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Dysbiosis of the microbiome has been related to Celiac disease (CeD)

progress, an autoimmune disease characterized by gluten intolerance

developed in genetically susceptible individuals under certain environmental

factors. The microbiome contributes to CeD pathophysiology, modulating the

immune response by the action of short-chain fatty acids (SCFA), affecting

gut barrier integrity allowing the entrance of gluten-derived proteins, and

degrading immunogenic peptides of gluten through endoprolyl peptidase

enzymes. Despite the evidence suggesting the implication of gut microbiome

over CeD pathogenesis, there is no consensus about the specific microbial

changes observed in this pathology. Here, we compiled the largest dataset

of 16S prokaryotic ribosomal RNA gene high-throughput sequencing for

consensus profiling. We present for the first time an integrative analysis of

metataxonomic data from patients with CeD, including samples from different

body sites (saliva, pharynx, duodenum, and stool). We found the presence of

coordinated changes through the gastrointestinal tract (GIT) characterized

by an increase in Actinobacteria species in the upper GIT (pharynx and

duodenum) and an increase in Proteobacteria in the lower GIT (duodenum

and stool), as well as site-specific changes evidencing a dysbiosis in patients

with CeD’ microbiota. Moreover, we described the effect of adherence to a

gluten-free diet (GFD) evidenced by an increase in beneficial bacteria and a

decrease in some Betaproteobacteriales but not fully restoring CeD-related

dysbiosis. Finally, we built a Random Forest model to classify patients based

on the lower GIT composition achieving good performance.
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Introduction

Celiac disease (CeD) is an autoimmune disease affecting
the small intestine, ranging from intraepithelial lymphocytosis
to the total atrophy of intestinal villi as a response to
gluten consumption (Dieli-Crimi et al., 2015). This disease is
characterized by a genetic predisposition given by the alleles
coding for the Human Leukocyte Antigens (HLA) HLA-
DQ2 and/or HLA-DQ8, the presence of antibodies against
transglutaminase type 2 (TG2), and immunoglobulins IgA and
IgG anti-gluten as well as gastrointestinal symptoms when
consuming gluten-containing foods (Dieli-Crimi et al., 2015).
The HLA variant with a higher association with CeD is HLA-
DQ2, present in more than 90% of patients; approximately half
of the remaining patients possess an HLA allele coding for
HLA-DQ8 (García-Santisteban et al., 2021).

Besides the implication of HLA genes in CeD, more than
40 loci outside of the HLA region have been linked with the
disease (Gnodi et al., 2022). The risk effect of these non-
HLA variants is estimated to account for 15% of the disease’s
genetic component (Withoff et al., 2016). All of the genetic
variants discovered to date, including both HLA and non-
HLA Single Nucleotide Polymorphisms (SNPs), explain more
than half of the heritability (García-Santisteban et al., 2021).
It should also be noted that only 5% of the identified SNPs
were found in coding regions, with the remaining 5 and 9%
found in 5’ and 3’ untranslated regions, respectively, meaning
that 81% of the SNPs found were in intergenic or intronic
regions, implying that their function could be to regulate gene
expression, possibly through interactions with transcription
factors or proteins able to regulate chromatin status, that is,
epigenetic modifications, in this sense CeD-related epigenetic
changes have been described, including DNA methylations,
histone modifications, and non-coding RNA expression (Gnodi
et al., 2022). However, current evidence suggests that other
non-gluten environmental factors can influence disease risk in
addition to genetic aspects (Sollid and Lundin, 2020).

One of the non-gluten environmental factors influencing
the development of CeD is the gut microbiome, the complex
of microorganisms that reside in the gut and participate in the
body’s metabolic, physiological, and immune processes (Cenit
et al., 2016; Levy et al., 2017; Chander et al., 2018; Krishnareddy,
2019). Studies examining the microbiome in CeD suggest that
the intestinal microbiome of those with the condition is altered,
with opportunistic bacteria clades increasing while beneficial
clades decreasing, resulting in a condition known as dysbiosis
(Belkaid and Hand, 2014).

Dysbiosis could lead to an alteration in the intestinal
barrier. Sustained inflammation or infection (overgrowth of
pathogenic bacterial clades) can lead to deregulation in the
expression of adhesion molecules at tight junctions leading
to the entry of microbes and toxic substances facilitating
the entry of incompletely digested gliadin peptides—the

gluten-derived protein that triggers proinflammatory cytokines
in CeD—in lamina propria (Belkaid and Hand, 2014; Chander
et al., 2018; Valitutti et al., 2019). CeD causes a change
in the architecture of the small intestine; focal epithelial
barrier defects occur with increased apoptosis and altered
tight junction–mediated permeability resulting in a loss of
ions and water to the gut lumen, particularly barrier-
forming claudins (claudin-3, claudin-5, and claudin-7) are
down-regulated while the channel-forming claudins (claudin-
2 and claudin-15) are up-regulated, which increases the
selective paracellular solute transport (Schumann et al., 2017).
Additionally, the disassembly of zonulin, a protein that
reversibly regulates intestinal permeability by modulating
intercellular tight junction molecules, has been associated with
the disease (Lammers et al., 2008). Zonulin is neither specific
nor unique to CeD, as other proinflammatory mediators of
barrier and tight junction down-regulation, such as tumor
necrosis factor A and interferon-g, have been described in
active CeD (Schumann et al., 2017). However, gluten peptides
and some enteric bacteria, such as Escherichia coli, can induce
this protein, suggesting an implication in CeD pathogenesis
(De Palma et al., 2010).

Besides zonulin disassembly, gliadin peptides and gut
dysbiosis can similarly activate innate and adaptive immune
systems (Chibbar and Dieleman, 2019). Gram-negative bacteria
trigger the innate immune system by activating Toll-like
receptors (TLR-4), and CD14 complexes recognize bacterial
endotoxins and lipopolysaccharide, prompting the innate
immune system to release proinflammatory cytokines (Chibbar
and Dieleman, 2019; Valitutti et al., 2019). In patients with
CeD, gluten intake activates gluten-specific CD4+ T cells in
the lamina propria, upregulating IL-15, a proinflammatory
cytokine (Sanz, 2015). Moreover, gut microbiota can also
activate Th1-, Th2-, and Th17-mediated immune responses
similar to upregulation by gliadin peptide (Sjöberg et al., 2013).

Finally, dysbiosis may also increase the amount and size
of gliadin peptides due to differential peptidolytic activity of
the gut microbiota (Herrán et al., 2017; Kõiv and Tenson,
2021). Recent research has shown that peptidases from different
sources can degrade gluten and gluten-derived peptides (Herrán
et al., 2017; Kõiv and Tenson, 2021). In this regard, several
bacteria from the human digestive tract (i.e., Bifidobacterium
spp., Lactobacillus spp., and Rothia spp.) can potentially degrade
gluten, and a healthy microbiome composition could modulate
the symptoms of gluten-related diseases (Herrán et al., 2017).
These studies suggest that the gut microbiota affects gluten
digestion, intestinal permeability, and the host immune system,
all the mechanisms involved in the pathogenesis of CeD.

Strict adherence to a Gluten-Free Diet (GFD) and a lifelong
exclusion of gluten from the diet is the first-line treatment
and is currently the only effective therapy for CeD (Al-Toma
et al., 2019). GFD has become a trend in contemporary
history, being associated with increased energy and health;
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however, evidence suggests that GFD is an unbalanced diet with
multiple nutritional deficiencies (Lerner et al., 2019). People
undertaking gluten-restricted products are often associated with
diets containing an inadequate nutritional value, characterized
by a higher fat intake, less vegetable-protein intake, and higher
carbohydrate and sugar consumption (Lerner et al., 2019; Melini
and Melini, 2019). Although GFD can reduce the symptoms
of CeD in most patients, it does not entirely restore the gut
microbiota to that of healthy individuals; moreover, it has
been reported that up to 30% of patients will exhibit non-
responsive CeD, a condition characterized by the persistent
enteropathy and CeD-related symptoms after 1 year on a GFD
(Leonard et al., 2017).

Despite the evidence suggesting the implication of gut
microbiome over CeD pathogenesis and symptoms persistence
after treatment, there is no consensus about the specific
microbial changes observed in this pathology. Previous studies
have focused on identifying a microbiome composition at
an early age in infants that could be predictive of CeD
development (Sellitto et al., 2012; Olivares et al., 2018; Rintala
et al., 2018), the effect of the time of first gluten exposure
(Sellitto et al., 2012), and other environmental factors such
as delivery mode, antibiotic exposure, and infant-feeding
type on microbial gut composition and/or CeD development
(Leonard et al., 2020). Additionally, researchers discovered
that several microbial species, pathways, and metabolites are
altered in abundance in infants at high risk of developing CeD
before the disease manifests, suggesting that HLA-DQ alleles
can affect early gut microbiota composition (Leonard et al.,
2021), pointing out the influence of host genetics over the
gut microbiome. Other studies in adults comparing healthy
patients vs. patients with CeD have demonstrated that alpha-
diversity between samples from patients with CeD and other
groups did not show differences. However, specific changes
in taxa abundance were found, for example, the increase of
Proteobacteria in patients with CeD and a decrease in Firmicutes
and Actinobacteria, evidencing the existence of a dysbiosis in
CeD with a predominance of Gram-negative bacteria (Cheng
et al., 2013; Pellegrini et al., 2017; Bodkhe et al., 2019; Panelli
et al., 2020).

Differences were observed across studies regarding the use
of different sequencing technologies, experimental approaches
and analysis pipelines, difficult cross-studies comparison,
and microbial markers’ establishment to evaluate disease
progression. Here we performed a comprehensive study of the
microbiome in CeD, combining multiple datasets of 16S rRNA
gene sequencing available in public databases. We compiled
datasets from parts of the gastrointestinal tract (GIT) and
extensive metadata, considering the influence of GFD over the
gut microbiome, trying to find microbial biomarkers for CeD
not only in the duodenum but also in less invasive samples such
as saliva, stool, and oropharynx exudates. Finally, we developed

for the first time a model to classify patients with CeD based on
their gut microbiota composition.

Results

We found nine out of the nineteen selected studies meeting
the inclusion criteria as shown in Supplementary Table 1
for the merged data analysis (Table 1). Table 2 shows the
number of samples for each study, the clinical classification,
and tissue of origin (stool, duodenum, pharynx, or saliva) for
the data included in the analysis. Finally, we included 435 total
samples, comprising 190 patients with active or treated CeD
and 245 controls.

We combined 16S RNA sequencing gene datasets for the
first time and performed an analysis following the same pipeline.
We compared sequences generated from different regions of
the 16S rRNA gene by using a reference mapping protocol
for amplicon sequence variant (ASV) assignment, in which
sequences from different regions of the 16S rRNA gene will map
to the same full-length reference sequence from the SILVA SSU
v.138 database (Glöckner et al., 2017) if they are from the same
species. We could perform an integrative analysis including a
high number of samples from different body sites and extensive
metadata to find microbial biomarkers characteristic of CeD,
taking into account the type of diet.

Diversity and microbial composition

Alpha-diversity of the microbiome was estimated using
the Chao1, Shannon, and Simpson indices (Figure 1).
We did not find differences among healthy controls
and patients with CeD regarding alpha-diversity indexes
from saliva and pharynx samples. However, when
considering duodenum and stool samples, we found an
increment in the diversity in patients as in healthy controls
undergoing a GFD.

We studied the differences among groups in each tissue
sampled by PCoA using weighted UniFrac distance for
the beta-diversity analysis (data not shown). We did not
find a clear separation when analyzing biological variables
(age, type of diet, or clinical condition). Permutational
multivariate analysis of variance (PERMANOVA) for
each variable by ADONIS function revealed that Study
Accession, in the case of the duodenum, saliva, and stool,
was a factor influencing the grouping of samples. This may
be explained by the experimental protocols used in each
study, including differences in the sequencing platform,
the region of 16S rRNA targeted, and the DNA extraction
technique used, suggesting that some particular protocols may
induce some biases.
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TABLE 1 The number of samples for each study, clinical classification, and tissue of origin for the data included in the analysis.

References Accession N◦ ENAa Sampled tissue Sequencing technology 16S region

Bodkhe et al., 2019 PRJNA385740 Duodenum and stool Illumina Miseq V4

Garcia-Mazcorro et al., 2018a PRJNA401920 Duodenum and stool Illumina Miseq V4

Iaffaldano et al., 2018 PRJNA371697 Pharynx Illumina Miseq V4-V6

Olivares et al., 2018 PRJEB23313 Stool Illumina Miseq V1-V2

Tian et al., 2017 PRJNA321349 Saliva Illumina Miseq V3-V4

Bonder et al., 2016 PRJEB13219 Stool 454 V3-V4

Giacomin et al., 2016 PRJNA316208 Duodenum 454 V1-V3

Quagliariello et al., 2016 PRJEB14943 Stool Illumina Miseq V3-V4

Francavilla et al., 2014 PRJNA231837 Saliva 454 V1-V3

The cases (n = 190) include patients with celiac disease, on a diet with or without gluten, the controls (n = 245) include non-celiac patients with gluten intolerance, gluten-free diet, or
without any enteropathy. The total samples add up to 435.
aAccession numbers in the “European Nucleotide Archive” (ENA) database.

TABLE 2 Statistics of input data to analyze (after filtering samples and ASVs).

Tissue Feeding habit ASVs Samples Cases Controls

Duodenum GFD 475 30 12 18

Duodenum Unrestricted 475 89 40 49

Stool GFD 374 89 52 37

Stool Unrestricted 374 107 24 83

Saliva Control unrestricted and case GFD 120 78 40 38

Pharynx Control unrestricted and case GFD 71 42 22 20

ASV, Amplicon Sequence Variant; GFD, Gluten free diet; Cases, Samples from patients with Celiac disease.

Differential analysis of the microbiota,
correlation, and biomarker finding

To establish microbial biomarkers, first, we conducted a
biomarker-finding analysis using the LEfSe tool, followed by a
differential abundance analysis using DESeq2 to identify ASVs
that were differentially expressed according to studied groups.
Finally, a correlation analysis looking for an association between
CeD and microbial composition was performed. Figure 2
summarizes the main findings obtained in each tissue analyzed.

Microbial changes associated with duodenal
microbiota in celiac disease

We found that bacteria of the phylum Proteobacteria were
characteristic of a CeD patient’s duodenum, with different
genera present according to the type of diet.

(i) Microbial changes of duodenal microbiota from untreated
patients with CeD undergoing an unrestricted diet. For duodenal
samples of patients undergoing an unrestricted diet, we found
23 ASVs with an linear discriminant analysis (LDA) score
greater than 3 (Figure 3A). Nine ASVs were associated
with patients with CeD mainly from Proteobacteria phylum,
particularly bacteria from the Burkholderia–Paraburkholderia–
Caballeronia clade, Alphaproteobacteria, and Enterobacteria,
and Actinobacteria from the family Corynebacteriaceae. On
the other hand, healthy controls were enriched in the classes

Negativicutes and Epsilonbacteraeota of the phylum Firmicutes.
After differential relative abundance analysis, we found 93
ASVs with significant changes in abundance (FDR < 0.01)
(Figure 4A). Among them, 61 were decreased in CeD, and
11 were increased in CeD. Significant ASVs belong to phyla
Firmicutes, Bacteroidetes, Proteobacteria, Epsilonbacteraeota,
Actinobacteria, Spirochaetes, Fusobacteria, and Synergistetes.
Finally, we found a negative association between CeD and
the genus Actinomyces, whereas the top five positively
associated genera were Coprococcus 3, Hydrocarboniphaga,
Ruminococcaceae UCG010, Cutibacterium, and Deinococcus.

(ii) Microbial changes of duodenal microbiota from patients
with CeD undergoing a GFD. We selected healthy controls
and patients undergoing a GFD to study the microbial
composition between the two groups. Biomarker finding
analysis revealed 65 ASVs with an LDA score greater than
3 (Figure 3B). Eight ASVs were associated with patients
with CeD, mainly from the phylum Proteobacteria belonging
to the Burkholderia–Paraburkholderia–Caballeronia clade,
alphaproteobacteria Afipia, and order Rhizobiales. On the
other hand, 57 ASVs were related with healthy controls
following a GFD, particularly from the phyla Firmicutes,
Fusobacterium, Actinobacteria, and Epsilonbacteraeota
comprising the genera Leptotrichia, Fusobacterium, Rothia,
and Campylobacter, and other Proteobacteria (Neisseriaceae,
Pseudomonales, and Haemophilus). After performing the
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FIGURE 1

Shannon (A), Simpson (B), and Chao1 (C) diversity indices for (1) the pooled samples in cases and controls for each sampled tissue according to
diet. The p-value was calculated using the Wilcoxon test in (A,B) and the Welch’s t-test in (C). The limits of the rectangle indicate the 25th and
75th percentiles and the horizontal bars indicate the median, in (C), the median equals average. Vertical bars indicate upper and lower
distribution limits, and dots represent mild outliers. ****P < 0.0001.

FIGURE 2

Comprehensive map of microbial and functional changes observed after data integration. SCFA, short-chain fatty acids; CeD, Celiac disease
patients. Figure was created with BioRender.com.
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FIGURE 3

Linear discriminant analysis (LDA) integrated with effect size (LEfSe). Cladogram representing the differentially abundant taxonomic groups in
the microbiota from the duodenum of CeD following an unrestricted diet (A1) or a GFD (B1). Graph bar representing the microbial biomarkers
found in the microbiota from the duodenum of CeD following an unrestricted diet (A2) or Patients with CeD following a GFD (B2) (LDA
score > 3, p < 0.001). Control: Control group, represented in green. Case: Patients with CeD, represented in red.

differential abundance analysis, we found 49 ASVs with
significant changes in abundance (FDR < 0.01) (Figure 4B).
Nine were increased in CeD, whereas the other 40 ASVs
were decreased. Significant ASVs belong to the phyla
Actinobacteria, Proteobacteria, Firmicutes, Epsilonbacteraeota,
Bacteroidetes, Fusobacteria, and Spirochaetes. Finally, the
top five negatively associated genera from the duodenum
of patients with CeD undergoing GFD were Haemophilus,
Neisseria, Alloprevotella, Fusobacterium, and Delftia. In
contrast, the top four positively associated genera were
mainly from the phylum Proteobacteria, particularly from
the order Alfaproteobacteriales, namely, Falsirhodobacter,
Asinibacterium, Azonexus, and Blastomonas.

Microbial changes associated with stool
microbiota in celiac disease

Stool samples are more representative of the colonic
microbiota; however, they could also indicate changes related to
the disease. Like in duodenum samples, we found an increase in
bacteria of the phylum Proteobacteria, but different genera were
enriched according to the type of diet. Specific changes found
were as follows:

(i) Microbial changes of stool microbiota from untreated
patients with CeD undergoing an unrestricted diet. After
biomarker analysis, we found 60 ASVs with an LDA score
greater than 3 (Figure 5A). Of them, 17 were associated
with CeD, and bacteria from phylum Verrucomicrobia and
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FIGURE 4

Differential abundance analysis performed on samples from the duodenum of Patients with CeD following an unrestricted diet (A) and Patients
with CeD under a GFD (B) compared with healthy controls.

Firmicutes were characteristics of this group, mainly the genera
Akkermansia, Anaerostipes, Faecalibacteria, and Dorea; on the
other hand, in healthy controls undergoing an unrestricted diet
ASVs from phylum Proteobacteria (Betaproteobacteriales) and
Firmicutes mainly order Clostridiales were overrepresented.
Differential abundance analysis revealed 74 ASVs belonging
to phyla Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria with significant changes in abundance
(FDR < 0.01) (Figure 6A). Among them, 56 were decreased
in CeD, and seven were increased in CeD. Finally, the top five
genera positively associated with CeD were Achromobacter,
Flavisolibacter, Geodermatophilus, Candidatus Rubidus, and
Tepidimonas.

(ii) Microbial changes of stool microbiota from patients
with CeD undergoing a GFD. Biomarker-finding analysis
revealed the presence of 48 ASVs with LDA > 3 (Figure 5B).
In total, 22 were associated with patients with CeD, mainly
from phylum Verrucomicrobia, Bacteroides, Firmicutes, and
Proteobacteria, particularly genera Akkermansia, Bacteroides
Romboutsia, and Pseudomonas. On the other hand, 26 ASVs
were related to controls undergoing GFD, mainly bacteria from
phylum Firmicutes and Actinobacteria from genus Lactobacillus,
Streptococcus, Ruminoccocous, and Bifidobacterium. Differential
abundance analysis revealed changes in 77 ASVs (FDR < 0.01)
(Figure 6B). Among them, 41 were decreased in CeD, and
19 were increased in CeD. Significant ASVs belong to phyla
Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia,
Actinobacteria, and Lentisphaerae. Finally, correlation analysis
showed 15 ASVs with a significant correlation with CeD.
Five were negatively correlated with CeD (Ruminococcus 1,
Ruminococcaceae UCG014, Ruminiclostridium 6, Coprococcus
2, Enterococcus), and ten ASVs have a positive correlation. The
top five genera that positively correlated were Intestinibacter,
Akkermansia, Ruminococcaceae UBA1819, Flavonifractor, and
Terrisporobacter.

Microbial changes associated with pharynx
microbiota in celiac disease

We found two microbial biomarkers characteristic of
the pharynx in patients with CeD: Rothia, a nitrate-reducing
bacteria usually found in the oral cavity of humans (Rosier
et al., 2020), and Peptosptreptoccus, an oral pathogen recently
associated with Colorectal Cancer development (Ternes et al.,
2020; Figure 7A). On the other hand, differential abundance
analysis showed significant changes in abundance (FDR < 0.01)
of five ASVs. Veillonella, Mogibacterium, Streptobacillus
(phylum Fusobacteria), and Mannheimia were increased in
CeD, whereas Treponema 2 was decreased.

Microbial changes associated with microbiota from saliva
samples in CeD. Despite the most significant changes found in
the microbial composition on other parts of the gastrointestinal
tract, we only found one genus related to CeD in saliva and was
identified after differential abundance analysis and biomarker
finding, namely, genus Oceanivirga belonging to the phylum
Fusobacteria, family Leptotrichiacea.

Prediction of the metabolic functions
profiles in bacterial communities

To study the metabolic potential of the microbiota,
the analysis was first carried out for all the genes and
pathways detected and, since the intestinal microbiota, after its
contribution to the digestive process of food, produces short-
chain fatty acids that influence the maturation, maintenance,
and behavior of the mucosal immune system, we focused on
the genes and pathways involved in the production of these
compounds. Figure 2 summarizes the main findings observed
according to each tissue analyzed.

First, we searched for the 26 genes reported as potentially
involved in the biosynthesis pathways of the main SCFAs
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FIGURE 5

Linear discriminant analysis (LDA) integrated with effect size (LEfSe). Cladogram representing the differentially abundant taxonomic groups in
the microbiota from the stool of Patients with CeD following an unrestricted diet (A.1) or a GFD (B.1). Graph bar representing the microbial
biomarkers found in the microbiota from the stool of Patients with CeD following an unrestricted diet (A.2) or Patients with CeD following a
GFD (B.2) (LDA score > 3, p < 0.001). Control: Control group, represented in green. Case: Patients with CeD, represented in red.

FIGURE 6

Differential abundance analysis performed on samples from the stool of patients with CeD following an unrestricted diet (A) and patients with
CeD under a GFD (B) compared with healthy controls.
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FIGURE 7

Linear discriminant analysis (LDA) integrated with effect size (LEfSe). (A) Cladogram representing the differentially abundant taxonomic groups in
the microbiota from the pharynx of patients with CeD. (B) Graph bar representing the microbial biomarkers found in the microbiota from the
pharynx of patients with CeD (LDA score > 3, p < 0.001). Control: Control group, represented in green. Case: Patients with CeD, represented in
red.

TABLE 3 Statistics of significant results obtained on Picrust2 predictions analysis.

Tissue Feeding habit Gene differential
abundance

Gene
correlation

Pathway differential
abundance

Pathway
correlation

Duodenum GFD 412 0 13 0

Duodenum Unrestricted 404 0 8 0

Stool GFD 31 69 0 1

Stool Unrestricted 261 0 2 0

GFD, Gluten-free diet.
FC = 3, p < 0.01.

produced by the human microbiome (butyrate, acetate, and
lactate), given their involvement in the modulation of the
immune system. Genes included were those identified by Zhao
et al. (2019) by gene deletion and overexpression experiments
in E. coli. These authors identified six genes needed in acetate
production (menI, tesA, yciA, fadM, tesB, and ybgC), eight genes
used in butyrate (entH, tesA, ybgC, ybhC, yicA, menI, yigI, and
tesB) production, and two genes required for lactate (mgsA and
lldD) production in addition to the previously known genes pta-
ackA, ptb-buk, ldhA, poxB, eutD, tdcD, dld, and ykgF (Zhao et al.,
2019). Table 3 shows the number of genes found according to
each tissue and the differentially abundant genes/routes between
patients with CeD and healthy controls.

Differential abundance analysis of metabolic pathways is
summarized in Supplementary Table 2. It revealed an increase,
in the duodenum of patients with CeD, in the degradation of
D-glucarate, L-arabinose, D-galactarate, and biogenic amines,
and a decrease in the degradation of lactose and galactose.
Regarding genes involved in the production of SCFA, we found
a decrease in the abundance of genes involved in the production
of acetate (ackA) and lactate (ldhA) and a negative correlation
with genes involved in the production of acetate (pta), lactate
(lldD, ldh, dld, and tesB), and butyrate (tesB). A decrease in the
abundance of the fermentation pathway from hexitol to SCFAs
involving the ackA and pta genes was consistently found.

In stool samples of patients with CeD, the synthesis routes
of lipopolysaccharide (LPS) components of the membrane of
Gram-negative bacteria, acetate degradation routes, and vitamin
B synthesis (B1 and B9) were found to be increased. Regarding
genes implied in SCFA synthesis, correlation analysis revealed
that two genes related to acetate and lactate production (pta
and dld) were negatively associated with CeD (FDR ≤ 0.01;
correlation ≥ 0.2).

No statistically significant differences were found in the
abundance of any of the 26 genes related to SCFA production
regarding saliva and pharynx samples. However, in saliva
samples of patients with CeD, we found an increase in
peptidoglycan synthesis and the intermediate degradation
routes of aromatic compounds and amino acids.

Prediction of genes and genes coding
for prolyl peptidase enzymes

Some microbiota components can express enzymes different
from those produced by humans and promote the digestion
of compounds such as the immunogenic peptides of gluten
(Herrán et al., 2017; Kõiv and Tenson, 2021). We analyzed four
enzymes involved in the degradation of immunogenic gluten
peptides that could be involved in reducing CeD symptoms
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(general N-type aminopeptidase (PepN), X-prolyl dipeptidyl
aminopeptidase (PepX), endopeptidase (PepO), and endoprolyl
peptidase (PREP). However, none of the four enzymes involved
in the degradation of gliadin peptides were found to be
differentially abundant between cases and controls or associated
with CeD in any of the tissues.

Use of the random forest machine
learning model to discriminate sample
groups

To learn about the extent to which the microbial
components differed among sample groups of the
gastrointestinal tract and the capacity to use microbial
information to discriminate patients with CeD, we established
random forest (RF) classifiers. The low number of samples
from the upper GIT (saliva and pharynx) led us to construct
models only with information from the lower GIT (stool and
duodenum) to discriminate between healthy controls and
patients with CeD. We constructed six models by pooling
samples from the duodenum and stool and with/without gluten
ingest information. We decoded 16S rRNA hypervariable region
information as a binary feature and estimated their effects on
our RF models. Additionally, we conducted the same pooling
RF analysis without adding 16S rRNA hypervariable region
information and achieved a similar performance.

Receiver operating curves were calculated together with
their AUC for each class (Figure 8A). The AUC for the
duodenum model was the lowest. In stool and lower GIT
models, including gluten ingestion as a feature, was among the
top-ranked features, whereas it did not have much importance
in the duodenum model. The top-ranked genera in the six
models with and without gluten consumption information are
shown in Figure 9. The genera Bifidobacterium, Cutibacterium,
Intestinibacter, Oribacterium, Prevotella, and Ruminococcaceae
UCG014 were microbial markers shared between models.

Finally, we built a binary RF classifier based only on stool
data to evaluate their usefulness as a surrogate marker of the
disease using the top-ranked features of the previous stool model
(without gluten consumption as a feature). Predictions on the
test yielded an AUC of 0.85 (Figure 8B). Afterward, we applied
the model to a healthy population for validation obtaining an
AUC of 0.75 (Figure 8B).

Discussion

Our study provides an unprecedented analysis of
metataxonomic data from patients with CeD, including
(n = 435) samples from patients and healthy controls for
different body sites. One of the most critical limitations
currently found is the lack of standardized methodologies

for downstream analyses of sequencing approaches,
introducing statistical biases and subsequent challenges
for reproducibility and cross-study comparisons (Moreno-
Indias et al., 2021). Despite some attempts to standardize
methods, a gold standard for microbiome research is
not established (Knight et al., 2018). Herein, we create an
extensive dataset processed following the same methodology
and levering metadata to solve this issue; moreover, we
made data publicly available following FAIR principles
(Wilkinson et al., 2016).

Celiac disease mainly affects the small intestine
(duodenum); according to the European Society for the
Study of Coeliac Disease (ESsCD) guidelines, the diagnosis
of CeD relies on a combination of clinical, serological,
and histopathological findings, and small-bowel biopsy
specimens are fundamental for an accurate diagnosis (Al-
Toma et al., 2019). In this regard, we studied duodenal
microbiota intending to find microbial markers associated
with this disease. On the other hand, biopsy-sparing diagnostic
guidelines have been proposed and validated in a few recent
prospective studies; as the obtention of a duodenal biopsy
or duodenal content is an invasive procedure, we aimed to
find microbial markers for other parts of the GIT, with less-
invasive procedures (stool, oropharyngeal exudate, and saliva)
to identify possible microbial markers as “surrogate markers”
of the duodenum.

Previous studies have shown that Proteobacteria was
enriched in CeD (Cheng et al., 2013; Pellegrini et al.,
2017; Garcia-Mazcorro et al., 2018a; Bodkhe et al., 2019;
Panelli et al., 2020). We recognized the same finding, but
we were also able to discern differences in the abundance
of particular Proteobacteria families according to the type
of diet of the patients. For patients with untreated CeD,
Burkholderiaceae, Xantobacteriaceae, and Enterobacteriaceae
were enriched, whereas in patients under a GFD, we found
a decrease in some Enterobacteriaceae (duodenum) and
Betaproteobacteriales (stool). These findings suggest that the
lower GIT microbiota from patients with CeD is enriched
in Proteobacteria with potential implications for activation of
immune response and inflammation. In this sense, predicted
metabolic pathways found in duodenum and stool samples were
characterized on the one hand by the increase in alternative
routes for obtaining energy (degradation of D-glucarate,
L-arabinose, D-galactarate, and biogenic amines) and a decrease
in the production of SCFA. Because the cells involved in
the immune response require a large amount of energy
for their activation, proliferation, and recruitment of other
cells during inflammation, the availability of carbohydrates is
scarce for bacteria to synthesize their components. Therefore,
they obtain energy by alternative routes, for example, from
acetate through the glyoxalate cycle, or obtaining energy are
compounds such as D-glucarate, D-galactarate, and biogenic
amines (Chauhan and Saha, 2018).
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FIGURE 8

Receiver operating characteristic (ROC) curves for the six models built. The area under the ROC curve (AUC) is shown. AUC-ROC, Area under
the ROC curve. Duodenum: RF model using duodenum samples. Duodenum-Gluten consumption: RF model using duodenum samples
including information about gluten consumption. Low GIT: RF model using pooled samples from the lower gastrointestinal tract (stool and
duodenum). Low GIT—gluten consumption: RF model using pooled samples from the lower gastrointestinal tract (stool and duodenum)
including information about gluten consumption. Stool: RF model using stool samples. Stool—gluten consumption: RF model using stool
samples including information about gluten consumption.

FIGURE 9

Top 20 best-ranked microbial features of each model. (A) Stool model with/without gluten consumption; (B) duodenum model with/without
gluten consumption.

On the other hand, we found a generalized low presence of
genes related to the production of beneficial SCFA, with anti-
inflammatory potential. The reduction of these compounds is
associated with a reduction in the bacterial genus that produces
them, such as Ruminoccous, Veillonella, and Clostridiales (as
observed in taxonomic analysis) and potentially with a lower
fiber intake typical of a gluten-free diet (Lerner et al., 2019).
A low abundance of SCFA has been previously reported in CeD
at an early stage (Cagno et al., 2011) and may be involved in the
predisposition to the development of CeD (Verdu et al., 2015).
Moreover, stool samples were characterized by an increase in the
synthesis routes of LPS, and vitamin B synthesis (B1 and B9),
which is consistent with our findings in the taxonomic analysis
revealing an increase in the abundance of Proteobacteria. LPSs

are key factors in the activation of the immune response
through TLR4 signaling, contributing to inflammation, and loss
of intestinal permeability seen in CeD (Levy et al., 2017; Salguero
et al., 2019).

Regarding the upper GIT, first, we studied the composition
of the pharynx microbiota of patients with CeD. Anatomically,
the pharynx is part of the upper gastrointestinal tract, directly
connected with the esophagus, and is conventionally divided
into the nasopharynx, oropharynx, and hypopharynx. Usually,
oropharynx exudate, a sample comprising the part of the
throat at the back of the mouth behind the oral cavity, is
used for clinical diagnosis of microbial infections (Lieberman
et al., 2006), being a valuable method for studying microbiota
from the upper intestinal tract with a less-invasive procedure
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than a biopsy (Lemon et al., 2010; Boutin et al., 2017). We
found a particular microbial composition in the pharynx of
patients with CeD, mainly associated with proinflammatory
bacteria (i.e., Mogibacterium) and opportunistic pathogens
(i.e., Peptostreptococcus and Streptobacillus). Notably, we found
Rothia spp., a species containing gluten-degrading enzymes
(Kõiv and Tenson, 2021), in non-symptomatic patients
undergoing GFD; further studies will be helpful to discriminate
the role of this bacteria in CeD and its possible use for
monitoring the disease.

We found the genus Oceanivirga as a marker of patients with
CeD for the first time regarding saliva samples. These bacteria
are from the family Leptotrichiaceae, relatively poorly studied
Gram-negative bacteria, facultative or obligate anaerobes, found
as colonizers of mucous membranes in the oral cavity of humans
and other animals (Eisenberg et al., 2018). Particularly, the
genus Oceanivirga has been isolated in subgingival samples from
patients with periodontitis (Hagenfeld et al., 2018), however,
validation as a microbial marker of CeD needs to be performed.

Predicted metabolic pathways analysis revealed an increase
in the intermediate degradation routes of aromatic compounds
and amino acids in the pharynx samples, both routes
associated with energy acquisition from bacteria (Chauhan
and Saha, 2018) and an increase in peptidoglycan synthesis
in saliva. Peptidoglycans are part of the cellular wall of
bacteria and, besides LPS, are responsible for microbial
inflammation mediated by the innate immune response
(Amoureux et al., 2005).

Finally, we developed a novel RF classifier for discerning
between patients with CeD and healthy controls. We used
an RF algorithm in view of its usefulness when applied to
microbiome datasets (Marcos-Zambrano et al., 2021; Moreno-
Indias et al., 2021). Due to the small sample size for upper
GIT samples, we could only build RF models for lower GIT.
Some of the microbial markers identified by LEfSE, differential
abundance expression, and correlation in stool and duodenum
samples were also present in the RF models (Alloprevotella
spp., Cutibacterium spp., Delftia spp., Neisseria spp., and Rothia
spp.), demonstrating their potential as microbial biomarkers
able to discern between the disease and its possible usefulness in
combination with other prediction models to estimate the risk
of having CeD based on symptoms and risk factors previously
described (Elwenspoek et al., 2022). The RF model built with
stool samples achieves an outstanding performance even with
the validation dataset proving the capability of using a stool as
a surrogate marker for changes in the duodenal microbiota of
patients with CeD.

One of the main limitations of our study is the low number
of samples from patients with CeD included, and we were
restricted by the datasets available and the scarce metadata,
making open access data mandatory not only for reproducibility
but also for increasing the number of available resources and
increasing the body of information about specific diseases.

On the other hand, we could only provide information about
microbial markers at the genus level; the use of whole-genome
sequencing data will be beneficial to discern specific strains
implicated in the changes evidenced in our study.

However, despite limitations, we were able to find microbial
markers related to CeD at different body sites, including
SCFA production and the prevalence of inflammatory pathways
(Figure 2). Our results showed coordinated changes throughout
the GIT, with specific changes according to each body site.
In the upper GIT, we found an enrichment in Actinobacteria
from the genus Rothia in the pharynx, and Cutibacterium
in the duodenum, and a marked decrease in Alloprevotella
spp. in both sites. Whereas, the lower GIT presents more
changes characterized by an increase in Proteobacteria and a
decrease in Actinobacteria, Campylobacter, and SCFA producers
such as Ruminococaceae, and Clostridiales. Moreover, we define
some differences in gut microbiota (from duodenum and
stool samples) between untreated patients with CeD following
an unrestricted diet and patients with CeD following GFD.
Although we could not find restoration in microbial dysbiosis,
we found that patients following a GFD have an overall higher
microbial diversity and an abundance of certain bacteria usually
related to health benefits such as Akkermasia (Derrien et al.,
2017) and a decrease in the presence of Enterobacteriaceae.

Future prospective studies will provide the “solution” to
which comes first, the chicken or the egg? That is, dysbiosis
led to the disease, or does the disease produce dysbiosis?
Current studies have a cross-sectional design and perform
descriptive association at a snapshot of time; CeD is the perfect
scenario for studying the implications of microbiota over the
pathophysiology of a disease, the trigger of the pathology (i.e.,
gluten) is traceable, and the genetic environment predisposing
to the disease is also knowledgeable.

Celiac disease diagnosis is challenging because the
symptoms are varied and non-specific. Most people with
CeD remain undiagnosed, and it takes an average of 12 years
to get the correct diagnosis (West et al., 2019). Active case
findings can help combat underdiagnosis by offering CeD tests
to people at higher risk of CeD. In this sense, using prediction
models to estimate the risk of having CeD based on symptoms
and risk factors is helpful; however, the performance of these
models is lower when using only clinical data (Elwenspoek
et al., 2022). The use of microbial markers isolated from stool
samples, besides being a non-invasive procedure, will help to
improve the predictive power of current models. On the other
hand, integrating clinical markers of mucosal integrity and
microbial markers could be a proper tool for follow-up of the
disease. Previous research has shown that the gut microbiota
of subgroups of patients with CeD with different clinical
manifestations varies, suggesting that gut microbiota play a
role in the persistence of symptoms even after adherence to
a GFD (Garcia-Mazcorro et al., 2018b). A combination of
clinical models and microbial markers—as identified in this
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research—for diagnosis and follow-up of the disease would
substantially improve current clinical practice.

Finally, there is a need to generate larger datasets and
properly apply machine learning (ML) that would help to
generate helpful and more universally applicable results.
Moreover, evaluating the usefulness of stool, oropharyngeal
exudates, and saliva as surrogate markers of the microbial state
of the duodenum for the diagnosis and management of patients
with CeD would be necessary. Last but not least, additional
research is required to determine the potential efficacy of gut
microbiota modulators such as probiotics and prebiotics as
adjuvant treatments for CeD based on the microbial biomarkers
linked to symptom persistence and disease pathogenesis.

Materials and methods

Literature search, identification, and
selection of relevant studies

We conducted a systematic and comprehensive literature
search of the studies from 2010 to August 2020, which carried
out metataxonomic sequencing of the 16S rRNA gene for
microbiomes of patients with CeD, including those on a GFD
as well as on an unrestricted diet. We searched on PubMed,
Google Scholar, and SCOPUS. The terms used for the search, the
automatic filters, and the statistical results are summarized in
Supplementary Table 1; Supplementary Figure 1 summarizes
the methodology used for the scoping review. The studies
retrieved with the previous strategy undergo manual curation
to exclude non–CeD-related studies and studies using non–
high-throughput 16S rRNA gene sequencing, which escaped the
automatic filters.

Of the total selected studies, those included in the merged-
data analysis met the following criteria: (a) Bacterial 16S
rRNA gene sequenced from total DNA using high-throughput
sequencing, (b) data must be available in fastq format in one of
the publicly accessible databases [NCBI Sequence Read Archive
(SRA) or EBI European Nucleotide Archive (ENA)], and (c)
metadata on the sequenced biological samples must be available
and must include tissue of origin, information on the type
of diet (with or without gluten), and clinical classification
(case or control).

Amplicon sequence variant detection
and taxonomic assignment

All data from the selected studies were available in the
European Nucleotide Archive (ENA) database. Raw 16S rRNA
gene sequencing data sets from each study were downloaded
from that database. The quality of the sequencing was examined
using FastQC v.11.9 software (Andrews, 2010), and the primers

used in the PCR amplification of hypervariable regions were
removed using the Cutadapt v.2.9 software (Martin, 2011).
For data obtained by paired-end sequencing, each pair of
reads was joined by overlapping assembling using the software
FLASH v.1.2.11 (Magoè and Salzberg, 2011); then, each study
was processed individually for the construction of the ASV
count table for each sample, using the software DADA2 v.1.15
(Callahan et al., 2016). Briefly, DADA2 was used for quality
filtering of the sequences, detecting exact ASVs, removing
chimeras, and finally, the taxonomic assignment of ASVs with
SILVA SSU v.138 database (Glöckner et al., 2017). The computer
code was developed with the R (R Core Team, 2013), and
“bash shell” programming environments for GNU/Linux. All
the workflow and the specific criteria for each step in the analysis
for each dataset are available on GitHub.1

Data merging, filtering, and
normalization

Two tables were obtained per study as a result of the
variant detection process. The first one with the abundance
of each variant (ASV-count table) and the second one, with
the taxonomic assignment of ASVs in six taxonomy ranks
(Kingdom, Phylum, Class, Order, Family, and Genus). Tables
were combined using the phyloseq_merge command. With
Phyloseq (McMurdie and Holmes, 2013) taxa_glom command,
taxa were agglomerated at the genus level to avoid ASV
duplication bias. All tables, along with raw and processed data
and metadata from this study, are available in FigShare.2

Statistical analysis

All the tests were carried out using the Phyloseq (McMurdie
and Holmes, 2013) and Vegan v.2.5.6 (Oksanen et al.,
2007) packages of the R programming environment. For the
representation of statistical significance in the graphs, the
following equivalences were used: p < “∗∗∗” - > 0.001, “∗∗” -
> 0.01, “∗” - > 0.05, “.” 0.1, 1. The bar graphs and the scatter
graphs were obtained in the R programming environment using
the ggplot2 package (Villanueva and Chen, 2019).

Estimation of the biological diversity
and composition of the microbiome

The Phyloseq v.1.3 package (McMurdie and Holmes, 2013)
from R v.3.6.3 (R Core Team, 2013) was used to estimate

1 https://github.com/juearcilaga/Assesing-microbiome-profiles-of-
celiac-disease-patients.git

2 https://figshare.com/projects/An_lisis_del_microbioma_en_
Enfermedad_Cel_aca/82547
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rarefaction curves for each sample. Rarefaction curves were
proper to determine the minimum sequencing depth for
reaching the saturation of observed species.

The diversity and richness of each sample were estimated
by Shannon, Simpson, and Chao1 indexes using the phyloseq
package. The Shannon and Simpson indexes were estimated
after normalizing the data using the Centered log-ratio
method in the Compositions package (van den Boogaart
and Tolosana-Delgado, 2008), while the Chao1 index was
estimated on the raw data. The normality of the data
was evaluated using the Shapiro–Wilk test. The Wilcoxon–
Mann–Whitney test was used to compare diversity means
between two groups and the Kruskal–Wallis test for more
than two groups. The homoscedasticity of the variances
was calculated using Levene’s test. Since the Shannon index
data did not meet the criteria of homoscedasticity or
normality, the data were adjusted to a normal distribution
by square root transformation and subsequently analyzed
with the Welch test.

Also, a principal coordinate analysis (PCoA) was performed
on weighted Unifrac distances to display whether the data
were grouped by any of the variables included in the
metadata (case/control and tissue sampled, 16S rRNA gene
region, age, gluten/gluten-free diet, and sequencing technology).
Before PCoA data analysis, taxa with less than five counts
in raw ASV-count tables or being present in just one
sample were discarded.

Differential abundance, association,
and linear discriminant analysis for the
discovery of microbial markers on
celiac disease

Data for each tissue was subsetted from raw ASV-count
tables and both data rarefaction and the Total Sum Scaling
(TSS) normalization were performed. The taxa present in less
than 10% of samples or having less than ten counts were
discarded. The CLR transformation was performed on raw
ASV-count tables before differential abundance analysis with
RNAseq methods, that is, DeSEq2 (Love et al., 2014) and
Correlation Analysis.

For the Linear Discriminant Analysis of Effect Size (LEfSe)
analysis, LEfSe Conda version 1.0.0 (Segata et al., 2011) was used
with an alpha cutoff of 0.05 for feature significance and an effect
size cutoff of 3. The difference in taxa abundances between cases
and controls for each sampled tissue was evaluated with DESeq2
software v.1.26.0 (Love et al., 2014). Differences with adjusted
p < 0.01 and Fold change < 3 were considered significant.
Association among the taxa at the genus level and CeD were
studied by Spearman-rank correlation analysis.

Inference of the microbiome
metabolic potential

The software PICRUSt2 (Douglas et al., 2020), which
infers the genes encoded in studying the taxa genomes, was
used to predict the microbial communities’ functional and
metabolic capacities present in each sample. The results
consist of tables of genes, metabolic pathways, and enzyme
abundance in each sample. Data were normalized by using
the CLR transformation. The differential abundance of
metabolic pathways and genes between cases and controls was
estimated using DESeq2 software v.1.26.0 (Love et al., 2014).
Subsequently, a targeted search for differentially abundant
genes whose impact on the CeD pathogenesis is of interest
was carried out.

Random forest

Relative abundances were first filtered to remove markers
with low overall abundance and no variance, log-transformed
(after adding a pseudo-count of 1E-05), and finally standardized
as z-scores. Data were split into training and test sets with 75:25
proportion. Random Forest models were built using the caret
R package (version 6.0.90) (Kuhn, 2008). Six different models
were trained: pooling stool and duodenum samples (lower GIT),
stool, and duodenum, including gluten ingest information and
without gluten ingest information. 16S rRNA hypervariable
region information was decoded as a binary feature. Models
were trained by 10 times repeated 10-fold cross-validation
(balancing class proportions across folds) while performing a
grid search for the mtry hyperparameter and ntree = 500. The
impurity decrease at each split was calculated via the Gini index
criterion. The optimal combination of hyperparameters was
chosen based on the model’s accuracy.

Finally, we predicted labels on the test data using the six
chosen models, we plotted their receiver operating characteristic
curves (ROC) and calculated the area under the curve (AUC)
as a quality measure. ROC curves and their corresponding
AUCs were calculated using the MLeval package in R (version
0.3). Finally, feature importance was estimated with the varImp
function from caret, all features were included to obtain the
importance of each feature, from which they were sorted.

Model validation and biomarker
identification

The stool model based exclusively on metagenomic data was
chosen for validation and biomarker search. We used the top 20-
ranked features from the stool model with the hyperparameters
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fixed to mtry = 3 and ntree = 500. This model was also used
to predict metabolic status in an unpublished cohort of 62
healthy patients, composed of n = 60 healthy controls and n = 2
patients with CeD.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://figshare.com/projects/An_lisis_
del_microbioma_en_Enfermedad_Cel_aca/82547.

Author contributions

LM-Z and EC: conceptualization and funding acquisition.
JA-G and LM-Z: data curation, methodology, formal analysis,
and writing—original draft preparation. VL-K and AR:
resources. EC, VL-K, and AR: writing—critical review and
editing. All authors have read and agreed to the published
version of the manuscript.

Funding

This study has been funded by a Research Grant 2020 of
the European Society of Clinical Microbiology and Infectious
Diseases (ESCMID) to LM-Z. LM-Z was supported by Juan
de la Cierva Grant (IJC2019-042188-I) from the Spanish State
Research Agency of the Spanish Ministerio de Ciencia e
Innovación y Ministerio de Universidades. The funders had no
role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Acknowledgments

JA-G acknowledges Sapiencia-Enlaza Mundos (Municipio
de Medellin) for financial support during Master’s Degree
studies. We thank scientists for sharing their data sets in
their publications. Part of this publication is based upon
work from COST Action COST CA18131/ML4Microbiome
supported by COST (European Cooperation in Science and
Technology).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2022.956119/full#supplementary-material

References

Al-Toma, A., Volta, U., Auricchio, R., Castillejo, G., Sanders, D. S., Cellier, C.,
et al. (2019). European Society for the Study of Coeliac Disease (ESsCD) guideline
for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J.
7, 583–613. doi: 10.1177/2050640619844125

Amoureux, M.-C., Rajapakse, N., Stipkovits, L., and Szathmary, S. (2005).
Peptidoglycan and bacterial DNA induce inflammation and coagulation markers
in synergy. Mediators Inflamm. 2005, 118–120. doi: 10.1155/MI.2005.118

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence
data. Cambridge: Babraham Institute.

Belkaid, Y., and Hand, T. W. (2014). Role of the microbiota in immunity and
inflammation. Cell 157, 121–141. doi: 10.1016/j.cell.2014.03.011

Bodkhe, R., Shetty, S. A., Dhotre, D. P., Verma, A. K., Bhatia, K., Mishra, A.,
et al. (2019). Comparison of small gut and whole gut microbiota of first-degree
relatives with adult celiac disease patients and controls. Front. Microbiol. 10:164.
doi: 10.3389/fmicb.2019.00164

Bonder, M. J., Tigchelaar, E. F., Cai, X., Trynka, G., Cenit, M. C., Hrdlickova,
B., et al. (2016). The influence of a short-term gluten-free diet on the human gut
microbiome. Genome Med. 8:45.

Boutin, S., Depner, M., Stahl, M., Graeber, S. Y., Dittrich, S. A., Legatzki, A., et al.
(2017). Comparison of oropharyngeal microbiota from children with asthma and
cystic fibrosis. Mediators Inflamm. 2017:5047403. doi: 10.1155/2017/5047403

Cagno, R., Di, Angelis, M., De, Pasquale, I., De, et al. (2011). Duodenal
and faecal microbiota of celiac children: molecular, phenotype and metabolome
characterization. BMC Microbiol. 11:219. doi: 10.1186/1471-2180-11-219

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and
Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina
amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

Cenit, M. C., Codoner-Franch, P., and Sanz, Y. (2016). Gut microbiota and
risk of developing celiac disease. J. Clin. Gastroenterol. 50(Suppl. 2), S148–S152.
doi: 10.1097/MCG.0000000000000688

Chander, A. M., Yadav, H., Jain, S., Bhadada, S. K., and Dhawan, D. K. (2018).
Cross-Talk between gluten, intestinal microbiota and intestinal mucosa in celiac
disease: recent advances and basis of autoimmunity. Front. Microbiol. 9:2597.
doi: 10.3389/fmicb.2018.02597

Chauhan, P., and Saha, B. (2018). Metabolic regulation of infection and
inflammation. Cytokine 112, 1–11. doi: 10.1016/j.cyto.2018.11.016

Frontiers in Microbiology 15 frontiersin.org

https://doi.org/10.3389/fmicb.2022.956119
https://figshare.com/projects/An_lisis_del_microbioma_en_Enfermedad_Cel_aca/82547
https://figshare.com/projects/An_lisis_del_microbioma_en_Enfermedad_Cel_aca/82547
https://www.frontiersin.org/articles/10.3389/fmicb.2022.956119/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2022.956119/full#supplementary-material
https://doi.org/10.1177/2050640619844125
https://doi.org/10.1155/MI.2005.118
https://doi.org/10.1016/j.cell.2014.03.011
https://doi.org/10.3389/fmicb.2019.00164
https://doi.org/10.1155/2017/5047403
https://doi.org/10.1186/1471-2180-11-219
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1097/MCG.0000000000000688
https://doi.org/10.3389/fmicb.2018.02597
https://doi.org/10.1016/j.cyto.2018.11.016
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-956119 September 7, 2022 Time: 14:32 # 16

Arcila-Galvis et al. 10.3389/fmicb.2022.956119

Cheng, J., Kalliomaki, M., Heilig, H. G., Palva, A., Lahteenoja, H., de Vos,
W. M., et al. (2013). Duodenal microbiota composition and mucosal homeostasis
in pediatric celiac disease. BMC Gastroenterol. 13:113. doi: 10.1186/1471-230X-
13-113

Chibbar, R., and Dieleman, L. A. (2019). The gut microbiota in celiac disease
and probiotics. Nutrients 11:2375. doi: 10.3390/nu11102375

De Palma, G., Capilla, A., Nadal, I., Nova, E., Pozo, T., Varea, V., et al. (2010).
Interplay between human leukocyte antigen genes and the microbial colonization
process of the newborn intestine. Curr. Issues Mol. Biol. 12, 1–10.

Derrien, M., Belzer, C., and de Vos, W. M. (2017). Akkermansia muciniphila
and its role in regulating host functions. Microb. Pathog. 106, 171–181. doi: 10.
1016/j.micpath.2016.02.005

Dieli-Crimi, R., Cénit, M. C., and Núñez, C. (2015). The genetics of celiac
disease: a comprehensive review of clinical implications. J. Autoimmun. 64, 26–41.
doi: 10.1016/j.jaut.2015.07.003

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor,
C. M., et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat.
Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-546

Eisenberg, T., Glaeser, S. P., Blom, J., and Kämpfer, P. (2018). Leptotrichiaceae.
Hoboken, NJ: John Wiley & Sons, Inc.

Elwenspoek, M. M. C., O’Donnell, R., Jackson, J., Everitt, H., Gillett, P., Hay,
A. D., et al. (2022). Development and external validation of a clinical prediction
model to aid coeliac disease diagnosis in primary care: an observational study.
EClinicalMedicine 46:101376. doi: 10.1016/j.eclinm.2022.101376

Francavilla, R., Ercolini, D., Piccolo, M., Vannini, L., Siragusa, S., De Filippis, F.,
et al. (2014). Salivary microbiota and metabolome associated with celiac disease.
Appl. Environ. Microbiol. 80, 3416–3425.

Garcia-Mazcorro, J. F., Rivera-Gutierrez, X., Cobos-Quevedo, O. D. J., Grube-
Pagola, P., Meixueiro-Daza, A., Hernandez-Flores, K., et al. (2018a). First insights
into the gut microbiota of mexican patients with celiac disease and non-celiac
gluten sensitivity. Nutrients 10:1641. doi: 10.3390/nu10111641

Garcia-Mazcorro, J. F., Noratto, G., and Remes-Troche, J. M. (2018b). The effect
of gluten-free diet on health and the gut microbiota cannot be extrapolated from
one population to others. Nutrients 10:1421.

García-Santisteban, I., Romero-Garmendia, I., Cilleros-Portet, A., Bilbao, J. R.,
and Fernandez-Jimenez, N. (2021). Celiac disease susceptibility: the genome and
beyond. Int. Rev. Cell Mol. Biol. 358, 1–45. doi: 10.1016/bs.ircmb.2020.10.002

Giacomin, P., Zakrzewski, M., Jenkins, T. P., Su, X., Al-Hallaf, R., Croese, J., et al.
(2016). Changes in duodenal tissue-associated microbiota following hookworm
infection and consecutive gluten challenges in humans with coeliac disease. Sci.
Rep. 6:36797.

Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., et al.
(2017). 25 years of serving the community with ribosomal RNA gene reference
databases and tools. J. Biotechnol. 261, 169–176. doi: 10.1016/j.jbiotec.2017.06.
1198

Gnodi, E., Meneveri, R., and Barisani, D. (2022). Celiac disease: from genetics to
epigenetics. World J. Gastroenterol. 28, 449–463. doi: 10.3748/wjg.v28.i4.449

Hagenfeld, D., Koch, R., Jünemann, S., Prior, K., Harks, I., Eickholz, P., et al.
(2018). Do we treat our patients or rather periodontal microbes with adjunctive
antibiotics in periodontal therapy? a 16S rDNA microbial community analysis.
PLoS One 13:e0195534. doi: 10.1371/journal.pone.0195534

Herrán, A. R., Pérez-Andrés, J., Caminero, A., Nistal, E., Vivas, S., Ruiz, et al.
(2017). Gluten-degrading bacteria are present in the human small intestine of
healthy volunteers and celiac patients. Res. Microbiol. 168, 673–684. doi: 10.1016/
j.resmic.2017.04.008

Iaffaldano, L., Granata, I., Pagliuca, C., Esposito, M. V., Casaburi, G., Salerno,
G., et al. (2018). Oropharyngeal microbiome evaluation highlights neisseria
abundance in active celiac patients. Sci. Rep. 8:11047.

Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J.,
et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16,
410–422. doi: 10.1038/s41579-018-0029-29

Kõiv, V., and Tenson, T. (2021). Gluten-degrading bacteria: availability and
applications. Appl. Microbiol. Biotechnol. 105, 3045–3059. doi: 10.1007/s00253-
021-11263-11265

Krishnareddy, S. (2019). The microbiome in celiac disease. Gastroenterol. Clin.
North Am. 48, 115–126. doi: 10.1016/J.GTC.2018.09.008

Kuhn, M. (2008). Building predictive models in R using the caret package. J. Stat.
Softw. 28, 1–26. doi: 10.18637/jss.v028.i05

Lammers, K. M., Lu, R., Brownley, J., Lu, B., Gerard, C., Thomas, K., et al.
(2008). Gliadin induces an increase in intestinal permeability and zonulin release

by binding to the chemokine receptor CXCR3. Gastroenterology 135, 194–204.e3.
doi: 10.1053/j.gastro.2008.03.023.

Lemon, K. P., Klepac-Ceraj, V., Schiffer, H. K., Brodie, E. L., Lynch, S. V., and
Kolter, R. (2010). Comparative analyses of the bacterial microbiota of the human
nostril and oropharynx. mBio 1:e00129-110. doi: 10.1128/mBio.00129-110

Leonard, M. M., Cureton, P., and Fasano, A. (2017). Indications and use of
the gluten contamination elimination diet for patients with non-responsive celiac
disease. Nutrients 9:1129. doi: 10.3390/nu9101129

Leonard, M. M., Karathia, H., Pujolassos, M., Troisi, J., Valitutti, F.,
Subramanian, P., et al. (2020). Multi-omics analysis reveals the influence
of genetic and environmental risk factors on developing gut microbiota in
infants at risk of celiac disease. Microbiome 8:130. doi: 10.1186/s40168-020-00
906-w

Leonard, M. M., Valitutti, F., Karathia, H., Pujolassos, M., Kenyon, V.,
Fanelli, B., et al. (2021). Microbiome signatures of progression toward celiac
disease onset in at-risk children in a longitudinal prospective cohort study.
Proc. Natl. Acad. Sci. U S A. 118:e2020322118. doi: 10.1073/pnas.202032
2118

Lerner, A., O’Bryan, T., and Matthias, T. (2019). Navigating the gluten-free
boom: the dark side of gluten free diet. Front. Pediatr. 7:414. doi: 10.3389/fped.
2019.00414

Levy, M., Blacher, E., and Elinav, E. (2017). Microbiome, metabolites and host
immunity. Curr. Opin. Microbiol. 35, 8–15. doi: 10.1016/j.mib.2016.10.003

Lieberman, D., Shleyfer, E., Castel, H., Terry, A., Harman-Boehm, I., Delgado,
J., et al. (2006). Nasopharyngeal versus oropharyngeal sampling for isolation of
potential respiratory pathogens in adults. J. Clin. Microbiol. 44, 525–528. doi:
10.1128/JCM.44.2.525-528.2006

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-558

Magoè, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short
reads to improve genome assemblies. Bioinformatics 27, 2957–2963. doi: 10.1093/
bioinformatics/btr507

Marcos-Zambrano, L. J., Karaduzovic-Hadziabdic, K., Loncar Turukalo, T.,
Przymus, P., Trajkovik, V., Aasmets, O., et al. (2021). Applications of machine
learning in human microbiome studies: a review on feature selection, biomarker
identification, disease prediction and treatment. Front. Microbiol. 12:634511. doi:
10.3389/fmicb.2021.634511

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17:10.

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One 8:e61217.
doi: 10.1371/journal.pone.0061217

Melini, V., and Melini, F. (2019). Gluten-Free diet: gaps and needs for a healthier
diet. Nutrients 11:170. doi: 10.3390/nu11010170

Moreno-Indias, I., Lahti, L., Nedyalkova, M., Elbere, I., Roshchupkin, G.,
Adilovic, M., et al. (2021). Statistical and machine learning techniques in human
microbiome studies: contemporary challenges and solutions. Front. Microbiol.
12:635781. doi: 10.3389/fmicb.2021.635781

Oksanen, F. J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin,
P. R., et al. (2017). Vegan: Community ecology package. R package Version 2.4-3.
Available online at: https://CRAN.R-project.org/package=vegan

Olivares, M., Walker, A. W., Capilla, A., Benitez-Paez, A., Palau, F., Parkhill, J.,
et al. (2018). Gut microbiota trajectory in early life may predict development of
celiac disease. Microbiome 6:36. doi: 10.1186/s40168-018-0415-416

Panelli, S., Capelli, E., Lupo, G. F. D., Schiepatti, A., Betti, E., Sauta, E.,
et al. (2020). Comparative study of salivary, duodenal, and fecal microbiota
composition across adult celiac disease. J. Clin. Med. 9:1109. doi: 10.3390/
jcm9041109

Pellegrini, S., Sordi, V., Bolla, A. M., Saita, D., Ferrarese, R., Canducci, F.,
et al. (2017). Duodenal mucosa of patients with type 1 diabetes shows distinctive
inflammatory profile and microbiota. J. Clin. Endocrinol. Metab. 102, 1468–1477.
doi: 10.1210/jc.2016-3222

Quagliariello, A., Aloisio, I., Cionci, N. B., Luiselli, D., D’Auria, G., Martinez-
Priego, L., et al. (2016). Effect of bifidobacterium breve on the intestinal microbiota
of coeliac children on a gluten free diet: A pilot study. Nutrients 8:660. doi:
10.3390/nu8100660

R Core Team (2013). R: A Language and Environment for Statistical Computing.
Vienna: R Core Team.

Rintala, A., Riikonen, I., Toivonen, A., Pietila, S., Munukka, E., Pursiheimo, J. P.,
et al. (2018). Early fecal microbiota composition in children who later develop

Frontiers in Microbiology 16 frontiersin.org

https://doi.org/10.3389/fmicb.2022.956119
https://doi.org/10.1186/1471-230X-13-113
https://doi.org/10.1186/1471-230X-13-113
https://doi.org/10.3390/nu11102375
https://doi.org/10.1016/j.micpath.2016.02.005
https://doi.org/10.1016/j.micpath.2016.02.005
https://doi.org/10.1016/j.jaut.2015.07.003
https://doi.org/10.1038/s41587-020-0548-546
https://doi.org/10.1016/j.eclinm.2022.101376
https://doi.org/10.3390/nu10111641
https://doi.org/10.1016/bs.ircmb.2020.10.002
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.3748/wjg.v28.i4.449
https://doi.org/10.1371/journal.pone.0195534
https://doi.org/10.1016/j.resmic.2017.04.008
https://doi.org/10.1016/j.resmic.2017.04.008
https://doi.org/10.1038/s41579-018-0029-29
https://doi.org/10.1007/s00253-021-11263-11265
https://doi.org/10.1007/s00253-021-11263-11265
https://doi.org/10.1016/J.GTC.2018.09.008
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1053/j.gastro.2008.03.023.
https://doi.org/10.1128/mBio.00129-110
https://doi.org/10.3390/nu9101129
https://doi.org/10.1186/s40168-020-00906-w
https://doi.org/10.1186/s40168-020-00906-w
https://doi.org/10.1073/pnas.2020322118
https://doi.org/10.1073/pnas.2020322118
https://doi.org/10.3389/fped.2019.00414
https://doi.org/10.3389/fped.2019.00414
https://doi.org/10.1016/j.mib.2016.10.003
https://doi.org/10.1128/JCM.44.2.525-528.2006
https://doi.org/10.1128/JCM.44.2.525-528.2006
https://doi.org/10.1186/s13059-014-0550-558
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.3390/nu11010170
https://doi.org/10.3389/fmicb.2021.635781
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1186/s40168-018-0415-416
https://doi.org/10.3390/jcm9041109
https://doi.org/10.3390/jcm9041109
https://doi.org/10.1210/jc.2016-3222
https://doi.org/10.3390/nu8100660
https://doi.org/10.3390/nu8100660
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-956119 September 7, 2022 Time: 14:32 # 17

Arcila-Galvis et al. 10.3389/fmicb.2022.956119

celiac disease and associated autoimmunity. Scand. J. Gastroenterol. 53, 403–409.
doi: 10.1080/00365521.2018.1444788

Rosier, B. T., Moya-Gonzalvez, E. M., Corell-Escuin, P., and Mira, A. (2020).
Isolation and characterization of nitrate-reducing bacteria as potential probiotics
for oral and systemic health. Front. Microbiol. 11:555465. doi: 10.3389/fmicb.2020.
555465

Salguero, M. V., Al-Obaide, M. A. I., Singh, R., Siepmann, T., and Vasylyeva,
T. L. (2019). Dysbiosis of gram-negative gut microbiota and the associated serum
lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with
chronic kidney disease. Exp. Ther. Med. 18, 3461–3469. doi: 10.3892/etm.2019.
7943

Sanz, Y. (2015). Microbiome and gluten. Ann. Nutr. Metab. 67(Suppl. 2), 28–41.
doi: 10.1159/000440991

Schumann, M., Siegmund, B., Schulzke, J. D., and Fromm, M. (2017). Celiac
disease: role of the epithelial barrier. Cell Mol. Gastroenterol. Hepatol. 3, 150–162.
doi: 10.1016/j.jcmgh.2016.12.006

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60.
doi: 10.1186/gb-2011-12-6-r60

Sellitto, M., Bai, G., Serena, G., Fricke, W. F., Sturgeon, C., Gajer, P., et al.
(2012). Proof of concept of microbiome-metabolome analysis and delayed gluten
exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One
7:e33387. doi: 10.1371/journal.pone.0033387

Sjöberg, V., Sandström, O., Hedberg, M., Hammarström, S., Hernell, O., and
Hammarström, M.-L. (2013). Intestinal T-cell responses in celiac disease - impact
of celiac disease associated bacteria. PLoS One 8:e53414. doi: 10.1371/journal.pone.
0053414

Sollid, L. M., and Lundin, K. E. A. (2020). “Celiac disease,” in The autoimmune
diseases, eds N. R. Rose and I. R. Mackay (Cambridge, MA: Academic Press),
849–869.

Ternes, D., Karta, J., Tsenkova, M., Wilmes, P., Haan, S., and Letellier, E. (2020).
Microbiome in colorectal cancer: how to get from meta-omics to mechanism?
Trends Microbiol. 28, 401–423. doi: 10.1016/j.tim.2020.01.001

Tian, N., Faller, L., Leffler, D. A., Kelly, C. P., Hansen, J., Bosch, J. A., et al. (2017).
Salivary gluten degradation and oral microbial profiles in healthy individuals and
celiac disease patients. Appl. Environ. Microbiol. 83, e3330–e3316. doi: 10.1128/
AEM.03330-16

Valitutti, F., Cucchiara, S., and Fasano, A. (2019). Celiac disease and the
microbiome. Nutrients 11:2403. doi: 10.3390/nu11102403

van den Boogaart, K. G., and Tolosana-Delgado, R. (2008). Compositions: A
unified R package to analyze compositional data. Comput. Geosci. 34, 320–338.

Verdu, E. F., Galipeau, H. J., and Jabri, B. (2015). Novel players in coeliac disease
pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12,
497–506. doi: 10.1038/nrgastro.2015.90

Villanueva, R. A. M., and Chen, Z. J. (2019). ggplot2: elegant graphics for
data analysis (2nd ed.). Measurement: Interdisciplinary Res. Perspect. 17, 160–167.
doi: 10.1080/15366367.2019.1565254

West, J., Otete, H., Sultan, A. A., and Crooks, C. J. (2019). Changes in testing for
and incidence of celiac disease in the united kingdom: a population-based cohort
study. Epidemiology 30, e23–e24. doi: 10.1097/EDE.0000000000001006

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton, M.,
Baak, A., et al. (2016). The FAIR guiding principles for scientific data management
and stewardship. Sci. Data 3:160018. doi: 10.1038/sdata.2016.18

Withoff, S., Li, Y., Jonkers, I., and Wijmenga, C. (2016). Understanding celiac
disease by genomics. Trends Genet. 32, 295–308. doi: 10.1016/j.tig.2016.02.003

Zhao, C., Dong, H., Zhang, Y., and Li, Y. (2019). Discovery of potential genes
contributing to the biosynthesis of short-chain fatty acids and lactate in gut
microbiota from systematic investigation in E. coli. NPJ Biofilms Microbiomes 5:19.
doi: 10.1038/s41522-019-0092-97

Frontiers in Microbiology 17 frontiersin.org

https://doi.org/10.3389/fmicb.2022.956119
https://doi.org/10.1080/00365521.2018.1444788
https://doi.org/10.3389/fmicb.2020.555465
https://doi.org/10.3389/fmicb.2020.555465
https://doi.org/10.3892/etm.2019.7943
https://doi.org/10.3892/etm.2019.7943
https://doi.org/10.1159/000440991
https://doi.org/10.1016/j.jcmgh.2016.12.006
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1371/journal.pone.0033387
https://doi.org/10.1371/journal.pone.0053414
https://doi.org/10.1371/journal.pone.0053414
https://doi.org/10.1016/j.tim.2020.01.001
https://doi.org/10.1128/AEM.03330-16
https://doi.org/10.1128/AEM.03330-16
https://doi.org/10.3390/nu11102403
https://doi.org/10.1038/nrgastro.2015.90
https://doi.org/10.1080/15366367.2019.1565254
https://doi.org/10.1097/EDE.0000000000001006
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.tig.2016.02.003
https://doi.org/10.1038/s41522-019-0092-97
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

	A comprehensive map of microbial biomarkers along the gastrointestinal tract for celiac disease patients
	Introduction
	Results
	Diversity and microbial composition
	Differential analysis of the microbiota, correlation, and biomarker finding
	Microbial changes associated with duodenal microbiota in celiac disease
	Microbial changes associated with stool microbiota in celiac disease
	Microbial changes associated with pharynx microbiota in celiac disease

	Prediction of the metabolic functions profiles in bacterial communities
	Prediction of genes and genes coding for prolyl peptidase enzymes
	Use of the random forest machine learning model to discriminate sample groups

	Discussion
	Materials and methods
	Literature search, identification, and selection of relevant studies
	Amplicon sequence variant detection and taxonomic assignment
	Data merging, filtering, and normalization
	Statistical analysis
	Estimation of the biological diversity and composition of the microbiome
	Differential abundance, association, and linear discriminant analysis for the discovery of microbial markers on celiac disease
	Inference of the microbiome metabolic potential
	Random forest
	Model validation and biomarker identification

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


