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Radiation exposure such as A-bomb or radiation therapy is considered amajor health-risk factor for cardiovascu-
lar disease. In order to understand the molecular mechanisms underlying the inflammatory reaction frequently
encountered in the vascular system after exposure to ionizing radiation, we carried out a global scale microarray
and computational gene expression analyses on human umbilical endothelial cells (HUVECs) exposed to X-ray
(2.5 Gy). The gene ontology analysis revealed that the down-regulated genes were associatedwith cell cycle reg-
ulation, whereas the up-regulated genes were associated with inflammatory responses, in particular, the type 1
interferon response. The computational analysis using ingenuity pathway analysis also identified a gene network
containing the interferon response factor 7 (IRF7) and its transcriptional targets such as interferon-induced tran-
scripts (IFITs) andMx1, which have been known to be associatedwith inflammation in endothelial cells. The up-
regulated genes and the gene network identified here may explain the inflammatory response induced by X-ir-
radiation. These findings uncover part of the molecular basis of the mechanism(s) of the inflammatory disorder
in response to X-irradiation in HUVECs. The dataset is publicly available at the Gene Expression Omnibus (GEO)
repository (http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE76484.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Direct link to deposited data

Themicroarray data was deposited in the Gene Expression Omnibus
(GEO): http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE76484.

2. Introduction

Recently, the association of radiation with cardiovascular disease
mortality in the life span study cohort of 86,000 A-bomb survivors
with estimated doses was reported [1]. Radiation exposure, not only
for A-bomb survivors, but also for patients with radiotherapy for cancer,
has been considered as amajor health-risk factor for cardiovascular dis-
ease [2,3], despite the usefulness of radiation for clinical cancer therapy.
Although chronically produced reactive oxygen species and inflamma-
tion are thought to be a pathogenic mediator of atherosclerosis [4],
the detailed molecular mechanism of these events has remained
unclear.

In a previous study, we addressed the effect of X-irradiation re-
sponse on endothelial NO synthase (eNOS) expression and activation
[5], which is considered to play a pivotal role in the inflammatory
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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response. Endothelial cells are known to be highly sensitive to ionizing
radiation and we showed the down-regulation of eNOS expression in
rabbit ear central artery 1–4 weeks after X-irradiation at a relatively
high dose (45 Gy) [6], probably due to the damage of endothelial cells.
On the contrary, an increase in NO production was observed in human
umbilical endothelial cells (HUVECs) at 6 h after X-irradiation at a
dose of 2–10 Gy [5]. eNOS activation, but not induction, was observed
6–72 h, after exposure to 10 Gy X-rays, and NO levels reached a maxi-
mum at 72 h.

The contradiction of the radiation-induced changes in NO produc-
tionmay be explained by the differences ofmaterials for assay, radiation
dose, or stage (within a few days or 1–4 weeks later). The mechanisms
by which the X-irradiation affects inflammatory response in HUVECs
appear to be complex; thus, it remains to be further elucidated. In addi-
tion, we should further disclose the mechanisms, particularly beyond
the perspective of eNOS expression and activation.

Recentmicroarray technology coupledwith bioinformatics tools has
provided a view of genome-wide expression profiles, as well as the rel-
evant biological function and gene networks based on the gene-expres-
sion data [7]. Here, for better understanding themolecular mechanisms
underlying the inflammatory reaction frequently encountered in vascu-
lar system after exposure to ionizing radiation, we carried out global
scale microarray and computational gene expression analyses in
HUVECs after X-irradiation by 2.5 Gy, which is similar to the dose for a
fraction frequently used in clinical cancer treatment. In the present
study, we focused on gene response associated with inflammation in
HUVECs, in particular, at an early stage after irradiation.

3. Materials and methods

3.1. Cell culture and X-irradiation

HUVECs were cultured in Humedia EB-2 (Wako), as previously de-
scribed [5]. In the present study, one million cells were seeded onto
60-mm culture dishes a day before irradiation. The cells were irradiated
with X-rays at a dose of 2.5 Gy. X-ray irradiation at a dose rate of 5 Gy/
min was performed using a Model MBR-1520R-3 X-ray unit (Hitachi
Medico Technology, Kashiwa, Japan), as previously described [8,9].

3.2. RNA isolation

The total RNA was extracted from cells using an RNeasy Total RNA
Extraction kit (Qiagen, Valencia, CA) and treated with DNase I (RNase-
free DNase kit, Qiagen) for 15 min at room temperature to remove re-
sidual genomic DNA. The RNA quality was analyzed using a Bioanalyzer
2100 and the RNA6000 Nano LabChip kit (Agilent Technologies, Inc.,
Santa Clara, CA). RNA samples with RNA integrity number (RIN) values
above 9.0 were considered acceptable.

3.3. Microarray analysis

Microarray and computational gene expression analyses were per-
formed using a GeneChip® system with a Human Genome U133-plus
2.0 array (Affymetrix, Santa Clara), which was spotted with approxi-
mately 54,000 probe sets, as previously described [9–12]. Samples for
array hybridization were prepared as described in the Affymetrix
GeneChip® Expression Technical Manual. The scanned arrays were an-
alyzed using the GeneChip Analysis Suite Software (Affymetrix). The
obtained hybridization intensity data and qualities were checked
using the GeneSpring® software.

3.4. Gene expression analysis

For global normalization, microarray signals were processed using a
standardMAS5.0 algorithm [13]. Observed signalswere normalized and
genes that had no significant signals were ignored to reduce noise. In
addition, probe sets targeting specific RefSeq transcripts based on
RefDIC were extracted [14].

Principal component analysis (PCA), gene ontology (GO) analysis,
and hierarchical clustering from the obtained normalized intensity
data were performed using GeneSpring® software (Agilent). In GO
analysis, GO terms were extracted if the p-value cut-off was inferior to
0.01. In hierarchical clustering, complete linkage and squared Euclidean
distance were utilized as previously [15].

3.5. Gene network and upstream regulator analyses

In order to examine the gene network, the obtained data was ana-
lyzed using Ingenuity Pathways Analysis (IPA) tools (Ingenuity Systems,
Mountain View, CA), a web-delivered application that enables the iden-
tification, visualization, and exploration of molecular interaction net-
works in gene expression data. In order to identify the potential
upstream transcriptional regulators, an upstream regulator analysis,
which can explain the observed gene expression changes in the obtain-
ed dataset, was performed using IPA tools. The top five upstream regu-
lators were identified and the network containing the regulators and
target genes was visualized to provide a hypothesis for gene regulation.

3.6. Quantitative PCR

Total RNA was subjected to reverse transcription with ReverTra Ace
qPCR RT Master mix according to the manufacturer's instructions
(Toyobo). The DNA samples were amplified with a CFX Connect Read-
Time PCR Detection System (BioRad), THUNDERBIRD SYBR qPCR Mix
(Toyobo), and the primer sets specific for human genes. The sequences
of primer sets were as follows: forward primer, 5ʹ-
CTGGAGTACTATGAGCGGGC-3ʹ and reverse primer, 5ʹ-
TGGCTGATATCTGGGTGCCT-3ʹ for IFIT1; forward primer, 5ʹ-
TGAGGAAGGGTGGACACAAC-3ʹ and reverse primer, 5ʹ-
ACATCGCAATTGCCAGTCCA-3ʹ for IFIT3; forward primer, 5ʹ-
CTGGATAGCAGCAGCCTCAG-3ʹ and reverse primer, 5ʹ-
AGCTCCATAAGGAAGCACTCG-3ʹ for IRF7; forward primer, 5ʹ-
TGGCATAACCAGAGTGGCTG-3ʹ and reverse primer, 5ʹ-
CACCACCAGGCTGATTGTCT-3ʹ for Mx1; forward primer, 5ʹ-
ACCATGCACTCTGTTTGCGA-3ʹ and reverse primer, 5ʹ-
CGAAAGGCACCTATCCGTTC-3ʹ for TLR3; forward primer, 5ʹ-
GCACCAACTACCCAGTGGAG-3ʹ and reverse primer, 5ʹ-
TGGCGTCTGGTCTTTGACAG-3ʹ for TICAM1; forward primer, 5ʹ-
AAGGCTGGGGCTCATTTGCA-3ʹ and reverse primer, 5ʹ-
ATGACCTTGCCCACAGCCTT-3ʹ for GAPDH.

Each mRNA expression level was normalized with respect to the
mRNA expression of GAPDH. Data are presented as means ± S.D.
(n = 4).

4. Results and discussions

HUVECs were irradiated with X-rays of 2.5 Gy and then were har-
vested 6, 12, and 24 h after irradiation for global transcriptomic analysis.
After normalization of obtained intensities through the MAS5 algo-
rithm, we performed PCA on gene expression data. The PCA revealed
that the gene expression pattern in non-irradiated control cells was
markedly distinct from that in irradiated cells, particularly in cells at
24 h after irradiation (Fig. 1). We identified 1126 probes that were dif-
ferentially expressed by a factor of 1.5 or greater in either control cells
or cells 24 h after irradiation. Hierarchical clustering of differentially
expressed probes showed that the majority of 376 or 750 entities
were gradually up- or down-regulated until 24 h (Fig. 2). In concor-
dance with a previous study of ours [5], within 24 h after irradiation,
the differentially expressed genes did not include NOS1-3 encoding
neural NOS, inducible NOS, and eNOS, indicating that NO production
after X-irradiationmay be largely dependent on the post-transcriptional



Fig. 1.Principal component analysis (PCA) on the comprehensive gene expression analysis
data. PCAwas performedusingGene Spring software. HUVECswere X-irradiated by2.5Gy
and then cultured for 6, 12, and 24 h until RNA extraction and followed by global gene
expression analysis.

Table 1
Top three GO in up-regulated genes.

GO term p-Value Molecules

Response to type 1
interferon

5.71E-04 MX1, IFIT1, IFI6, ISG20, ISG15, PTPN6, IRF7,
IFITM1, IFIT2, XAF1, IFIT3, TRIM56

Type 1 interferon
signaling pathway

0.001 MX1, IFIT1, IFI6, ISG20, ISG15, PTPN6, IRF7,
IFITM1, IFIT2, XAF1, IFIT3

Cellular response to
type 1 interferon

0.001 MX1, IFIT1, IFI6, ISG20, ISG15, PTPN6, IRF7,
IFITM1, IFIT2, XAF1, IFIT3
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modification of eNOS, but independent of the transcriptional up-regula-
tion of those NOS.

In the present study, we further performed a bioinformatics analysis
to identify the gene ontology (GO) and the genetic network of differen-
tially expressed genes to elucidate the radiation-induced inflammatory
response except for NOproduction. From theGO analysis,we found that
two of top three functions in down-regulated genes were involved in
cell-cycle regulation (Supplementary Table 1). The down-regulated
Fig. 2. Gene expression profiles of non-irradiated and X-irradiated HUVECs. Genes that
were differentially expressed by a factor of 1.5 or greater in HUVECs irradiated with
2.5 Gy X-ray are shown. Hierarchical clustering of differentially expressed genes was
performed using the Gene Spring software.
genes were associated with “Cell cycle” and “Cell cycle process,” which
has been known as typical cellular response after X-irradiation. In line
with the GO analysis, we previously reported that the expression of
genes involved in the promotion of the cell cycle (e.g., CCNB1 and
PLK1)were down-regulated in irradiatedHeLa cells [9]. On the contrary,
we found that all top three functions in up-regulated genes were in-
volved in type-1-interferon responses (Table 1). The up-regulated
genes were associated with “Response to type 1 interferon”, “type 1 in-
terferon signaling pathway,” and “Cellular response to type 1 interfer-
on”, which were not observed in the case of irradiated HeLa cells,
indicating that the genes associatedwith the type-1-interferon pathway
may contribute to the inflammation response in irradiated HUVEC cells.

In order to elucidate the interactions between the up-regulated
genes, we performed a gene network analysis. The analysis identified
a gene network containing interferon response factor 7 (IRF7) and its
transcriptional targets (e.g., interferon-induced transcripts (IFITs) and
Mx dynamin-like GTPase 1 (Mx1); Fig. 3 and Table 2), which were
also listed in the top three GO.

The mammalian IRF family comprises nine members: IRF1-9
(reviewed in [16]). Among them, IRF7 is highly homologous with IRF3
and forms homodimer or heterodimer with IRF3 in order to show its
transcriptional activity. IRF3 is constitutively expressed but IRF7 is
strongly induced by type 1 interferon-mediated signaling. Mx1 and
IFITs, called interferon stimulated genes (ISGs), are inflammatorymedi-
ators which can be transcriptionally up-regulated by IRF3 and IRF7 [17].
Mx1 and IFIT1 were reported to be strongly associated with carotid in-
tima media thickness and coronary calcification.

Other ISGs such as IFIT3, interferon alpha-inducible protein 44 like
(IFI44L), and IFI6, which were strongly expressed in endothelial cells
from lupus patients [18], were also up-regulated in irradiated HUVECs.
These genes were also identified as targets of IRF7 in a previous report
[17]. It is unknown whether other transcriptional targets of IRF7, such
as IFIT2, cytidinemonophosphate kinase 2 (CMPK2), transporter associ-
atedwith antigen processing 1 (TAP1), XIAP-associated factor 1 (XAF1),
sterile alpha motif domain-containing protein 9 like (SAMD9L), and in-
terferon-induced transmembrane protein 1 (IFITM1) [17,19], are in-
volved in cardiovascular disease. However, the activation of the IRF7
pathway seems to be one of the molecular inflammatory responses in
irradiated HUVECs.

Specially, we found that Toll-like receptor 3 (TLR3), recently report-
ed as a target of ionizing radiation [20], was a potential upstream gene
in radiation-induced inflammatory response since the upstream analy-
sis of genes using IPA tools identified TLR3 and TICAM1as part of the top
five upstream regulator genes (Table 3). A previous study demonstrated
that the stimulation of TLR3 transcriptionally up-regulated and activat-
ed IRF7 [21,22]. TICAM1 (also known as TRIF), a TLR3-associated mole-
cule, was also part of the top five regulators and identified in the genetic
network, indicating that the activation of the TLR3pathwaymight be re-
sponsible for the up-regulation of ISGs. Interestingly, the transcription
of TLR3 and TICAM1 was also slightly up-regulated after X-irradiation.
One of the possible mechanisms underlying the transcriptional up-reg-
ulation of TLR3 is radiation-induced p53 signaling since a past study in-
dicated that HCT116 cells harbor a functional p53 binding site on the
promoter regions of TLR3 [23]. The detailed mechanism underlying
the transcriptional regulation of TLR3 and TICAM1 by X-irradiation is

Image of Fig. 1
Image of Fig. 2


Fig. 3. Gene network identified following gene expression analysis. Up-regulated genes after X-irradiation were analyzed using IPA tools. The network is displayed graphically as nodes
(genes) and edges (biological relationships). The node color of the genes indicates the expression of genes. Solid lines and dashed lines indicate direct and indirect interaction between
molecules, respectively.
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still not clear. However, the up-regulation of these genesmight result in
the enhancement of TLR3-mediated signaling.

In addition to TLR3 and TICAM1, we found that the mitochondrial
antiviral-signaling protein (MAVS) was listed as top five regulators.
MAVS is considered to be important for ISG induction since ISG induc-
tion is not observed in myeloid dendritic cells with a defect in IRF3-
IRF7, as well as in cells with a defect in MAVS [19]. Interestingly,
MAVS transcription was also up-regulated in irradiated HUVECs, thus
seemingly contributing to the induction of ISGs, even though themech-
anism of MAVS transcription is not understood.
Table 2
Expression levels of genes in the identified genetic network.

Probe set ID Gene symbol Fold (cont. vs 24 h) Cont. (RAW) 6 h (RAW) 12

202086_at MX1 2.5 252.4 286.3 2
202307_s_at TAP1 1.6 569.8 861.9 8
202672_s_at ATF3 2.1 152 282.3 2
203153_at IFIT1 2.7 250.7 403.1 1
203945_at ARG2 1.5 121.3 147.6 1
204415_at IFI6 1.7 1314.2 1563.2 14
204439_at IFI44L 2.4 151.4 185.9 1
204698_at ISG20 1.5 260 370.1 3
206271_at TLR3 1.8 83.1 103.9 1
207850_at CXCL3 1.7 124.3 179.7 1
208436_s_at IRF7 2 342.2 551.1 5
209941_at RIPK1 1.9 78 152.2 1
213191_at TICAM1 1.5 161.2 184.8 2
214022_s_at IFITM1 1.8 636.9 716.4 5
215719_x_at FAS 1.5 313 620.3 5
226495_at MAVS 1.7 1103.3 1340.1 13
226603_at SAMD9L 1.5 511.9 549.7 6
226702_at CMPK2 2.3 56.4 53.8
226757_at IFIT2 2.4 59.8 129.6
228617_at XAF1 2.1 269.9 269.3 3
229450_at IFIT3 2.1 293.7 399.5 2
The up-regulation of TLR3, TICAM1, IRF7, IFIT1, IFIT3, and Mx1 at
24 h observed by microarray was further verified by quantitative real-
time PCR analysis (Supplementary Fig. 1). The up-regulated genes and
the gene network identified here may explain the inflammatory re-
sponse induced by X-irradiation. In addition, the upstream analysis of
up-regulated genes predicted that several genes in the identified net-
work, such as IRF7 and its downstream molecules, might be regulated
by TLR3, amolecule activated by a short fragment RNA released from ir-
radiated cells [20]. Interestingly, we found that TLR3 and its component
TICAM1 were transcriptionally up-regulated in response to irradiation,
h (RAW) 24 h (RAW) Cont. (Log2) 6 h (Log2) 12 h (Log2) 24 h (Log2)

46.8 629.3 −0.09 0.09 −0.12 1.23
58.7 918.4 −0.59 0 0 0.09
99.2 321.3 −0.93 −0.04 0.04 0.14
68.7 686.4 −0.34 0.34 −0.91 1.11
25.6 185.8 −0.17 0.12 −0.12 0.45
17.6 2207.2 −0.18 0.07 −0.07 0.57
12.9 370.4 −0.15 0.15 −0.57 1.14
02.1 401 −0.36 0.15 −0.15 0.26
08 149.5 −0.35 −0.03 0.03 0.5
18.9 214.2 −0.27 0.27 −0.33 0.52
58.2 687 −0.7 −0.01 0.01 0.31
62.3 149.4 −0.95 0.01 0.11 −0.01
75.4 243.4 −0.4 −0.2 0.38 0.2
26.9 1167.5 −0.08 0.08 −0.36 0.79
10.1 475.6 −0.65 0.33 0.05 −0.05
05.7 1821.3 −0.26 0.02 −0.02 0.46
13.7 788.5 −0.18 −0.08 0.08 0.44
23.9 127.6 0.03 −0.03 −1.21 1.21
97.4 146 −0.91 0.21 −0.21 0.38
21.5 560.3 −0.13 −0.13 0.13 0.93
54.2 603.4 −0.22 0.22 −0.43 0.82

Image of Fig. 3


Table 3
Top five upstream regulators and target molecules.

Upstream
regulator

Log
ratio

Molecule type Predicted
state

p-Value Target molecules in dataset

TLR3 0.847 Transmembrane receptor Activated 7.92E-08 ARG2, ATF3, CMPK2,CXCL11, CXCL3, FAS, IFI44L, IFI6, IFIT1, IFIT2, IFIT3, IRF7, ISG15, ISG20,
MX1, RIPK1, TICAM1, TLR3

MAVS 0.724 Other Activated 2.54E-05 CMPK2, IFIT1, IFIT2, IFIT3, IRF7, ISG15, ISG20
IRF7 1.005 Transcription regulator Activated 4.24E-07 CMPK2, IFI44L, IFI6, IFIT1, IFIT2, IFIT3, IFITM1, IRF7, ISG15, ISG20, MX1, SAMD9L, TAP1, XAF1
TICAM1 0.594 Other Activated 1.60E-05 CMPK2, CXCL11, CXCL3, FAS, IFIT1, IFIT2, IFIT3, IRF7, ISG15, ISG20, TLR3
PPARD 1.165 Ligand-dependent nuclear

receptor
Activated 1.87E-03 ACTA2, C10orf35, IFI44L, MMP9, PDE4C, PDPK1, PPARD, TCEA3, VLDLR
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indicating that TLR3-IRF7-mediated inflammatory response pathway
might be activated even by the transcription of TLR3 and associated
molecule TICAM1 in response to X-irradiation.

The significance of the computational analysis should be elucidated
in further biological studies. However, we expect our evidence to sup-
port further clinical studies uncovering the molecular basis of radia-
tion-induced inflammatory response in HUVECs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.05.007.
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