ∈W(s)∩R{ }i, (26)

CE(i) �
1
li

􏽘
s�Fi

Max c(s, t), t ∈W(s) ∉ Ri􏼈 􏼉, (27)

c(s, t) �
|I(s) − I(t)|

L − 1
, (28)

where Ii is the length of the border Fi in the region Ri, Ai
corresponds to the surface of the region Ri, and W (s) is the
neighborhood of the pixel s.

C Ri( 􏼁 �

1 −
CI(i)

CE(i)
, if 0<CI(i)<CE(i),

CE(i), if CI(i) � 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

*e higher value or close to 1 refers to a good seg-
mentation result, while the lower value or close to 0 refers to
a poor segmentation result.

4.2. Supervised Evaluation. *e comparisons between the
segmentation results and its ground truth are a powerful
measurement to evaluate segmentation quality scores
[28–31]. *is measurement is considered a pixels-based
evaluation. It is widely used in literature. Given segmen-
tation method s, its resulting segment can be written from
image pixel set I into two disjoint areas I � Ps ∪Ns, where Ps
and Ns represent the positive and negative pixels, respec-
tively. Similarly for the ground truth I � Pg ∪Ng. *e goal
is to achieve a perfect matching, for example, Ps � Pg; if
this not going to happen, the following sets will be defined as
shown in Figure 6:

(i) True positives (TP): pixels that are segmented but
appeared as so in the ground truth: TP � Ps ∩Pg

(ii) False positives (FP): pixels that are segmented but
not appeared as so in the ground truth: FP � Ps ∩Pg

6 Contrast Media & Molecular Imaging



(iii) False negatives (FN): pixels that are grouped out of
the segmentation but belong to the ground truth:
FN � Ns ∩Pg

(iv) True negatives (FN): Pixels that have not been
segmented

*e goal is to maximize the true positivity of pixels in the
segmentation results as shown in Figure 6. Based on these
terms, the Jaccard index (JI), F-score, and the segmentation
accuracy are used to evaluate the good match with the
ground truth reference, as shown in the following equations:

Jaccardindex �
TP

TP + FP + FN
, (30)

FScore � 2∗
Precision∗Recall
Precision + Recall

, (31)

Accuracy �
TP + TN

FN + FP + TP + TN
, (32)

where Jaccardindex is to indicate the ratio of intersection,
in F-score; Precision refers to TP/TP+ FP; and Recall refers
to TP/TP+ FN, where Precision is to measures the detected
pixels that are actually true and Recall is to indicate true
positivity, and it is the probability that a segmented pixel
belongs to the ground truth. Segmentation accuracy is to
indicate the degree to which a result from the segmentation
algorithm has perfect matches with ground truths.

4.3. Modeling the Accurate Segmentation. Different mean
filters approaches have been used for MCET to find the best
threshold value by minimizing MCET; the various input
approaches make the segmentation problems a nondeter-
ministic polynomial (NP) hard optimization problem [6].

Minimizing the value t is the process that indicates the
optimal threshold t∗ for the image that needs to be accu-
rately segmented; at the same time, the accurate segmen-
tation aims to maximize the evaluation metrics as a better
accuracy indicator, as follows:

Maximize(Unsupervised, Supervised ), (33)

where unsupervised refers to evaluations (IU(t), RC(t),
C(Ri)) and supervised refers to evaluations (Jaccard index,
F-scores, and Accuracy); they belong to [0,1]. A value close
to 0 indicates a poor segmentation result, and a value close to
1 indicates a good segmentation result.

5. Performance Evaluation

*e proposed method was implemented using MATLAB
R2019a 64-bit parallel computing toolbox, with quad-core
Intel Core i5, turbo boost up to 3.8GHz, and 8GB RAM
machine. *e proposed algorithm includes five mean filters
approaches. In order to consume the computational re-
sources correctly, parallel processing could provide optimal
performance, while the sequential process to estimate

(1) Read input image I (x, y)
(2) Compute the histogram h(i), i� 0, . . .., 255 for I (x, y)
(3) for t� 2:254 do
(4) Compute μ1(t) and μ2(t) using equation (17)
(5) Compute the n(t) in equation (4)
(6) Find the optimal t∗ that minimizes n(t)
(7) End for
(8) return t∗

(9) Output image g(x, y)

For other mean filters approaches: compute μ1(t) and μ2(t) according to their equations

ALGORITHM 1: MCET using harmonic mean filters approach.

I (x,y)
Input

Proposed Method

µ Based 
Thresholding 

MCET Comparison 
Supervised and 
Unsupervised 

Evaluation

Threshold
Classical µ1 and µ2

Optimal
Threshold

Proposed
Technique

µ1 and µ2
Estimation

Output
g (x,y)

g (x,y)

Figure 5: Overall framework of the proposed method and its comparison with the original method.
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multiple values could be time-consuming. Table 3 shows the
experimental elapsed time that are recorded to validate the
performance of the proposed algorithm.

5.1. Modeling Data Sets and Test Cases. Based on the pro-
posed techniques, the segmentation results were obtained
using different input parameters for mean estimation with
MCET, including the result from the related works, the
original MCET that relies on the classical mean, and MCET
based on lognormal mean [6]. *ree types of medical images
were applied (images from OASIS MRI. Alzheimer’s disease,
MRI brain tumor, and ISIC 2018: skin lesion). *ese data sets
represent various types of image conditions. Nonetheless,
each image has been tested with 22 test cases based on mean
estimation inputs, as shown in Table 1. *is is including the
inputs from related works and the proposed mean estimation
approach. *e average values were computed per test case for
each evaluation in the three data sets. A total of 100 images
were examined from each data set for unsupervised evalua-
tion with a total of 6,600 test cases, and 50 images were
examined from two data sets with references or ground truth

for supervised evaluation, with a total of 2,200 test cases. *e
classical mean in MCET is the original method input. *e
proposed mean filters are the geometric, harmonic, contra-
harmonic, and alpha-trimmed filters. Among the proposed
approaches, there are 5 selected values of Q for the contra-
harmonic filter, and 13 trim values for the alpha-trimmed
filter. *ese gradual values were selected among a number of
experimental test cases based on their positive impact when
estimatingmean values in each class, where both μ1 and μ2 are
estimated using one of the proposed mean filters approaches.

5.2. Experimental Results andDiscussion. *e average values
of the unsupervised measurement showed various im-
provement patterns of results, and the ability to detect the
fine segmentation structures was achieved, as shown in
Tables 1 and 2. MRI Alzheimer’s results showed the best
performance with alpha trim at d/2� 50. Since the perfor-
mance decreases gradually when there is an increase in the
trim value. Similarly, in the skin lesion images, the trim value
at d/2� 55 got the best performance, and so at d/2� 30 for
MRI brain tumor images. In the three evaluations,

(1) Read input image I (x, y)
(2) Compute the histogram h(i), i� 0, . . .., 255 for I (x, y)
(3) for t� 2 : 254 do
(4) Compute the n(t) in equation (4) based on:

Compute μ1(t) and μ2(t) using classical mean
Compute μ1(t) and μ2(t) using lognormal mean
Compute μ1(t) and μ2(t) using harmonic mean
Compute μ1(t) and μ2(t) using geometric mean
Compute μ1(t) and μ2(t) using contraharmonic mean
Apply different input of Q (see Tables 1 and 2)

Compute μ1(t) and μ2(t) using an alpha-trimmed mean
Apply different input of trim (see Tables 1 and 2)

(5) Find the optimal t∗1 , t∗2 , . . . , t∗n that minimize n(t) for each mean estimation input
(6) End for
(7) Compute the average sum of the performance measure for each t∗

(8) Find the best t∗ that maximizes the performance measure
(9) Return the best t∗

(10) Output image g(x, y)

ALGORITHM 2: MCET using different mean estimation approaches.

TN

FN

TP

FP

SEGMENTED
IMAGE

GROUND
TRUTH

Figure 6: TN represents the pixels that have not been segmented; FN represents the pixels that should appear in the segmented image; TP is
the joint segmented pixels; and FP represents the pixels that should not have been segmented.
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increasing the trim values could positively impact the effi-
ciency or bring it back to its start point of the original
method. *e three evaluations showed how a change in the
mean value could affect the final threshold in MCET.
Nonetheless, this change has an important role to improve

the segmentation result. *is contribution relies on the
relation and the dependency between the optimal threshold
and the enhanced mean value in the MCET method.

In supervised evaluation, skin lesion and MRI brain
tumor showed a noticeable evaluation that achieve the

Table 1: Average evaluations values of unsupervised performance measurement using the proposed mean estimation techniques compared
with the classical mean or Gaussian distribution for MCET.

μ1, μ2 estimation MRI Alzheimer’s Skin lesion MRI brain

1 Classical mean 0.8841 0.8703 0.8406
2 Lognormal [6] 0.8796 0.8860 0.8479
3 Harmonic 0.8902 0.8697 0.8440
4 Geometric 0.8722 0.8376 0.8513
5

Contraharmonic

Q� −3.0 0.8893 0.8446 0.8549
6 Q� −1.0 0.8943 0.8697 0.8440
7 Q� −0.5 0.8971 0.8669 0.8512
8 Q� 0.0 0.8703 0.8702 0.8407
9 Q� 0.1 0.8887 0.8603 0.8449
10

Alpha trim

d/2�10.0 0.8924 0.8714 0.8667
11 d/2� 20.0 0.8971 0.8727 0.8830
12 d/2� 30.0 0.8987 0.8739 0.8942
13 d/2� 40.0 0.8973 0.8795 0.8899
14 d/2� 50.0 0.9046 0.8876 0.8779
15 d/2� 55.0 0.8968 0.8917 0.8789
16 d/2� 60.0 0.8922 0.8824 0.8777
17 d/2� 65.0 0.8846 0.8721 0.8724
18 d/2� 70.0 0.8928 0.8679 0.8782
29 d/2� 80.0 0.8842 0.8692 0.8645
20 d/2� 90.0 0.8831 0.8689 0.8633
21 d/2�100 0.8787 0.8632 0.8536
22 d/2�110 0.8755 0.8581 0.8534

Table 2: Average evaluation values of supervised performance measurement using the proposed mean estimation techniques compared
with the classical mean or Gaussian distribution for MCET.

μ1, μ2 Estimation Skin lesion MRI Brain

1 Classical mean 0.8923 0.8210
2 Lognormal [6] 0.8966 0.8349
3 Harmonic 0.8903 0.8323
4 Geometric 0.8593 0.8233
5

Contraharmonic

Q� −3.0 0.8830 0.8513
6 Q� −1.0 0.8903 0.8313
7 Q� −0.5 0.8938 0.8475
8 Q� 0.0 0.8923 0.8240
9 Q� 0.1 0.8875 0.8421
10

Alpha trim

d/2�10.0 0.8957 0.8670
11 d/2� 20.0 0.9060 0.8922
12 d/2� 30.0 0.9059 0.9160
13 d/2� 40.0 0.9093 0.8988
14 d/2� 50.0 0.9102 0.8860
15 d/2� 55.0 0.9208 0.8839
16 d/2� 60.0 0.9097 0.8772
17 d/2� 65.0 0.9013 0.8781
18 d/2� 70.0 0.8849 0.8771
29 d/2� 80.0 0.8747 0.8412
20 d/2� 90.0 0.8746 0.8077
21 d/2�100 0.8669 0.7974
22 d/2�110 0.8507 0.7936
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improvement goal, as shown in Table 2. Since the supervised
evaluations are acting as a matching process with the desired
segment or the ground truth. It can be noticed that true
positivity has been maximized. Notice that the input pa-
rameters in the proposed mean filters, for example, d/2� 0,
Q� 0, and Q� −1, refer to the pre-existed filters; thus, these
inputs were ignored to be used. d/2� 0 in the alpha-trimmed
filter and Q� 0 in contraharmonic filter reduce to the

classical mean filter. Also, Q� −1 in contraharmonic filter
reduces to harmonic filter (Figure 7(a)).

Skin lesion segmentation results showed that both su-
pervised and unsupervised evaluation have the same
properties regarding the best result at d/2� 55. *ey almost
have the same pattern of performance, despite the slight
changes at some points. *e variation between supervised
and unsupervised benchmarks is according to the nature of

Table 3: Time performance of the proposed algorithm when performed using parallel processing.

Segmented images Sequential (sec) Parallel (sec) Speed-up gain (%)
1 MRI Alzheimer’s 437.201 278.805 36.23
2 Skin lesion 562.926 317.622 43.58
3 MRI brain 489.003 291.902 40.31
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Figure 7: Comparison of evaluation for different mean estimation techniques: (a) unsupervised and supervised evaluation for a skin lesion
and (b) unsupervised and supervised for MRI Brain tumors.
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the measurement. Nonetheless, the supervised evaluation is
considered more effective for indicating the objectiveness
based on the rate of the true positivity in the segmented
image, as long as the reference image or the ground truth is
available. Similarly, MRI Brain tumor segmentation in
Figure 7(b) showed that both unsupervised and supervised
evaluation have the best result at d/2� 30 and some identical
points at Q� −3, Q� −0.5, d/2�10, d/2� 60, and d/2� 70,
with noticeable changes in the pattern when larger trims
applied with the alpha trim approach.

Figure 8 shows qualitative illustration samples for se-
lected results. MRI Alzheimer’s, MRI brain tumor, and
dermoscopic skin lesion were segmented using MCET with
alpha trim filter for d/2� 50, 55, and 30, respectively. *e
segmented images appeared with a subjective view, espe-
cially when comparing the detected foreground with the
ground truth for both MRI brain tumor and skin lesion.
However, the objective evaluation scores indicated the
segmentation accuracy over MCET-Gaussian distribution,
as shown in Table 4.

Segmentation results in the three data sets showed the
best improvement when using the mean value from the
alpha trim filter with MCET. With the presence of several
sizes of images that need to be segmented using this ap-
proach, the trim values are submissive to the size of the
image. Since there is a positive relationship between the trim
values and the size of the tested images, for example, when
the image is resized from 128×128 to 256× 256, the trim
values should be duplicated. Table 5 shows the comparison
between the proposed MCETmethod using alpha-trimmed
filter with two related methods; the proposed method was
able to record a higher increase rate of segmentation ac-
curacy; this is according to the average scores of the un-
supervised and the supervised evaluation.

*e proposed method recorded a maximum of 4.0%
increase rate of accuracy over the original MCET using
Gaussian distribution and minimum of 3.6%. Also, it
recorded a 1.9% increase rate of accuracy over MCET using
lognormal distribution. Knowing that MRI Alzheimer’s
images were examined using the unsupervised evaluation

Img. 1

Img. 2

Img. 3

Img. 4

Img. 5

Img. 6

(a) (b) (c) (d) (e)

no
ground
truth

no
ground

truth

Figure 8: Qualitative illustration for selected samples: (a) original images, (b) ground truths, (c) segmented images using the Gaussian-
basedMCET, (d) segmented images using the lognormal-basedMCET, and (e) segmented images using the proposedMCET, the segmented
MRI Alzheimer’s Imgs 1.(e) and 2.(e) using alpha trim d/2� 50, the segmented skin lesion Imgs 3.(e) and 4.(e) using alpha trim d/2� 55, and
the segmented MRI brain tumor Imgs 5.(e) and 6.(e) using alpha trim d/2� 30.
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only for the absence of the ground truth. However, bothMRI
brain tumor and skin lesions were examined using the
supervised and the unsupervised evaluation.

6. Conclusion and Future Work

*is paper presents an improvement of minimum cross-
entropy thresholding (MCET) based on different mean

filters approaches. *e proposed filtering approaches pro-
duced a positive effect on the segmentation performance;
this is due to the impact of the enhanced mean value on
MCET. *e comparison approaches relied on three unsu-
pervised evaluations and three supervised evaluations. *e
effectiveness of the proposed technique was tested using
three types of medical images. *is improvement is to
contribute to the optimization for images segmentation, to

Table 4: Comparison of the unsupervised and supervised evaluation for the segmented images in Figure 8.

Unsupervised evaluation Supervised evaluation
RC IU IRD JI FS QLTY

Img.1(c) 0.8709 0.8782 0.8462 — — —
Img.1(d) 0.8816 0.8852 0.8398 — — —
Img.1(e) 0.8897 0.8989 0.8837 — — —
Img.2(c) 0.8630 0.8702 0.8529 — — —
Img.2(d) 0.8759 0.8778 0.8408 — — —
Img.2(e) 0.8879 0.8899 0.8873 — — —
Img.3(c) 0.8519 0.8458 0.8381 0.8379 0.9063 0.9173
Img.3(d) 0.8815 0.8689 0.8473 0.8449 0.9037 0.9290
Img.3(e) 0.8857 0.8939 0.8685 0.8559 0.9131 0.9792
Img.4(c) 0.8498 0.8500 0.8482 0.8398 0.8971 0.9157
Img.4(d) 0.8698 0.8697 0.8688 0.8407 0.9026 0.9238
Img.4(e) 0.8878 0.8941 0.8705 0.8518 0.9099 0.9672
Img.5(c) 0.7509 0.7558 0.7238 0.7210 0.8308 0.7294
Img.5(d) 0.8647 0.8794 0.8600 0.9325 0.9227 0.9371
Img.5(e) 0.8788 0.8899 0.8728 0.9497 0.9549 0.9503
Img.6(c) 0.7618 0.7592 0.7327 0.7292 0.8299 0.7381
Img.6(d) 0.8797 0.8704 0.8599 0.9293 0.9208 0.9305
Img.6(e) 0.8828 0.8878 0.8779 0.9431 0.9459 0.9492

Table 5: Overall comparison using average evaluation metrics for the proposed method using the alpha trim approach and two related
methods. Row A refers to an unsupervised evaluation, and row B refers to the supervised evaluation.

Original MCET-Gaussian distribution
Dermoscopic skin lesion MRI brain tumor MRI Alzheimer’s
A 0.8703 0.8406 0.8841
B 0.8923 0.8210 —

MCET-lognormal distribution
Dermoscopic skin lesion MRI brain tumor MRI Alzheimer’s
A 0.8802 0.8693 0.8874
B 0.8817 0.8807 —
Overall increase rate of accuracy over Gaussian� 2.1%

Proposed MCET-alpha trim d/2� 55
Dermoscopic skin lesion MRI brain tumor MRI Alzheimer’s
A 0.8917 0.8789 0.8968
B 0.9208 0.8839 —
Overall increase rate of accuracy over Gaussian� 3.7%
Overall increase rate of accuracy over lognormal� 1.6%
Proposed MCET-alpha trim d/2� 50
Dermoscopic skin lesion MRI brain tumor MRI Alzheimer’s
A 0.9102 0.8779 0.90426
B 0.8876 0.8860 —
Overall increase rate of accuracy over Gaussian� 3.65%
Overall increase rate of accuracy over lognormal� 1.5%

Proposed MCET-alpha trim d/2� 30
Dermoscopic skin lesion MRI brain tumor MRI Alzheimer’s
A 0.8739 0.8942 0.8928
B 0.9059 0.9165 —
Overall increase rate of accuracy over Gaussian� 4.0%
Overall increase rate of accuracy over lognormal� 1.9%
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overcome the challenge of fixed threshold value based on the
classical mean, and also to provide inclusive usage for
thresholding methods for various types of images.

In future work, the aim is to extend the contribution to
the wide domain of images segmentation, by applying dif-
ferent data sets, and a larger number of images for each test
case, with different input parameters. *e proposed work
was designed for one threshold that separates bimodal
histogram. *e same empirical concept could be used for
multilevel image thresholding purposes in future work.
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