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Abstract

Motivation: Clustered mutations are found in the human germline as well as in the genomes of cancer and normal
somatic cells. Clustered events can be imprinted by a multitude of mutational processes, and they have been impli-
cated in both cancer evolution and development disorders. Existing tools for identifying clustered mutations have
been optimized for a particular subtype of clustered event and, in most cases, relied on a predefined inter-
mutational distance (IMD) cutoff combined with a piecewise linear regression analysis.

Results: Here, we present SigProfilerClusters, an automated tool for detecting all types of clustered mutations by cal-
culating a sample-dependent IMD threshold using a simulated background model that takes into account extended
sequence context, transcriptional strand asymmetries and regional mutation densities. SigProfilerClusters disentan-
gles all types of clustered events from non-clustered mutations and annotates each clustered event into an estab-
lished subclass, including the widely used classes of doublet-base substitutions, multi-base substitutions, omikli
and kataegis. SigProfilerClusters outputs non-clustered mutations and clustered events using standard data formats
as well as provides multiple visualizations for exploring the distributions and patterns of clustered mutations across
the genome.

Availability and implementation: SigProfilerClusters is supported across most operating systems and made freely
available at https://github.com/AlexandrovLab/SigProfilerClusters with an extensive documentation located at
https://osf.io/qpmzw/wiki/home/.

Contact: ebergstr@eng.ucsd.edu or L2alexandrov@health.ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutations are found on the genomes of all cells in the human body
(Martincorena and Campbell, 2015; Stratton et al., 2009). Most
single-base substitutions and small insertions and deletions (indels)
accumulate independently across the genome, but a subset of the
mutations cluster in a non-random manner (Lawrence et al., 2013;
Supek and Lehner, 2017). Previous studies have revealed that clus-
tered mutations are imprinted by a plethora of endogenous and ex-
ogenous mutational processes (Alexandrov et al., 2020; Boichard
et al., 2017; Brash, 2015; Buisson et al., 2019; Chan et al., 2015;
Chen et al., 2013; Mas-Ponte and Supek, 2020; Matsuda et al.,
1998; Nik-Zainal et al., 2012, 2019; Pfeifer et al., 2005; Roberts
et al., 2013, 2012; Supek and Lehner, 2017; Taylor et al., 2013; The
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium,
2020; Wang et al., 2020). Some clustered mutations have been

implicated in cancer evolution (Bergstrom et al., 2022; Chen et al.,
2013; Mas-Ponte and Supek, 2020; Supek and Lehner, 2017; Taylor
et al., 2013; The ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium, 2020), while de novo clustered mutations
have been identified in the human germline and shown to contribute
to developmental disorders (Kaplanis et al., 2019; Veltman and
Brunner, 2012). In recent years, sets of simultaneously occurring
clustered substitutions have been further subclassified into inde-
pendent events (Bergstrom et al., 2022; Mas-Ponte and Supek,
2020), including (i) doublet-base substitutions (DBSs); (ii) multi-
base substitutions (MBSs); (iii) diffuse hypermutation termed omikli;
(iv) longer strand-coordinated events termed kataegis and (v) recur-
rent hypermutation of extra-chromosomal DNA (ecDNA) termed
kyklonas.

Traditional methods separate clustered mutations based on a
predefined inter-mutational distance (IMD) threshold typically
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between 1 and 2 kilobases (Alexandrov et al., 2013, 2020; Chan
et al., 2015; D’Antonio et al., 2016; Maciejowski et al., 2020; Nik-
Zainal et al., 2019; Taylor et al., 2013). Many of these approaches
utilize a piecewise linear regression to segment each chromosome,
which, in most cases, is optimized for calling larger strand-
coordinated kataegic events (Supplementary Fig. S1) (Alexandrov
et al., 2013; Lin et al., 2021; Yin et al., 2020). Most existing methods
have also ignored confounding effects attributed to localized differen-
ces in mutation rates, copy number alterations or the mutational bur-
den across each chromosome within a given sample leading to an
accumulation of false-positive clustered events (Supplementary Fig.
S1). Further, the majority of existing tools focus on detecting only a
specific class of clustered events including doublet-base substitutions
and multi-nucleotide variants (Chen et al., 2013; Matsuda et al.,
1998; Wang et al., 2020), kataegis (D’Antonio et al., 2016; Lin et al.,
2021; Taylor et al., 2013) or APOBEC3-associated events (Chan
et al., 2015; Nik-Zainal et al., 2012) while ignoring the larger land-
scape of clustered mutations. For example, a recent study (Mas-Ponte
and Supek, 2020) developed an algorithm focused on the detection of
APOBEC3-associated omikli and kataegis events in cancer genomes
by incorporating simulations of somatic mutations and estimates of
cancer cell fractions.

Separation and classification of clustered events are required to
fully elucidate the mutational processes operating in cancer and nor-
mal somatic cells (Bergstrom et al., 2022; Supek and Lehner, 2017).

Here, we present SigProfilerClusters, a tool to comprehensively
characterize and subclassify clustered mutations from the complete
catalog of mutations within the genome of a single sample (Fig. 1a).
SigProfilerClusters classifies all types of clustered mutations, includ-
ing (i) doublet-base substitutions; (ii) multi-base substitutions;
(iii) omikli; (iv) kataegis and (v) clustered small insertions and dele-
tions (indels). The tool calculates a sample-dependent IMD thresh-
old that considers regional differences in mutation rates, variant
allele fractions and cancer cell fractions of adjacent mutations to re-
duce the false positive rate and provides visualizations for down-
stream analyses (Fig. 1b and c; Supplementary Fig. S1). Further,
SigProfilerClusters integrates within the larger suite of SigProfiler
tools (Bergstrom et al., 2019, 2020; Islam et al., 2020) to facilitate
downstream mutational signature analysis of both non-clustered
and clustered single-base substitutions and indels, thus, allowing the
accurate detection of mutational processes giving rise to even low
levels of clustered events (Fig. 1d) (Bergstrom et al., 2019, 2022;
Islam et al., 2020).

2 Materials and methods

SigProfilerClusters derives an IMD cutoff that is unlikely to occur
purely by chance given the observed mutational burden and the mu-
tational patterns within the genome of a given sample. To calculate
the genome-dependent IMD, the tool leverages SigProfilerSimulator
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Fig. 1. Detection and characterization of clustered mutations with SigProfilerClusters. (a) An example workflow used to detect clustered mutations in a single cancer genome.

As an input, SigProfilerClusters accepts common formats for mutations, such as ones in the variant calling format (VCF), and the tool separates all clustered mutations from

the complete mutational catalog of the provided sample. Final partitions of mutations in the sample are outputted as VCF files and visualized using the mutational spectra of

all mutations, only clustered mutations and only non-clustered mutations along with a rainfall plot commonly used to show the distribution of inter-mutational distances

across a cancer genome (Alexandrov et al., 2013; Bergstrom et al., 2022; Nik-Zainal et al., 2012). (b) Schematic demonstrating the process of calculating a sample-dependent

IMD threshold to separate clustered from non-clustered mutations across each genome. A binary search algorithm is used to efficiently detect the optimal global IMD threshold

for each sample. Detection of the global IMD threshold is illustrated using gray arrows. Regional corrections are performed to identify local IMD thresholds based on variance

of mutation rates across the genome. (c) Every clustered mutation is classified into a single subcategory of clustered event. (d) Rainfall plot illustrating the distribution of IMDs

across a single glioblastoma sample (left). The mutational spectra for omikli and kataegic events reveal a different mutational pattern compared to the pattern of all non-clus-

tered somatic mutations (right)
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(Bergstrom et al., 2020) to generate background models by random-
izing the distribution of mutations across the genome. By default,
the genome of each sample is simulated 100 times in order to derive
95% confidence intervals for the expected genomic mutational land-
scape, with every simulation maintaining the penta-nucleotide se-
quence context for each substitution, the ratio of all mutations in
genic and inter-genic regions, the transcriptional strand asymmetries
of all mutations in genic regions and the mutational burden on each
chromosome (Bergstrom et al., 2019, 2020). Importantly, this ran-
domization procedure is highly customizable (Bergstrom et al.,
2020) and can be altered based on the needs of a given study design,
thus, allowing the incorporation of other factors that affect the accu-
mulation of mutations such as nucleosome occupancy, presence of
histone modifications and many others. A binary search algorithm is
implemented to efficiently derive the global IMD threshold for each
genome. The final global IMD threshold is selected by ensuring that
90% of mutations below the chosen cutoff are unlikely to appear by
chance given the simulated distribution of mutations (q-val-
ue<0.01; Supplementary Fig. S1) with a maximum global IMD cut-
off of 10 kilobases. The algorithm also considers regional
heterogeneities of mutation rates, generally associated with replica-
tion timing (Stamatoyannopoulos et al., 2009) or differential gene
expression (Buisson et al., 2019; Hess et al., 2019; Lawrence et al.,
2013; Pleasance et al., 2010; Polak et al., 2015), by correcting for
variance in clonality as well as variance in both mutation-dense and
mutation-poor regions using a sliding genomic window (default size
of 1 megabase). Specifically, an additional regional IMD cutoff is
corrected within each genomic window based on the fold difference
between the number of real and the number of simulated mutations,
while maintaining the original criteria of <10% of mutations below
the IMD cutoff appearing by chance (q-value<0.01). Lastly, when
data are available, SigProfilerClusters ensures that adjacent muta-
tions are in the same cells by introducing a maximum difference in
variant allele frequencies (VAF) or cancer cell fraction (CCF), which
incorporates copy number changes, below a certain threshold (de-
fault cutoff value of 0.10 and 0.25; respectively).

After identifying the set of clustered mutations, SigProfilerClusters
subclassifies each clustered substitution into a single category of previ-
ously established clustered events (Bergstrom et al., 2022; Mas-Ponte
and Supek, 2020). Briefly, all clustered substitutions with consistent
VAFs or consistent CCFs are classified into one of four categories.
Two mutations with an IMD of 1 are classified as doublet-base
substitutions, while clusters of three or more adjacent mutations
each with an IMD of 1 are classified as multi-base substitutions.
Clusters of two or three mutations with IMDs less than the
sample-dependent cutoff and with at least a single IMD greater
than 1 are classified as omikli (Bergstrom et al., 2022), while clus-
ters of four or more mutations with IMDs less than the sample-
dependent cutoff and with at least a single IMD greater than 1 are
classified as kataegis (Bergstrom et al., 2022). All remaining clus-
tered mutations with inconsistent VAFs or CCFs are classified as
other. Clustered indels are not subclassified into different catego-
ries due to a lack of previously defined subtypes.

3 Usage

SigProfilerClusters is freely available as a Python package, distrib-
uted under the permissive BSD-2 clause license and can be used on
most operating systems including Windows, MacOS and Linux-
based machines. The tool is compatible with large-scale deploy-
ments on high-performance computing clusters as well as on cloud
infrastructures such as Amazon Web Services. Input data can be pro-
vided in the form of common mutation formats including the
Variant Call Format (VCF), the Mutation Annotation Format or in
the form of a simple text file. The output of SigProfilerClusters
results in the partitioning of all mutations into a clustered or non-
clustered directory. All clustered mutations are then classified into
distinct subcategories of events and provided individually in VCF
files for downstream visualization and analyses. The output for each
subclass of the clustered event can be directly utilized by additional
SigProfiler tools including SigProfilerExtractor for mutational

signature analysis (Islam et al., 2020) and SigProfilerPlotting for
examining patterns of somatic mutations (Bergstrom et al., 2019).
The results for each sample are also summarized using two individ-
ual visualizations that include: (i) a rainfall plot depicting the min-
imum global IMD between all adjacent mutations, where each
individual set of adjacent mutations is colored based on its clustered
classification; and (ii) a multi-panel figure that displays the muta-
tional patterns across all mutations, clustered mutations and non-
clustered mutations, separately along with the distribution of IMDs
across the real and simulated data for each sample (Fig. 1a).

4 Conclusion

Elucidating the compendium of clustered somatic mutations in the
genome of a sample allows further understanding of the mutational
process that give rises to these events and can provide novel insights
into disease etiology (Bergstrom et al., 2022; Mas-Ponte and Supek,
2020; Supek and Lehner, 2017). Previous studies have traditionally
interrogated the complete mutational catalogs of cancer genomes,
which can lead to the inability to detect processes active at low levels
or those which have been transiently activated. Our prior analysis of
clustered mutations (Bergstrom et al., 2022) has revealed an enrich-
ment of clustered mutations within known cancer driver events,
hypermutation of extra-chromosomal DNA fueling the evolution of
cancers, and ultimately, resulting in a differential patient outcome.
Here, we provide SigProfilerClusters, an automated and freely avail-
able Python-based tool that comprehensively identifies and classifies
clustered mutations enabling users to interrogate the mutational
processes giving rise to such events.

Author contributions

E.N.B. developed the Python code and wrote the manuscript. M.K.
performed all benchmarking. E.N.B., M.K. and N.T. tested and
documented the code. L.B.A. supervised the overall development of
the code, benchmarking and writing of the manuscript. All authors
read and approved the final manuscript.

Funding

This was work was supported by Cancer Research UK Grand Challenge

Award [C98/A24032] as well as US National Institute of Health

[R01ES030993-01A1 and R01ES032547]; a Packard Fellowship for Science

and Engineering to L.B.A. The funders had no roles in study design, data col-

lection and analysis, decision to publish or preparation of the manuscript.

Conflict of Interest: L.B.A. is a compensated consultant and has equity inter-

est in io9, LLC. His spouse is an employee of Biotheranostics, Inc. L.B.A. is

also an inventor of a US Patent 10,776,718 for source identification by non-

negative matrix factorization. ENB and LBA declare provisional patent appli-

cations for ‘Clustered mutations for the treatment of cancer’ (U.S. provisional

application serial number 63/289,601) and ‘Artificial intelligence architecture

for predicting cancer biomarker’ (serial number 63/269,033). All other

authors declare no competing interests.

Data Availability

No data were generated for this publication.

References

Alexandrov,L.B. et al.; PCAWG Consortium. (2020) The repertoire of muta-

tional signatures in human cancer. Nature, 578, 94–101.

Alexandrov,L.B. et al.; ICGC PedBrain. (2013) Signatures of mutational proc-

esses in human cancer. Nature, 500, 415–421.

Bergstrom,E.N. et al. (2020) Generating realistic null hypothesis of cancer muta-

tional landscapes using SigProfilerSimulator. BMC Bioinformatics, 21, 438.

3472 E.N. Bergstrom et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac335#supplementary-data


Bergstrom,E.N. et al. (2019) SigProfilerMatrixGenerator: a tool for visualizing

and exploring patterns of small mutational events. BMC Genomics, 20, 685.

Bergstrom,E.N. et al. (2022) Mapping clustered mutations in cancer reveals

APOBEC3 mutagenesis of ecDNA. Nature, 602, 510–517.

Boichard,A. et al. (2017) High expression of PD-1 ligands is associated with

kataegis mutational signature and APOBEC3 alterations. Oncoimmunology,

6, e1284719.

Brash,D.E. (2015) UV signature mutations. Photochem. Photobiol., 91, 15–26.

Buisson,R. et al. (2019) Passenger hotspot mutations in cancer driven by

APOBEC3A and mesoscale genomic features. Science, 364, eaaw2872.

Chan,K. et al. (2015) An APOBEC3A hypermutation signature is distinguish-

able from the signature of background mutagenesis by APOBEC3B in

human cancers. Nat. Genet., 47, 1067–1072.

Chen,J.M. et al. (2013) Patterns and mutational signatures of tandem base sub-

stitutions causing human inherited disease. Hum. Mutat., 34, 1119–1130.

D’Antonio,M. et al. (2016) Kataegis expression signature in breast cancer is

associated with late onset, better prognosis, and higher HER2 levels. Cell

Rep., 16, 672–683.

Hess,J.M. et al. (2019) Passenger hotspot mutations in cancer. Cancer Cell,

36, 288–301 e214.

Islam,S.M.A. et al. (2020) Uncovering novel mutational signatures by de novo

extraction with SigProfilerExtractor. bioRxiv, 2020.2012.2013.422570.

Kaplanis,J. et al.; Deciphering Developmental Disorders study. (2019)

Exome-wide assessment of the functional impact and pathogenicity of mul-

tinucleotide mutations. Genome Res., 29, 1047–1056.

Lawrence,M.S. et al. (2013) Mutational heterogeneity in cancer and the search

for new cancer-associated genes. Nature, 499, 214–218.

Lin,X. et al. (2021) Kataegis: an R package for identification and visualization

of the genomic localized hypermutation regions using high-throughput

sequencing. BMC Genomics, 22, 440.

Maciejowski,J. et al. (2020) APOBEC3-dependent kataegis and TREX1-driven

chromothripsis during telomere crisis. Nat. Genet., 52, 884–890.

Martincorena,I. and Campbell,P.J. (2015) Somatic mutation in cancer and

normal cells. Science, 349, 1483–1489.

Mas-Ponte,D. and Supek,F. (2020) DNA mismatch repair promotes

APOBEC3-mediated diffuse hypermutation in human cancers. Nat.

Genet., 52, 958–968.

Matsuda,T. et al. (1998) Specific tandem GG to TT base substitutions induced

by acetaldehyde are due to intra-strand crosslinks between adjacent guanine

bases. Nucleic Acids Res., 26, 1769–1774.

Nik-Zainal,S. et al.; Breast Cancer Working Group of the International

Cancer Genome Consortium. (2012) Mutational processes molding the

genomes of 21 breast cancers. Cell, 149, 979–993.

Nik-Zainal,S. et al. (2019) Author correction: landscape of somatic mutations

in 560 breast cancer whole-genome sequences. Nature, 566, E1.

Pfeifer,G.P. et al. (2005) Mutations induced by ultraviolet light. Mutat. Res.,

571, 19–31.

Pleasance,E.D. et al. (2010) A comprehensive catalogue of somatic mutations

from a human cancer genome. Nature, 463, 191–196.

Polak,P. et al. (2015) Cell-of-origin chromatin organization shapes the

mutational landscape of cancer. Nature, 518, 360–364.

Roberts,S.A. et al. (2013) An APOBEC cytidine deaminase mutagenesis

pattern is widespread in human cancers. Nat. Genet., 45, 970–976.

Roberts,S.A. et al. (2012) Clustered mutations in yeast and in human cancers

can arise from damaged long single-strand DNA regions. Mol. Cell, 46,

424–435.

Stamatoyannopoulos,J.A. et al. (2009) Human mutation rate associated with

DNA replication timing. Nat. Genet., 41, 393–395.

Stratton,M.R. et al. (2009) The cancer genome. Nature, 458, 719–724.

Supek,F. and Lehner,B. (2017) Clustered mutation signatures reveal that

error-prone DNA repair targets mutations to active genes. Cell, 170,

534–547e523.

Taylor,B.J. et al. (2013) DNA deaminases induce break-associated mutation

showers with implication of APOBEC3B and 3A in breast cancer kataegis.

Elife, 2, e00534.

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium.

(2020) Pan-cancer analysis of whole genomes. Nature, 578, 82–93.

Veltman,J.A. and Brunner,H.G. (2012) De novo mutations in human genetic

disease. Nat. Rev. Genet., 13, 565–575.

Wang,Q. et al.; Genome Aggregation Database Consortium. (2020) Landscape

of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes.

Nat. Commun., 11, 2539.

Yin,X. et al. (2020) Multiregion whole-genome sequencing depicts intratumour

heterogeneity and punctuated evolution in ovarian clear cell carcinoma.

J. Med. Genet., 57, 605–609.

SigProfilerClusters 3473


