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Common understanding suggests that the normal function of a “healthy” immune

system safe-guards and protects against the development of malignancies, whereas

a genetically impaired one might increase the likelihood of their manifestation. This

view is primarily based on and apparently supported by an increased incidence of

such diseases in patients with specific forms of immunodeficiencies that are caused

by high penetrant gene defects. As I will review and discuss herein, such constellations

merely represent the tip of an iceberg. The overall situation is by far more varied and

complex, especially if one takes into account the growing difficulties to define what

actually constitutes an immunodeficiency and what defines a cancer predisposition.

The enormous advances in genome sequencing, in bioinformatic analyses and in the

functional in vitro and in vivo assessment of novel findings together with the availability

of large databases provide us with a wealth of information that steadily increases the

number of sequence variants that concur with clinically more or less recognizable

immunological problems and their consequences. Since many of the newly identified

hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to

ascertain. The analyses of large data sets, on the other hand, continuously supply us with

low penetrant variants that, at least in statistical terms, are clearly tumor predisposing,

although their specific relevance for the respective carriers still needs to be carefully

assessed on an individual basis. Finally, defects and variants that affect the same gene

families and pathways in both a constitutional and somatic setting underscore the fact

that immunodeficiencies and cancer predisposition can be viewed as two closely related

errors of development. Depending on the particular genetic and/or environmental context

as well as the respective stage of development, the same changes can have either a

neutral, predisposing and, in some instances, even a protective effect. To understand

the interaction between the immune system, be it “normal” or “deficient” and tumor

predisposition and development on a systemic level, one therefore needs to focus on

the structure and dynamic functional organization of the entire immune system rather

than on its isolated individual components alone.
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INTRODUCTION

The neoplastic transformation of cells and their subsequent
successful clonal expansion and progression into clinically
apparent hematologic malignancies and solid tumors is a
complex multifactorial process. On the one hand, this process
requires changes in the respective cells’ genetic program that
modify their metabolism and performance and consequently
alter their normal differentiation, replicative, and survival
capacity. On the other hand, these cells have to learn to adapt
themselves and to exploit external deterministic physiological
stimuli as well as to flexibly react to a plethora of stochastic
environmental challenges (1, 2). This, in turn, defines their
capability to achieve successful interactions with and survival
strategies within their normal surrounding tissue. With its
interactive network of cells, humoral factors, and cytokines, the
immune system plays a fundamental role in the recognition
of and protection against any internal or external threads, be
it abnormal cells, foreign tissues or infections agents. Inborn
genetic defects or dysfunctions of the one or the other immune
system components may thus unsettle the intricate physiological
balance and maintenance of a body’s functional homeostasis and
thereby diminish its preventive capability or even promote the
formation of neoplastic diseases in a proactive manner.

The recent methodological advances in deciphering the
composition and structure of the human genome allow us
now to identify virtually any DNA sequence alterations in a
hitherto unimaginable fast and detailed manner. Various such
technologies have in the meantime become invaluable diagnostic
mutation screening tools that help to identify clear-cut disease-
associated genetic defects in inborn errors of the immune
system but also more elusive variants that may participate in
the predisposition to malignant diseases in children. These
developments are addressed in a large number of original
publications as well as in many excellent reviews of these subjects
(3–16). Rather than reiterating what has already extensively
been written about, I intend to provide a more conceptional
framework of this subject and focus my attention on often
neglected and less well-appreciated fundamental facts and
phenomena, which I consider particular relevant for an in-
depth appreciation and understanding of this topic and which
I will supplement with some specific examples that illustrate the
developments and progress in this field.

To begin with, we first need to (re)define the current view and
understanding of “primary immunodeficiency” as well “genetic
predisposition and susceptibility.”

PRIMARY IMMUNODEFICIENCY
SYNDROMES (PID)

The immune system is composed of highly specialized cells,
tissues, organs and soluble factors that interact in a complex
way to ensure an organism’s immune defense. According to
the current definition, PID are thus a group of diseases, which
are caused by heritable DNA sequence alterations that impair
the quantitative or qualitative function of cellular or humoral

components of the adaptive or innate immune system (17). The
spectrum of their clinical, often intimately interrelated symptoms
includes developmental disorders, autoinflammation, chronic
inflammation, autoimmunity, neoplasms as well as serious,
recurrent, or unusual infections (18, 19). Initially, the diagnosis
of these conditions was based on abnormal laboratory parameters
and clinical problems, in particular recurrent, severe or unusual
infections that in certain groups of patients occasionally
concurred with familial clustering, syndromic features, radiation
sensitivity and also a certain propensity to develop particular
types of malignancies. With the advent of in vitro testing
and immunophenotyping technologies, it became possible to
better define and differentiate certain categories as well as
to characterize even subtle cellular and humoral functional
deviances already to a certain extent. In the early days of the
molecular genetic era, the respective responsible genes were then
identified in cases with highly penetrant genetic traits, which
instigated a first, albeit restricted diagnostic mutation screening.
With the introduction of more sophisticated sequencing
technologies, the discovery of causative genetic defects increased
steadily in parallel with the refined dissection, delineation, and
definition of such immunodeficiency syndromes. The recent
2017 update of the “Primary Immunodeficiency Committee”
of the “International Union of Immunological Societies” thus
recognizes 344 genetic defects that define 354 distinct disorders of
immunity in nine categories (20, 21). Some of these monogenetic
disorders are extremely rare and were so far identified in single
families only.

This compilation together with the commonly unconsidered
use of the term PID leaves the impression that one indeed
knows what the term PID stands for. It is therefore intriguing
to note and especially important to point out that there is
actually no clear consensus about its definition (22). The reason
for this now newly flaring-up debate is the recognition that
the perception of immunodeficiency has so far clearly focused
only on the most obvious and clinically striking disorders in
both adaptive and innate immunity that affect the lympho- and
hematopoietic system. With the increasing appreciation that also
non-hematopoietic cells and tissues participate in a significant
manner in the immune defense this view is currently changing
and necessitates an expansion of this concept. For instance,
keratinocytes, endothelial cells, and fibroblast secrete as much
and as many cytokines as hematopoietic cells do and can thus
use their intrinsic pathways for protection against infectious
agents also in a similar fashion. Another example are neurons
and oligodendrocytes, which are similar essential and sufficient
guardians against herpes simplex virus I and probably also other
infection agents (22).

Another development that one has to consider in this context
are the results that derive from the increasingly sophisticated
diagnostic work-up of suspicious cases with technologies that
enable nowadays the recognition of even clinically not readily
apparent quantitative and qualitative deviations of particular
cellular and humoral immune system components. As can
be appreciated already in a normal setting, such differences
are commonly due to and thus correlate with variations
on the sequence level, either in form of single nucleotide
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polymorphisms/(SNP) alone or in form of definable haplotypes,
which can make it more and more difficult to define a
physiological norm and, under particular settings, a clear disease-
relevant pathological state (23–32). One of the best documented
and therefore most instructive example is the context-dependent
implications of the highly variable serum levels of the mannan-
binding lectin (MBL), the apparently most common deficiency
of a humoral component of the innate immune system (33).
The respective gene contains 87 different polymorphic sites with
a multitude of possible combinations, of which seven common
haplotypes stand out. These haplotypes determine the serum
levels as well as the configuration and function of the encoded
proteins in a predictable manner, although the possible effects
are co-determined by the sex and age of the respective carrier,
hormonal changes and immune system activation. Moreover,
the frequency of the diverse haplotypes varies world-wide in
an ethnicity specific manner. Thus, although the magnitude
of particular MBL protein levels are clearly recognizable and
determined by genetic factors, the ensuing effects, whether a low
or high level becomes detrimental or beneficial or whether it
remains irrelevant, are strictly context-dependent and therefore
difficult to predict or interpret in a given individual.

Based on an estimate that ∼5% of all genes participate in one
or the other way in host defense and immune tolerance, it was
predicted that with the new sequencing technologies up to 3,000
PIDs will be identified by the year 2021. Even if one considers
only a still monogenic scenario with only two types of alleles
per locus (i.e., heterozygous vs. homozygous, loss-of function vs.
gain-of-function, hypomorphic vs. amorphic as well as various
other variations), it is hardly imaginable that one will be able
to functionally evaluate and analyze the magnitude of all the
possible outcomes in a reasonable manner to make some sense
of the ensuing (patho)physiological effects even in an perhaps
otherwise well-defined setting (22, 34).

In the end, these reflections leave us with the question how one
actually will define primary immunodeficiencies in the future.
When, to which extent and in which form do they need to
manifest themselves clinically? Will it be sufficient to just view
them as pure monogenic disorders or does one eventually also
need to consider the contribution of modifying gene, signaling
pathway, and cellular networks in a much stronger way?

GENETIC PREDISPOSITION AND
SUSCEPTIBILITY

The concept of genetic predisposition and susceptibility,
which so far was also based primarily on the clinical
perception of disease and inheritance patterns, experiences
nowadays a similar reinterpretation and paradigm shift as
the one of immunodeficiency. The emergence and continuous
improvement of fine-scale and cost-efficient targeted, whole
exome and whole genome, methylation as well as RNA
sequencing approaches, increase the possibilities to investigate
the genetic background of heritable and acquired diseases in
a previously unprecedented manner (6, 10). Not only has
it become much easier to screen all the eligible genes of

already well-recognized conditions for causative mutations, it
has also become much simpler to identify novel sequence
abnormalities in rare, unusual, or merely suspected cases of
immunodeficiencies and cancer predisposition. Thus, the special
choice of the appropriate mode to search for and ascertain such
genetic factors remains nowadays a matter of intention, clinical
opportunities and individual demands that, in particular, is based
on patient/family-relevant, gene-related, disease-associated, or
population-based aspects (30). In a clinical setting, the direct
patient-orientated approach is definitely the most important one.
The ascertainment of an inborn genetic cause of a particular
disease requires not only its appropriate work-up with the best-
fittedmutation screeningmethod but also the careful justification
of its significance through the assessment of medical records
and family history as well as the clinical and laboratory data
of an affected patient (7, 13, 14, 34–47). Especially in those
cases in which a cancer-prone condition is recognized already
before the onset of a malignant disease, securing the specific
genetic cause is essential to guide the necessary clinical measures,
such as an appropriate treatment and surveillance program
together with a suitable genetic counseling (7, 13, 14, 34–47).
However, in many instances a potential predisposing germ-line
alteration may only be suspected and searched for at the time
a malignant disease is diagnosed. Especially if one screens the
neoplastic tissue for disease-specific diagnostic alterations, one
cannot avoid coming across inborn genetic errors, not only
those in already known genes but occasionally also in novel
ones. Distinguishing somatic from inherited defects in tumor
tissue alone may turn out quite difficult because both types often
affect the same genes, a fact that necessitates the verification of
the inborn nature of any such changes by analyzing germ line
material in addition. Based on such experiences, it is therefore
becoming practice to screen for underlying germ-line defects in
a more systematic fashion in form of so called “trio analyses,”
which in addition to a patient’s tumor and germ line DNA also
requires the parental ones for comparison (4, 13, 34, 35). An
increasing number of publications confirm that this approach
is particular rewarding, not only for the sake of the patient and
her family but also for scientific reasons. In case a particular
gene defect is not already clearly indicative of a specific type of
predisposing condition, it may be difficult or virtually impossible
to decide whether concomitant immune system derangements
at diagnosis are actually the cause or the effect of the respective
disease. As I will point out later, more subtle predisposing gene
alterations that merely modify the function of a gene, such as
single nucleotid polymorphisms (SNPs), may not even exert
any easily recognizable effects prior to onset of the malignant
disease. Predisposing SNPs were originally discovered by large-
scale genome wide association studies (GWAS) in regions of
the genome, which are linked with particular disease traits. The
biological relevance and functional consequences of some of
these variants has in the meantime already been established
and confirmed with appropriate experiments and test systems
(23, 26, 48, 49).

Our current knowledge of the genetic basis of
immunodeficiency and tumor predisposition is primarily
based on monogenic disorders. We learned to appreciate the
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genetic heterogeneity of these conditions, meaning that single
or similar phenotypes can be generated by different genetic
mechanisms. Polygenic diseases, on the other hand, are caused
by the joint contribution of several independent acting or
interacting genes, whose individual contribution might be small
or even unnoticeable. GWAS together with WGS studies have
now allowed us to extend such analyses to the entire genome
in a kind of omnigenic approach, which means that we will
need to learn to cope with the combinatorial effects of a large
number of genetic variants, whose individual contribution is not
readily apparent (50). In contrast to Mendelian diseases, which
are primarily caused by mutations in the protein-coding part
of the genome, complex traits are mainly driven by non-coding
variants that presumably affect regulatory elements of genes,
such as promoters and enhancers. For instance, risk variants
for autoimmune diseases show particular enrichment in active
chromatin regions of immune cells (51–53).

The “omnigenic” model still accepts that only a modest
number of “core genes” or pathways are etiologically important
for a specific disease and their dysfunction will still have the
strongest impact on the disease process (54). However, in this
situation the particular risk will be driven by an accumulation of
weak and heterogeneous effects of manymodifying gene variants,
whose specific configuration might even only become relevant
in certain cell types and tissues, whereas in others they might
remain completely inconsequential (51). The ultimate and most
provocative conclusion and interpretation of this “omnigenic”
model is of course that virtually any variant with regulatory
effects in a given tissue is likely to have some (weak) effects on
all diseases that are modulated through this particular tissue (51).

Whereas the identification of risk factors in monogenic
diseases requires sequencing of specific genes and the careful
functional assessment of any unusual sequence variant that pops
up, polygenic risk scores of common diseases are statistically
determined likelihoods that are calculated from genome-wide
SNP patterns. Given the countless possibilities how defective
and normal but functionally dissimilar allele variants of one
or multiple genes can be combined and co-inherited, it is
therefore astonishing that, as reported recently by Khera et al.,
the risk scores of such common diseases may under particular
circumstances nevertheless reach at least the same magnitude
as the ones achieved in monogenic diseases (55). Together
with the cell- and tissue-specific utilization of the ensuing gene
products, these findings provide a ready explanation for the
highly variable penetrance of genuine gene defects and, even
more so, for functionally modifying variants and, not least, why
it is so difficult to foresee their biological consequences even in
monogenic disorders (34). In addition, one has of course also to
keep in mind that even in instances with a strong predisposing
genetic component, the development of malignancies is always
a multifactorial process that not only requires a liable genetic
architecture but also some probabilistic elements as well as the
participation and interaction of a multitude of other intrinsic
and extrinsic factors and mechanisms. In case of hematologic
malignancies, such cell-intrinsic defects and abnormalities
consist of those that affect (I) (lympho- and hematopoietic stem)
cell development, differentiation and apoptosis; (II) lymphocyte

FIGURE 1 | Schematic synopsis of the various genetic, immunological,

microbial, and environmental constituents that contribute to and participate in

the development of hematologic neoplasms, lymphomas and solid tumors.

signaling, cytoskeleton, cytotoxicity and metabolism and (III)
chromosome stability as well as DNA repair (3). Cell-extrinsic
factors, on the other hand, comprise chronic inflammation;
autoimmune- and autoinflammatory diseases, chronic (viral)
infections and an impaired tumor surveillance (Figure 1).

SOMATIC MUTATION (SMT) VS. TISSUE
ORGANIZATION FIELD (TOFT) THEORY

SMT and TOFT are two apparently competing theories of
cancer development. The SMT postulates that cancer is a
molecular, gene-based disease that derives from single cells
whose autonomous and unrestrained proliferation is driven
by the progressive accumulation of accidental and essentially
unrelated events (2, 56–58). The TOFT, on the other hand, posits
that cancer develops as an adaptive, emergent phenomenon
whose fundamental determinants act at the level of tissue
and organ homeostasis. In this scenario, inherent genetic
constituents as well as a variety of physical, chemical and
biological agents, such as cytokines, viruses, chemicals and/or
radiation, perturb the functional interaction of diverse cellular
modules and subsequently also the organizational state of tissues
themselves (58). To a certain extent this process resembles
morphogenesis and as such also replicates a tumor’s capability
to continuously balance novelty with stability and to combine
plasticity with robustness (57, 59). The reductionist, bottom-up
approach of SMT and the emergentist, top-down approach of
TOFT are often considered incompatible because they view the
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problem from two different levels of biological complexity. The
probably smallest and already generally agreed-upon common
centerpiece where these two opinions meet is the tissue
micro-environment (57).

Compared to the possibilities of compact tissues, the various
closely interconnected humoral and cellular components of the
immune system are in a unique situation, because they can exert
their action not only in a local microenvironment, but they can
also act over and cover the macroenvironment of tissues, organs
and even an entire organism in a systemic fashion. Moreover,
within a particular context and a respective cellular milieu,
components of the immune system can either foster or suppress
tumor development. It is thus not surprising that the highly
flexible and adaptable immune system, be it normal, impaired,
or defective, is one of the major players in the game of tumor
predisposition and development (60–64).

The three prevalent and often closely connected complications
of PIDs are thus infections, autoimmunity, and malignancies.
Nevertheless, it is intriguing to note that except for a few
distinct disorders, such as Nijmegen breakage syndrome (NBS),
Ataxia telangectasia (AT), and autoimmune lymphoproliferative
syndrome (ALPS)-related autoimmune diseases, PIDs do not
cluster with malignancies in the human diseaseome network
(60, 65). Most of the available information regarding cancer
risk derives from specific subtypes that result from defects
in genes that regulate DNA repair, cell cycle, apoptosis, bone
marrow maturation as well as those that help to protect against
virus infections (17, 60). As might be expected, the most
common overall hitherto documented forms of malignancies in
all these conditions are lymphomas, whereas other neoplasms
occur predominantly in amore disorder-typical and -constrained
manner (7, 14, 17, 38, 60, 66–72).

“ENVIRONMENT”

Multicellular organisms are organized in a modular fashion
with distinct functional units and compartments. Based on the
particular level of organization one can thus distinguish various
internal as well as external forms of environment. From the
perspective of cells, for instance, such environmental shells may
constitute specific niches, tissues, organs and the entire organism.
The environment of a developing fetus, on the other hand, is
provided by the mother. Following birth, the organism becomes
embedded in a milieu of beneficial as well as latent pathogenic
microorganism and is then openly exposed to the potentially
damaging biological, physical, and chemical agents of the outer
world, with which it has then to interact in various ways.

Fetal-Maternal Immune System
Interactions
With regard to immunology, pregnancy is a particular interesting
condition because it requires the constructive co-existence of
two genetically and immunological distinct individuals within
a single body (73, 74). To succeed, this endeavor requires the
beneficial cooperation of a fully developed, but during this period
dampened, immune system with a just evolving one that still

has to mature and achieve its independence. This interaction
requires the temporary reorganization and adaptation of the
maternal immune system as well as the acceptance of assistance
and cooperation of the fetal one.Maternal immune cells therefore
help to “teach” those of the fetus to balance the need of self-
defense against that of immune tolerance: too much restraint
would lead to lethal infections, whereas too little would lead to
autoimmunity (75–77). During this especially vulnerable phase
this intricate balance can easily be disturbed, in particular by both
cell intrinsic (genetic) as well as cell extrinsic biological factors.

Although a fetus expresses genetically foreign paternal
antigens, it coexists in harmony inside the mother because
it resides in an immune-privileged cocoon (78). Nevertheless,
maternal and fetal cells still traffic through the placenta
during the entire gestation period. After birth, surviving cells
become then the source of a lifelong micro-chimerism in
the corresponding opposite bodies, a phenomenon that under
particular circumstances may significantly impact the future life
of the mother as well as the child in various positive or negative
ways (78, 79). Changes in the number, phenotype or distribution
of microchimeric cells, for instance, can have an effect on
immune surveillance, tissue repair, autoimmune diseases and
tumorigenesis. It has thus been suggested that microchimeric
cells may modulate health and disease in a similar way as
commensal microorganisms control the susceptibility to various
immunological and non-immunological disorders (78, 80).

One of the striking pathological consequences of the
bidirectional cell trafficking are particular forms of SCID,
in which the accumulation of a significant number of
maternal T cells can cause a kind of graft-versus-host disease
(GVHD) in the immune incompetent child (81, 82). However,
even asymptomatic infiltrations of maternal cells are still an
independent predictor for the development of GVHD later
in life in case of transplantations (82). Conversely, maternal
micro-chimerism in cord blood can mediate a graft-versus-
leukemia effect in cord blood transplantation (83). Finally,
there are also rare instances of maternal-fetal transmissions of
malignancies, such as has been reported for lymphoma, leukemia
and melanoma (84).

Within the setting of such pre- and postnatal fetal/maternal
immune system interactions, the human leukocyte antigen
(HLA) system and, in particular, its paternal component plays
a particular important role (78). Exposure to inherited paternal
antigens as well as non-inherited maternal antigens during
pregnancy can lead to either immunization or tolerization,
the sequelae of which can have even consequences decades
later, not least in form of an alloimmune response in case of
transplantation (85).

HLA System
The HLA system is part of the human major histocompatibility
complex (MHC), a region on the short arm of chromosome
6 with some 260 genes that are involved in the immune
response. Unsurprisingly, this is also the region of the genome
that is associated with the greatest number of diseases with an
immune system component, including those “bare lymphocyte”
SCID disorders that are caused by deleterious mutations in
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certain MHC genes (86–88). As one of the main players in
immune system interactions, the HLA system orchestrates the
induction, regulation and fine-tuning of immune reactions and,
in particular, the selection of the T cell repertoire (89). It is
highly polymorphic and comprises more than 15,000 allelic
variants (86).

Although specific HLA genotypes do not per se predispose
to any particular disease in the strict direct sense, they are still
highly enriched in and closely associated with distinct forms of
inflammatory, autoimmune, and malignant disorders, a fact that
not only underlines the central position of this regulatory system
in their pathogenesis but also somehow links these otherwise
disparate diseases.

HLA genotype patterns are not only associated with distinct
sub-types of leukemias and lymphomas, but they can even
correlate to some extent with the prognosis and survival of
the respective diseases (90, 91). This evidence derived originally
from the atypical HLA segregation patterns in leukemic families.
They revealed an increase in HLA-identical non-affected sibs,
HLA homozygosity, and identical disease-related maternal class
II DRB1 haplotypes (90). Together this data is also taken as an
indication that ALL is a problem that results from a population
level response of HLA to infectious disease. In other words,
overrepresented HLA haplotypes can provide some valuable
insights into gene environment interactions as well as why
and how particular clones are selected that will eventually
produce the leukemic cell mass (88, 92–94). According to
Greaves, B cell precursor (BCP) ALL evolves in two discrete
steps, the in utero formation of a preleukemic clone, which
is then triggered by a delayed abnormal immune response to
common infections, followed by its postnatal conversion to overt
leukemia (95–97). In the absence of any direct evidence for a
specific causative infectious agent, the respective HLA pattern
can thus be used as an indirect proxy measures for a genetically
directed immune response and can thereby deliver valuable
clues for the involved mechanisms. Based on such investigations,
Taylor et al. concluded that BCP ALL is an indirect outcome
of a transient auto-immune induced inflammatory molecular
mimicry reaction that in turn may also explain why this subtype
appears to be associated with delayed infection (88, 92, 93).
Other factors that can help tumor cells to escape immune
surveillance include somatic mutations that result in structural
and functional changes in HLA system components, loss of
expression of tumor antigens, lack of co-stimulatory molecules,
and production of immunosuppressive cytokines (86). However,
even more intriguing is the recent discovery that the HLA class
I genotype is also participating in sculpting the entire oncogenic
mutation landscape of a neoplasm (98). This is achieved through
the continuous elimination of tumor cells with mutations that
primarily produce strong antigens, which leads to a selection of
cells with mutations that avoid producing such neoantigens (98).

Since the first hit that initiates the formation of the majority of
pediatric cancers and leukemias occurs already very early in fetal
life, the largest part of their further development still takes place
in utero (95–97). It is therefore conceivable that fetal/maternal
interactions and, in particular, the maternal immune system can
influence and modify also the course of the disease in the one or

the other way. Because one cannot study these processes directly,
one has to rely on the above discussed traces and patterns that
remain imprinted especially in the child’s immune system after
birth and which at least can provide some indirect clues about
what had happened prenatally. The essential role of the in utero
environment is further underlined by the fact that in individuals
with a preexistent germline predisposition, secondary leukemia-
promoting mutations can only evolve in special niches during
distinct stages of organ development. In Down syndrome, for
instance, GATA1 mutations, which emerge exclusively during
fetal liver hematopoiesis, cause an accumulation of immature
erythro-megakaryocytic precursor cells (99–102). After birth, this
pseudo- or preleukemic cell population is usually uncapable
to maintain itself any longer and usually collapses within a
short period. Although such spontaneous postnatal regressions
of embryonic malignancies are quite common, it is not yet clear,
whether at all or to which extent this phenomenon can also be
attributed, in the strictest or in a broader sense, to the loss of
the fetal/maternal interaction or altered activity of the newborns
immune system (68, 103).

Disorders of the DNA Repair System
Embryonic malignancies as well as those associated with PIDs
are similar unfortunate byproducts of the complex processes
that control normal development (102, 104–106). Environmental
triggers such as carcinogenic pollutants and radiation play in
general only a subordinate pathogenetic role in the development
of childhood malignancies (105, 106). Such factors become
primarily relevant only in those PID forms that are due to some
types of DNA repair deficiencies (60, 71, 107–112). One of the
physiological tasks of this system is to orchestrate processes, such
as V(D)J recombination, class switch recombination, and somatic
hypermutation, which together generate those lymphocyte-
specific reorganizations that provide the basis for the adaptive
immune system’s genetic diversity (71, 108). Therefore, immune
deficient patients with a dysfunctional DNA repair, such as those
with an AT, NBS, and Bloom syndrome, are prone to develop
lymphomas, whereas those with a dysfunctional DNA repair but
without immune deficiency, such as xeroderma pigmentosum,
Fanconi anemia, Werner syndrome, and Rothmund–Thomson
syndrome, will primarily develop other forms of cancers (71).
These occur especially in organs with rapidly dividing cells
and/or an increased metabolic activity, including the brain, skin,
breast, and the gastrointestinal tract. Since particular DNA repair
defects produce characteristic mutation patterns and predispose
to specific tumor forms in PID patients, it is in turn even possible
to infer already from such indicators which DNA recombination
processes are impaired (71).

Patients with constitutional mismatch repair deficiency
(CMMRD) are prone to develop gastrointestinal, genitourinary
and brain tumors, lymphomas, and leukemias (38, 39, 46, 47,
109, 113–116). They may also develop antibody deficiencies
of variable severity, although they are neither a constant
nor obligatory feature and usually also have no clinical
correlate (107).

Genetic defects that disrupt the normal function of the DNA
nucleotide excision repair (NER) complex cause at least eight

Frontiers in Immunology | www.frontiersin.org 6 February 2019 | Volume 9 | Article 3136

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Haas Immunodeficiency and Cancer Predisposition

overlapping phenotypes, such as xeroderma pigmentosum (XP),
Cockayne syndrome (CS), and trichothiodystrophy (TTD) (117,
118). NER is responsible for fixing UV-induced lesions, bulky
chemical adducts and some forms of oxidative damage (118). The
respective complex comprises at least 30 proteins, three of which
(XPB, XPD, and TTDA) are also part of the basal transcription
factor TFIIH. The most interesting and intriguing of these
proteins is XPD, because, as Lehman pointed out so suitably, it
is one gene with two functions (DNA repair and transcription)
and three diseases (XP, CS, and TTD) (117). Some of the clinical
features of these syndromes are quite similar but some are also
markedly different (119). Although all three syndromes have an
exceptionally sun-sensitive skin, cancers develop only in patients
with XP but not in those with CS and TTD (118). CS and TTD, on
the other hand, have neurodevelopmental abnormalities and the
latter also ichthyosis and brittle hair. To explain this conflicting
and somehow mysterious genotype-phenotype discrepancies,
Bootsma and Hoeijmakers proposed already quite some time ago
that XP would result, if the defect would concern the DNA repair
but not the transcriptional function of the complex, whereas, vice
versa, the developmental TTD-associated problems would arise,
if only the transcriptional part would be affected (120).

DNA repair defects may also impair the formation and
production of antibodies, which is the defining feature of
CVID (19, 121–127). Patients with such a dysfunctional
humoral immunity have an increased probability to develop
extra-nodal non-Hodgkin B cell and mucosa-associated
lymphomas as well as epithelial tumors of the stomach,
breast, bladder, and cervix (70, 128–130). In contrast to
most PIDs, CVID-associated lymphomas are more common
in older people and usually EBV-negative (70, 128–130).
Selective IgA deficiency, in particular, goes along with a 7-
to 10-fold increase in gastric adenocarcinomas. This risk
is most likely related to an inability to clear Helicobacter
pylori infections and appears to decrease when these bacteria
are eradicated (70, 129, 130).

Immunoediting
The immune system is in many, apparently paradoxical ways
involved in the manifestation and evolution of malignancies.
It can facilitate cellular transformation as well as prevent,
promote, control and thus shape their development, phenomena
that eventually were summarized under the term “cancer
immunoediting” (62, 131–137). The concept of immunoediting
evolved from the older and more controversial “cancer immune
surveillance” one, which was based on the notion that, analogous
to the “non-self ” of pathogens, our immune system is also able
to discriminate between the “malignant self ” of pre-cancerous
and cancerous cells and the “self ” of normal cells (61, 62, 68). To
discriminate cancer cells from normal cells, the immune system
pursues two main strategies: T and B cells, which belong to the
adaptive immune system, recognize altered self-proteins, whereas
natural killer (NK) cells, gamma/delta T cells and macrophages,
which are part of the innate immune system, take care of
stress-induced self-molecules on transformed cells (61). Still, the
necessity to establish an effective antitumor response, goes always

hand in hand with the formidable challenge to circumvent the
destruction of normal cells and to avoid autoimmunity.

Given the tight interaction between the immune system and
neoplastic tissues, one naturally expects, and as Corthay put
forward in eight arguments, that individuals with PIDs are more
prone to develop tumors than the general population (61). At
first sight this notion is well-supported by both animal models
and clinical observations (61, 68). The best evidence that this is
indeed the case derives from experiments with mice that lack key
components of the immune system. They have not only an overall
higher tumor incidence, but they are also more susceptible to
transplanted or chemical carcinogen-induced tumors (64, 138).
At second sight, however, all hitherto available data argues against
the long-hold notion that potentially dysfunctional immune
surveillance mechanisms indeed increase the general tumor risk
in all PID patients. If at all, such processes can only play a
subordinate and ancillary role.

Reliable information regarding the general and specific tumor
risk of individuals with PIDs derives primarily from three
large epidemiological studies from the USA, Australia, and the
Netherlands (67, 128, 139). Together these studies comprisemore
than 5,000 patients with around 300 different forms of PIDs.
Compared to the general population and previous estimates,
these analyses revealed a surprisingly low, only 2-fold increased,
overall tumor risk. However, since the respective risk is primarily
confined to and therefore significantly higher in the nine most
frequent high-penetrant PIDs, it is conversely also much lower
or even absent in most of the other PIDs. Distinct genetic
PID defects predispose to and concur with special and often
unique types of malignancies, the most common of which are
non-Hodgkin lymphomas, leukemias, digestive tract as well as
virus-induced cancers (67, 68, 70, 128, 129, 139). This particular
distribution patterns can already provide some important clues
about the underlying defective, disrupted or impaired immune
processes that trigger such disease developments. The two major
driving forces that are responsible for the 8- to 10-fold excess
lymphoma risk in subjects with PIDs, for instance, are a deficient
DNA repair and an inadequate response to viral infections (61,
67, 68, 70). The intriguing part of this story is, however, that the
incidence of the most frequent cancers, such as breast, lung, and
colon, is in the remaining group of PIDs much lower than that in
the general population.

Inadequate Activation and Response of the
Immune System
Chronic inflammation, autoinflammation, autoimmunity, and
infection-associated overstimulation are closely intertwined
derangements of a deficient or compromised immune
system (140).

Chronic Inflammation
Inflammation is a physiological response to tissue stressors
such as tissue damage and infectious as well as non-infectious
agents that ensures the maintenance of tissue homeostasis
(141). Under normal circumstances it mitigates infections,
clears damaged cells, and initiates tissue repair (142). If this
process is not properly terminated, it can cause substantial
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collateral damage and contribute to tumor development (143–
145). Chronic inflammation plays not only a pivotal role in
different stages of tumorigenesis, but it may also impede the
response to therapy (63, 145). Along the route to tumorigenesis,
intrinsic genetic factors interact with extrinsic immune system
and stromal humoral and cellular components to generate a
mixed microenvironment that is composed of tumor-promoting
and tumor-suppressive factors, including innate NK and adaptive
T cells (62, 63, 145, 146). The fact that, despite their dissimilar
etiology and physiology, autoimmune and infectious diseases
take advantage of the same immunosuppressive pathways and
logistics underlines the global relevance and central position of
these particular activities (146).

Infection-provoked chronic inflammatory conditions
predispose especially but not exclusively to the development of
Hodgkin’s, Burkitt’s, and mucosa-associated lymphoid tissue
(MALT) lymphomas (147–149). The best-known associations
are those between Helicobacter pylori and gastric lymhomas,
Chlamydophila psittaci and ocular adnexal lymphomas as
well as Borrelia burgdorferi and cutaneous MALT lymphomas,
while chronic infections with Epstein-Barr virus (EBV) usually
predispose to Burkitt- & Hodgkin lymphomas, those with
Hepatitis C virus (HCV) to marginal zone lymphomas and
those with Hepatitis B virus (HBV) to hepatocellular carcinoma
(147, 148). The pathogenetic role of chronic inflammation
remains less clear in case of human papillomavirus-,
herpes simplex virus 2-, and cytomegalovirus-triggered
malignancies (150).

Inflammatory bowel diseases, such as Crohn’s disease
and ulcerative colitis, provoke especially the development of
colorectal cancer (151, 152). Crohn’s disease, in particular, is a
multifactorial disease whose genetic underpinning encompasses
71 so far recognized susceptibility loci (31). Amongst these
are the first recognized monogenic causes of such diseases,
namely interleukin-10 (IL-10) and IL-10 receptor (IL-10R) loss
of function mutations that are the specific cause of a severe,
very early onset type of inflammatory bowel disease (153–
156). Affected children have an extremely high probability to
develop a unique form of monoclonal EBV-negative diffuse
large B cell lymphoma, which is characterized by a constitutive
activation of the NF-kappaB pathway and a defective local T
cell immune response (153). These findings prompted Neven
et al. to postulate that not gut inflammation itself but that the
defective IL-10 pathway alone was the responsible pathogenetic
trigger. Referring to the fact that all these children received
azathioprine, which is a well-known lymphoma risk-increasing
factor in adults with inflammatory bowel diseases, they suggested
that this immunosuppressive treatment was also the final spark
that ignited lymphoma development in these children (153).

Autoimmunity
Autoimmunity is a prominent element in many PIDs, especially
in CVIDs, and not least in those, which predispose to
malignancies (19, 125, 157–159). Despite their close clinical and
genetic interrelationship, autoimmunity, and PIDs were up to
now interpreted as two mutually exclusive conditions rather
than as two sides of the same coin (157). In consideration

of the fact that autoimmunity is the leading symptom in a
variety of monogenic disorders that affect T cell development,
tolerance, and interferon signaling, complement pathways
as well as the resolution of inflammation, this view is
changing nowadays (157). The two prototypic examples to
illustrate their close interrelationship are the autoimmune
lymphoproliferative syndrome (ALPS) and the IPEX syndrome
(immune dysregulation, polyendocrinopathy, enteropathy, X-
linked). In case of ALPS, the respective lymphoproliferation
and propensity to develop lymphomas results from apoptosis-
impairing germline as well as somatic mutations in the
FAS, FASL, and caspase 10 genes (160–162). Still, mutation
carriers have only a <60% chance for disease manifestation
(161). The IPEX syndrome, on the other hand, is caused
by activating mutations in the FOXP3 gene (163–165). The
encoded transcription factor controls the function of regulatory
T cells that are essential for maintaining self-tolerance and
immune homeostasis by suppressing aberrant responses such
as autoimmunity and allergy (166). Deficiency of cytotoxic T
lymphocyte antigen 4 (CTLA-4), which is a crucial inhibitor
of T cell response that is also present on regulatory T cells,
can therefore generate autoinflammation and autoimmunity
in a corresponding fashion (166–169). Moreover, CTLA-4-
deficient individuals are at risk to primarily develop EBV-
related malignancies (170). Another recently recognized albeit
rare cause of autoimmunity are leukemia-predisposing germline
mutations in the IKZF1 gene, which encodes the hematopoietic
transcription factor Ikaros (171–175). Finally, one should not
forget that autoimmune diseases are also a common problem
in one of the most remarkable forms of leukemia-predisposing
immunodeficiencies, the Down syndrome (176–178).

Hyperactivation
The inability of cytotoxic lymphocytes to fend off and
kill virus-infected or transformed cells leads to an often
uncontrollable hyperactivation of the immune system in form
of hemophagocytic lymphohistiocytosis (HLH) (179–181). This
distinctive clinical feature is the common denominator of a
related group of perforin-deficient hyperinflammatory disorders,
so called “perforinopathies,” that may either be due to rare
congenital gene-disrupting mono- or biallelic mutations or, in
less severe form, due to functionally impairing hypomorphic
alleles (182–186). Familial hemophagocytic lymphohistiocytosis
type 2 (FHL2) is caused by biallelic mutations of the perforin gene
(PRF1) (179). It shares some of its clinical characteristics with
those of anaplastic large cell lymphoma (ALCL), which accounts
for ∼10 to 15% of all pediatric non-Hodgkin lymphomas (187–
190). About a quarter of these lymphoma patients carry only
monoallelic PRF1 mutations but, remarkably, virtually none in
SH2D1A or UNC13D, genes that are implicated in two other
forms of FHL (181, 187, 191–193). Moreover, an otherwise
common activity-diminishing PRF1 gene variant (SNP A91V;
rs35947132), is also postulated to predispose to the nasal form
of NK/T cell lymphoma in adults, which is the most frequent
EBV-related NK/T cell malignancy (188).
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Microbiome
Human beings are holobiontic meta-organisms (194–197). They
are composed of host as well as trillions of viral, fungal, bacterial,
and eukaryotic microbes that are collectively referred to as
the microbiota or microbiome (194–197). This microbiome is
acquired and shaped during the first 2 years of life. It co-
evolves with its respective host genome and, under physiological
conditions, becomes part of a stable, life-long synergistic
homoeostasis (194, 195, 197–200). Because of its tight functional
link with and profound effects on the host’s immune system in
health and disease, the microbiome is therefore already regarded
as a complex, polygenic trait (200–202). Environmental, and
host-related perturbations of this microbial ecosystem reduce
almost invariably its diversity. This is a common finding in many
multifactorial inflammatory, autoimmune, metabolic, neoplastic,
and neurodegenerative diseases, although it is rarely known
whether such a dysbiosis is indeed the cause or the effect
of the underlying ailment (197, 203). Nevertheless, the host’s
immune system is certainly the most important force that shapes
the configuration of the normal and dysbiotic microbiome,
which, in turn, may of course be a significant cofounding
factor in immune-mediated and immune-associated diseases
(197). A healthy or dysbiotic microbiota can influence the host
innate immune system and it is therefore no surprise that
microorganisms are also implicated in the pathogenesis of at
least 20% of all human malignancies (204). In a dysbiotic state,
alterations in the signature of microbial molecules that are
sensed by the host can lead to a different activation state of
the immune system. These changes may alter the balance of
host cell proliferation and death, guide immune system function
and influence metabolism of host-produced factors, ingested
food and pharmaceuticals (205). Moreover, they may also drive
transformation by affecting genomic stability, resistance to cell
death and proliferative signaling (205). Both chronic high-
grade as well as lower-grade smoldering inflammatory disorders
drive a tumor-permissive milieu, a problem that was extensively
studied and confirmed in mice that were deficient in various
immunologically relevant genes (199, 205, 206). It is worth
noting that such a cancer susceptibility can even be transferred
to healthy mice by cohousing, fostering or fecal transplants
(195, 199, 207). Since polymorphisms in immunologically
relevant genes affect human microbiota composition and cancer
predisposition, this observation is therefore also highly relevant
for such human diseases (201, 202, 208, 209).

Based on these results, Dzutsev et al. therefore suggested
that malignancies can be viewed as systemic diseases that alter
the physiological homeostatic interaction of the entire meta-
organism (143, 195). Mostly because of its effects on metabolism,
cellular proliferation, inflammation, and immunity, the
microbiome would interact with their development at virtually
every level, including predisposing conditions, initiation, genetic
instability, susceptibility to host immune response, progression,
comorbidity and, not least, response to therapy (143, 195, 205).
In support of this notion, Yamamoto et al reported, for instance,
that variation in intestinal microbes between different animal
facilities or as a consequence of experimental perturbations
profoundly affected the incidence of lymphoma and survival

of Atm (ataxia telangiectasia mutated)-deficient mice (210).
Another very intriguing and instructive example of how we will
one day perhaps be able to exploit particular constituents of the
microbiome for medical and therapeutic purposes was recently
provided by Bromberg et al. (211). They showed that with the
delivery of stool samples from pregnant mice or gavage with
isolated B. pseudolongum species to those with cardiac allografts
they were able to improve their long-term survival as well as to
prevent inflammation and fibrosis in this respective organ (211).

Bona Fide Infections
The IARC classifies 10 microbial agents (7 viruses, 2 parasites,
and 1 bacterium) as group 1 human carcinogens (195, 204).
Over 90% of all infection-attributed cancers are attributed to
Helicobacter pylori, HBV and HCV, and human papillomaviruses
(HPV) (204). Except for HCV, all human oncogenic viruses
encode at least one oncogene and may therefore directly
induce neoplastic transformation, although, as alluded to above,
infection-associated inflammation and dysbiosis most likely
play a likewise significant role in this context. Thus, Plottel
et al. distinguish three classes of microbe-induced human
malignancies, the first is defined as involving immunologic
tissues, the second requires direct microbial interactions with
parenchymal cells and the third involves distant effects from local
interactions (212).

The likelihood to be either protected or to become infected
as well as the infection outcome depends primarily on the
diverse conditions that guide the interactions between the
respective pathogen and its potential host. These include their
specific genetic set-up and functional fitness to invade or defend
themselves, as well as on a variety of other factors, such
as concomitant infections as well as the age and microbial
constitution of the respective host (213–220). To invade host
cells, pathogens exploit and hijack particular cell surface proteins.
Amongst the docking receptors that were identified so far in
case of the Malaria parasite plasmodium falciparum, for instance,
are CD55 and structural variants of the GYPA and GYPB genes
(220–224). CD55-null erythrocytes, in particular, are refractory
to invasion by all isolates of plasmodium falciparum (222). The
second example is CCR5, which encodes a coreceptor for HIV
entry. Consequently, carriers of an otherwise phenotypically
and functionally completely inconsequential homozygous 32-
bp deletion are resistant to HIV infection (225). Although HIV
infections are indisputably the cause of the “acquired” immune
deficiency, one can still argue that all these infection-related
problems are nevertheless due to a genetically primed primary
albeit clinically inapparent susceptibility. The point I want to
stress here is that what one currently perceives as a “normal”
wild-type or a “defective” susceptible gene variant is merely a
matter of choice, frequency, common habit, and/or subjective
interpretation. Since the functional consequences of any such
variant will always remain context-dependent, one therefore
needs to keep in mind that the distinction between “protective”
and “defective” can never be an absolute dogma, but always lies
in the eyes of the beholder.

Epstein-Barr virus (EBV) is a ubiquitous virus that
infects virtually all humans and obligatory leads to a usually
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asymptomatic symbiotic lifelong latent persistence (214, 226).
Although this EBV latency may provide an evolutionary
mutualistic benefit to its hosts as an immune adjuvant that
apparently protects against lethal Listeria monocytogenes and
Yersinia pestis infections (227, 228), the many EBV-associated
problems have nowadays become clinically far more relevant
and interesting. At present, the literature distinguishes more
than 25 EBV-related disease entities, including those that are
associated with various forms of immunodeficiencies and
those that concur with a high propensity to develop diverse
hematopoietic, epithelial, and mesenchymal malignancies
(66, 226, 229–234). These disease forms can be roughly divided
into reactive EBV-associated lymphoid and histiocytic/dendritic
proliferations (including reactive lesions with or without diverse
malignant potential), B cell proliferations (including Hodgkin
lymphoma and plasma cell neoplasms), T/NK cell proliferations,
immunodeficiency-related lymphoid proliferations and
histiocytic/dendritic proliferations (66, 226, 229, 231–236).
Taken together, EBV contributes to about 1.5% of all cases of
human cancer worldwide (229, 237).

The type and incidence of EBV associated diseases varies
significantly in different parts of the world, an observation
that can be attributed to the different distribution of genetic
susceptibility factors, including individual-, HLA-, and ethnicity-
specific ones, to environmental- and geographic-specific co-
founding influences but also to the existence of particular EBV
strains that may produce different disease patterns (27, 66, 153,
213, 214, 217, 218, 229, 230, 232–234, 236, 238–240).

In contrast to the above-mentioned HIV infection, which
significantly increases the risk for malignant diseases and
especially lymphomas, such a risk is, if at all, by far not
as pronounced in case of Malaria (241–243). The only
notable exception concerns the concomitant early and sustained
infection of Plasmodium falciparum and EBV, which together
are the essential pathogenetic ingredients in the endemic
form of Burkitt lymphoma in Africa (217–219, 236, 238,
244–246). In this particular combination, the Plasmodium
infection destabilizes the genome of rapidly dividing EBV-
infested germinal center B cells by eliciting the protracted
expression of the activation-induced cytidine deaminase, a
mutation-aggravating enzyme (238, 245).

At one point in their life, virtually all humans become
infected with EBV, most of them without any acute, severe
or lasting health problems. However, in those who do, one
can often identify an underlying disease-associated, more or
less pronounced genetic susceptibility, which begs for the
question whether EBV-associated disease processes indeed
afflict also “immunocompetent” individuals, or put the other
way around, what in the end will define such an “immune
(in)competence” (235).

PREDISPOSITION TO HEMATOLOGIC
NEOPLASMS IN CHILDREN

The role of predisposing germline mutations and sequence
variants in children and adults with various types of hematologic

malignancies was hitherto largely underappreciated, because not
all of them concur with nor create any easily recognizable clinical
stigmata or suspicious family history. Especially if one screens
neoplastic tissues for disease- and/or therapy relevant somatic
mutations, it becomes of critical importance to distinguish those
from germline ones, because the latter may also have a profound
clinical impact as regards choice of therapy, donor selection in
case of transplantations, evaluation of comorbidities as well as
surveillance strategies (8, 173).

A recent paper by Duan et al. provides an excellent
and very comprehensive overview about all the primary
immunodeficiencies that in particular predispose to the
development of various types of lymphomas and hematologic
malignancies (3). The authors compiledmore than 60 conditions,
which comprised all subgroups of syndromic and non-syndromic
cellular and humoral PID as well as defects in phagocytes and
innate immunity.

To pack some of the underlying principles and problems into
a practical and newsworthy perspective, I will now briefly turn to
recent findings in three categories of childhood leukemia.

Constitutional Trisomy 21
Trisomy 21 is not only the most common chromosome
abnormality in liveborns but in many aspects also one of the
most outstanding and fascinating examples of an immune system
disorder, although for a long time the precise nature of the
respective immunological derangements remained elusive (178).
Since it is not a monogenic ailment, it is also hardly ever viewed
as a primary immunodeficiency, although it clearly concurs
with multiple distinct immunological and developmental defects
that affect the myeloid but also the early and committed B-
lymphoid progenitor compartments in second trimester fetal
liver (247). I chose this most intriguing and highly instructive
example to explain in which way the predisposing risk score of
a kind of “polygenic” disposition can easily reach at least the
same magnitude as the one that is otherwise only achievable
in a monogenic setting (55).The ensuing variable and clinically
often inapparent immunological alterations in Down individuals
comprise a mild to moderate decrease in T and B cells, impaired
mitogen-induced T cell proliferation, reduced specific antibody
responses to immunizations as well as defects of neutrophil
chemotaxis (248). Affected individuals suffer from various types
of autoimmune and autoinflammation diseases, whereas it is still
a matter of debate whether they are alsomore prone to experience
more or severer infections than non-Down individuals (176, 178,
248, 249). The first clues that helped to resolve the functional
consequences of this immunological conundrum derived from
recent transcriptome and proteome analyses. They revealed
that the presence of an extra chromosome 21 leads, amongst
others, to an overexpression of the four chromosome 21-
encoded interferon receptors and, therefore, place this syndrome
into the class of interferonopathies. Interferons are normally
produced by cells in response to viral or bacterial infections,
regulate genes in neighboring cells and shut down the production
of proteins, which activate the immune system and thereby
prevent the spread of the infection (250, 251). In line with
interferonopathies and autoinflammatory conditions, individuals

Frontiers in Immunology | www.frontiersin.org 10 February 2019 | Volume 9 | Article 3136

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Haas Immunodeficiency and Cancer Predisposition

with Down syndrome display higher levels of many pro-
inflammatory cytokines (including IL-6, IL-22, TNF-α, and
MCP-1) as well as complement consumption, a state that
indicates that the immune system is constantly fighting viral
infections that are in fact not there (250). Whether and to
which extent such a faulty overreaction may also participate in
promoting the development of hematologic neoplasms perhaps
in a similar fashion as in genuine virus infection-triggered
malignancies, remains to be elucidated.

Individuals with an inborn trisomy 21 have also an
extraordinary risk to acquire special forms of hematologic
neoplasms in early life, whereas they are otherwise exquisitely
protected against the development of any other malignancies
(252, 253). Compared to normal age-matched children, the self-
limiting transient myeloproliferative disorder (TMD) together
with the acute megakaryoblastic leukemia (AML-M7), is ∼150
times and the B cell precursor ALL ∼33 times more common
(99, 101, 102, 253, 254). Of particular note are also the absence
of infant ALL, the rarity of T-ALL and, compared to normal
children, the different distribution pattern of genetic B-ALL
subtypes (255).

The occurrence of specific mutations in the receptive
precursor cells determine which form of leukemia will eventually
develop. In case of TMD, the perturbation of megakaryocyte-
erythroid precursor cell differentiation fosters the appearance
of a highly specific truncating mutation in exon 2 of the
hematopoietic transcription factor GATA1. This in turn provides
the receptive cellular and molecular environment for the
occurrence of further mutations, primarily in the JAK and
RAS signaling pathways as well as in epigenetic regulators
and multiple cohesion components, which then facilitate
the further progression into AML (99, 101, 104, 254). A
reduced lymphoid gene expression in fetal liver hematopoietic
precursor cells impairs B-lymphoid development in a similar
fashion. The ensuing maturation arrest leads to an ∼10-fold
reduction in B cells. The concomitant accumulation of pro-B
progenitors (247), on the other hand, increases the likelihood
for illegitimate V(D)J recombination-mediated chromosomal
rearrangements, in particular CRLF2 gene fusions, that can
be found in approximately half of all Down syndrome BCP
ALL cases (99, 104). To explore the potential contribution of
chromosome 21-encoded and overexpressed genes, a set of 31
triplicated orthologous human genes were tested in germline
mouse models (256). Their presence induced progenitor B
cell self-renewal in vitro, maturation defects in vivo and the
development of especially CRLF2-rearranged and JAK2 pathway-
activated BCP ALL. Out of these 31 genes, the nucleosome-
remodeling protein high mobility group nucleosome-binding
domain- containing protein 1 (HMGN1), whose protein product
suppresses H3K27me3, turned out to be the most relevant
candidate. Together with secondary alterations in the CRLF2,
JAK2,NRAS, orKRAS genes, it promotes both B cell proliferation
in vitro and the development of B ALL in mice in vivo (256).

Given the extraordinary susceptibility and the high incidence
of leukemias, one would intuitively expect that both myeloid
and lymphoid forms should occasionally occur together by pure
chance alone. However, such a coincidence has so far never been

reported. On the one hand, this lack of co-occurrence might
indicate that the development of a specific type of leukemia
requires and is subject to very individual-specific predisposing
conditions. On the other hand, it is also in keeping with the
fact that these patients virtually never suffer from secondary
neoplasms and that they are in a unique and matchless way
also protected against the development of any other types of
neoplasms (252, 253).

This protective effect also has been put down to a copy
number-dependent gene dosage but also context-dependent
effect of specific chromosome 21-encoded genes. The presence
of three ETS2 copies, for instance, act as tumor repressor in the
ApcMin intestinal cancer mouse model, whereas in the PyMT
breast cancer mouse model it functions as tumor promoter, albeit
within the non-cancerous stromal cells, where it regulates the
expression of genes that produce the extracellular matrix, an
essential component for tumor growth andmetastasis (257–260).
Two other relevant genes are the Down’s syndrome candidate
region-1 (DSCR1), which encodes a suppressor of the vascular
endothelial growth factor (VEGF)-mediated angiogenic signaling
by the calcineurin pathway, and DYRK1A, which encodes a
regulator of cell proliferation (261). In mice, the presence of
a single extra copy of Dscr1 is sufficient to diminish tumor
growth by suppressing the calcineurin pathway and therefore
also angiogenesis, an effect that is significantly enhanced by an
extra copy of Dyrk1a. For the sake of completeness, one needs to
take at least also note of several other trisomic chromosome21-
encoded genes whose presence in the stromal compartment helps
to reduce tumor angiogenesis, namely the angiogenic inhibitor
ADAMTS1, the transcription regulator ERG and, finally, the
endothelial cell-specific genes JAMB and PTTG1IP (257).

Bone Marrow Failure (BMF),
Myelodysplastic Syndromes (MDS), and
Myeloid Leukemias
Table 1 provides a comprehensive summary of the various
disease entities together with their causative genetic background.
For a more in-depth overview I refer the interested reader to
recent publications that deal with these individual subjects in
detail (8, 60, 158, 264, 265, 268, 269, 272, 275, 283, 299, 300).
Herein, I merely select a few instructive examples to highlight
some of the intriguing phenomena that are particularly pertinent
for the topic discussed herein.

Fanconi Anemia (FA) is not only the most common inherited
BMF disorder but, with a 500- to 700-fold higher incidence
of head and neck squamous cell carcinomas in older patients,
also a highly penetrant cancer susceptibility syndrome (301).
Except for the X-linked FANCB gene, it is due to bi-allelic
mutations that can affect one of 21 genes, which encode
various components of the evolutionarily conserved FA/BRCA
repair complex. Five of these (BRCA2, PALB2, RAD51C, SLX4,
and BACH1) specifically predispose also to breast cancer. The
encoded proteins participate in biochemical pathways that
safeguard not only against the effects of alkylating agents
and radiation but, probably even more relevant, also against
those of endogenous aldehydes, oxidative stress, inflammation,
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TABLE 1 | Immunodeficiency syndromes that predispose to the development of bone marrow failure, myelodysplasia and myeloid leukemias.

Disease/Syndrome Defective genes Malignancy risk Remarks References

Fanconi Anemia (FA) FANCA, FANCB, FANCC,

FANCD1/BRCA2, FAND2,

FANCE, FANCF,

FANCG/XRCC9,

FANCI/KIAA1794,

FANCJ/BRIP1/BACH1,

FANCL, FANCM,

FANCN/PALB2,

FANCO/RAD51C,

FANCP/SLX4,

FANCQ/ERCC4,

FANCR/RAD51,

FANCS/BRCA1,

FANCT/UBE2T,

FANCU/XRCC2,

FANCV/REV7/MAD2L2

MDS, AML, T-ALL, squamous

cell carcinomas (head & neck,

genitourinary tract), breast

cancer

Currently 21 known genes that

encode members of the

FA/BRCA repair complex

(8, 262–265)

RIBOSOMOPATHIES

Diamond_Blackfan anemia

(DBA)

RPL3, RPL5, RPL10,

RPL10A, RPL11, RPL15,

RPL18, RPL19, RPL26,

RPL27, RPL31, RPL34,

RPL35, RPL35A, RPS7,

RPS10, RPS11, RPS15A

RPS17, RPS19, RPS24,

RPS26, RPS27, RPS28,

RPS29, RPLP0, TSR2,

GATA1, CECR1

25% life-long overall risk of 5.4

odds ratio

MDS, AML, colon cancer,

osteogenic sarcoma, and genital

cancer

26 ribosomal genes, 6%

phenocopies in non-ribosomal

genes, 22% unidentified

(265–269)

Dyskeratosis Congenita

(DC)

ACD, CTC1, DKC1, NAF1,

NHP2, NOP10, PARN,

POT1, RTEL1, TERC, TERT,

TINF2, WRAP53,

STN1/OBFC1

MDS, AML, squamous cell

cancers of the head, neck &

anogenital region

Telomere-associated

ribonucleoprotein (RNP) and

shelterin complexes

(265, 269–272)

Shwachman-Diamond-

Bodian Syndrome

(SDBS),

SBDS, DNAJC21/HSP40,

EFL1

5% leukemia risk (AML, CML,

ALL)

Defective processing of rRNA

into ribosome assembly, majority

unidentified

(265, 269, 273)

Cartilage hair hypoplasia

(CHH)

RMPR Non-Hodgkin lymphoma, basal

cell carcinoma

RNA component of RNAse MPR,

one single Finnish founder

mutation

(265, 269, 274)

Aplastic anemia/

pancytopenia

MECOM, ERCC6L2 MDS (275)

PLATELET DISORDERS

Amegakaryocytic

thrombocytopenia

Mostly MPL (thrombopoietin

receptor), RUNX1,

ANKRD26, MYH9, PTPN1

Pancytopenia, leukemia (265, 276)

Thrombocytopenia absent

radius (TAR) syndrome

del(1q21.1) & RBM8A SNP Leukemia (rare) (265, 277)

Familial thrombocytopenia ETV6, RUNX1, DDX41,

ANKRD26

MDS, leukemias (8)

Congenital neutropenia CSF3R, ELANE, G6PC3,

GFI1, HAX1, JAGN1,

VPS45, WAS

G-CSF treatment,

dose-dependent MDS/AML risk

(264, 278, 279)

GATA2 deficiency

(Emberger & Monomac

syndrome)

GATA2 MDS, AML (monosomy 7) (275, 280–286)

Mirage &

ataxia-pancytopenia

syndrome

SAMD9, SAMD9L MDS, AML (monosomy 7) (273, 287–294)

Rasopathies NF1, PTPN11, CBL, NRAS,

KRAS

JMML, ALL (295–298)

Apart of being present in the germ line, somatic mutations of most of these genes can be commonly encountered in sporadic forms of analogous malignancies.
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mitophagy, and virophagy (263, 265, 302, 303). All these factors
damage DNA in form of distinct inter-strand DNA crosslinks.
The inability to repair these damages is the primary driver of
the various biological and clinical problems that define this
disease category.

Small aldehydes, such as acetaldehyde and formaldehyde,
are not only ubiquitously present in the environment, but also
potentially toxic byproducts of the normal cellular metabolism
and especially de-methylation reactions (304–306). Given that
they provide already a rich source for endogenous inter-
strand DNA and protein cross links, one can envisage that the
pathogenic manifestations and consequences of FA mutations
may also be strongly influenced and modified by the functional
capability of aldehyde detoxifying enzymes, such as aldehyde
dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 5 (ADH5)
(306, 307). In line with this notion, Japanese FA children that
carried a functionally deficient ALDH2E504K allele were shown
to progress more rapidly to aplastic anemia but not to MDS
or AML (307–309). Moreover, malformations were only more
severe in two of three homozygous carriers, which indicates that
a deficient maternal genetic background might contribute to
this outcome (310). Maternal-produced aldehydes diffuse indeed
across the placenta and can thus damage the developing embryo’s
DNA, whereas embryo-derived ones can in turn be detoxified
by the maternal organism. An inappropriate in utero exposure,
such as an excessive maternal ethanol consumption during
gestation, would therefore aggravate not only the formation of
congenital abnormalities in FA but it provides also an intriguing
etiological link to analogous phenotypic changes that define
the alcohol embryopathy (308). Whether a disturbed aldehyde
detoxifying system might also be causatively involved in the
in utero initiation of childhood leukemias remains currently a
matter of speculation (307).

In addition to stalling and destabilizing DNA replication
forks directly, formaldehyde also selectively depletes BRCA2
via proteasomal degradation, a circumstance that poses a
special risk for heterozygous BRCA2 mutation carriers. In these,
formaldehyde-induced degradation can decrease the respective
protein levels below the otherwise protective one of normal
wild-type individuals and thereby potentiate their mutagenic
vulnerability (311).

Taken together, these observations have significant
implications for risk awareness and avoidance as well as
the clinical management of FA patients. On the positive side,
they offer new treatment opportunities, for instance in form of
ALDH2 agonists and the widely used diabetes drug metformin,
which acts as aldehyde scavenger. At least in mouse models, both
of them are able to delay the onset of BMF and malignancies as
well as improve hematopoiesis (263, 312, 313).

One remarkable feature of many heritable diseases is that
somatic mutations can occasionally autocorrect the particular
inherited gene defect in the respective cells (314). Such
reverting mutations transform a homozygous or combined
heterozygous state again back into a heterozygous functionally
compensated state, either through somatic recombination, gene
conversion or a compensatorymutation (314, 315). Although this
phenomenon is well-known in immunodeficiencies, its effects

are most probably still underappreciated. In BMF syndromes
such an autocorrection can spontaneously improve or even
resolve the specific underlying hematopoietic problem. Amongst
others, such spontaneous remissions have repeatedly been
documented in FA, dyskeratosis congenita, Diamond-Blackfan
anemia, Shwachman-Diamond syndrome and, more recently,
in the SAMD9- and SAMD9L-associated Mirage and ataxia-
pancytopenia syndromes, respectively (273, 287–293, 301, 316).
Heterozygous SAMD9L gain-of-function mutations decrease cell
proliferation. The loss of the mutation-carrying chromosome
7 in bone marrow cells therefore leads to the development of
MDS and acute myeloid leukemias, whereas a compensating
duplication of the normal allele in form of an uniparental disomy
(UPD) 7 or 7q is able to resolve the cytopenias (287–293).

The somatic appearance of a complete or partial UPD always
draws attention to regions that are usually highly relevant
for specific disease processes (317, 318). Such UPDs may
either contain duplicated gain of function mutations or, as
alluded to in the example above, eliminate them (317, 318). A
similar important consequence is the mere transformation of
a heterozygous to a homozygous state. In case of the HLA-
containing region on the short arm of chromosome 6, for
instance, it is clearly exerted through a selective pressure, since
the loss of one HLA haplotype is an important immune-
escape mechanism. It protects neoplastic cells from the immune
surveillance machinery and therefore also plays a crucial role for
disease recurrence after haploidentical stem cell transplantations
(319, 320). Contrariwise, such a haplotype loss is able to shield
hematopoietic cells from the destructive effects of autoimmunity,
as has been demonstrated in case of aplastic anemia (321).
The practical problems that arise from such a hematopoietic
revertant mosaicism is that it may lead to an ascertainment bias
and cause difficulties in identifying underlying disease-relevant
mutations (322).

The formation of such well-adapted clones might suggest
that such compensatory mechanisms are rare events. However,
there is ample evidence that this is definitely not the case.
Rather than being a life-long stable system the genome is a
highly dynamic one that is continuously modified and shaped
by ongoing mutational processes, which eventually promote the
appearance of cell clones and populations with an increased
survival fitness. The formation of somatic mosaicism is therefore
the rule rather than the exception, as exemplified by Davis et al.,
who observed a remarkable clonal heterogeneity and diversity
of lymphocytes in a patient with a Wiskott-Aldrich syndrome
(323). The continuous generation of such cellular variants and
the selective pressures they are exposed to is thus not only a
characteristic of the exceptional dynamics of neoplastic but also
of normal cells populations (324).

B-Cell Precursor Acute Lymphoblastic
Leukemia (BCP ALL)
Germline lesions that predispose to BCP ALL in children
comprise not only those which cause various cancer prone and
chromosomal syndromes but also other genuine gene disrupting
defects as well as high and low risk variants. The majority of these
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TABLE 2 | Chromosomal locations of GWAS-verified SNPs or genuine germline gene defects that predispose to the development of particular types of childhood ALL.

Chromosome region Candidate genes Type Function All subset References

2(q22.3) Not specified SNP – ETV6–RUNX1 (24)

3(q28) TP63 SNP P53 family of transcription factors ETV6-RUNX1 (325)

7(p12.2) IKZF1 SNP, gene defects Ikaros family of Zinc finger

transcription factors

Not specified (32, 172, 326, 327)

8(q24.1) MYC? SNP Proto-oncogene, BHLH

transcription factor

Not specified (24, 25)

9(p12) PAX5 Gene defects Paired box transcription factor Not specified (48, 328)

9(p21.3) CDKN2A & CDKN2B SNP Cyclin-dependent kinase Inhibitors Not specified (329–331)

9(p24.1) JAK2 SNP Tyrosine kinase BCR-ABL1-like (49)

10(p12.2) PIP4K2A SNP Kinase Not specified (329, 332)

10(p14) GATA3 SNP GATA family of transcription factors BCR-ABL1-like (332, 333)

10(q21.2) ARID5B SNP Transcription coactivator Hyperdiploid (26, 32, 326, 327)

10(q26.13) LHPP SNP Phosphatase Not specified (28)

11(p11.2) PTPRJ SNP Family of protein tyrosine

phosphatases

ETV6-RUNX1 (325)

12(p13.2) ETV6 Gene defects Proto-oncogene, ETS domain

family of transcription factor

Hyperdiploid (334–338)

12(q23.1) ELK3 SNP ETS domain family of transcription

factor

Not specified (28)

12(q24.1) PTPN11 Gene defects* Family of protein tyrosine

phosphatases

Hyperdiploid (297)

14(q11.2) CEBPE SNP bZIP transcription factor Hyperdiploid (23, 25, 32, 327)

16(p13.3) CREBBP Gene defects** Histone acetyltransferase Hyperdiploid Haas, unpublished

observation

17(p13.1) TP53 Gene defects*** Tumor-suppressor, transcription

factor

Hypodiploid (339–341)

17(q12) IKZF3 SNP Ikaros family of Zinc finger

transcription factors

Not specified (25)

17(q21.2) STAT3 SNP Signal transducer and transcription

activator

BCR-ABL1-like (49)

For a more general overview about ALL predisposition syndromes and ALL predisposing RASopathies see Kratz et al. and Cave et al., respectively (62, 243). *Noonan syndromes,

Rasopathy, **Rubinstein-Taybi syndrome, ***Li-Fraumeni syndrome.

affect genes that encode B-cell development and transcription
factors as well as components of various signal transduction
pathways (Table 2) (42, 297, 342).

The development of B lymphocytes, in particular, is
coordinated by specific regulatory transcription networks that
activate the respective B-lymphoid program and at the same
time oppress alternate cell fates (343). Somatic mutations in
several of these key regulators, such as IKZF1, TCF3, EBF1, and
PAX5, induce leukemic transformation by blocking normal B cell
differentiation, which then leads to the accumulation of leukemic
B-cell precursors. Although their role in leukemogenesis has been
known and explored already for quite some time, the awareness
that otherwise apparently inconsequential germline variants may
also exert a predisposing effect is quite new. The biological
relevance and functional consequences of some of these variants
has been confirmed in the meantime with appropriate in vitro
and in vivo experiments and test systems (23–26, 28, 332, 333).

Take for instance PAX5, a member of the “paired box” family
of transcription factors, which encodes the B cell lineage specific
activator protein that is expressed at early but not late stages

of B-cell differentiation (195). Out of the three up to now
reported families with highly penetrant germline variants, 13
carriers developed ALL (48, 328). In the two families, in which
the respective information was provided, all unaffected carriers
as well as those with ALL had normal immunoglobulin levels
and no evidence of an impaired B cell function at diagnosis
(328). Moreover, in line with Greaves two step model, leukemia
developed in mice only after exposure to common pathogens and
the acquisition of second hits in the IL7R/JAK3/STAT5 signaling
axis (344).

Another revealing example is IKZF1, which encodes IKAROS,
a member of a hematopoietic zinc-finger transcription factor
family (345–347). The mutational spectrum of human IKZF1-
associated diseases ranges from somatic to germline and
from haploinsufficient to dominant negative forms (171).
Somatic mutations occur in overall 15% of BCP-ALL and
especially in prognostic adverse genetic subtypes (348, 349).
Heterozygous germline mutations cause two different forms of
immunodeficiency. The haploinsufficient, autosomal dominant
late onset form of common variable immunodeficiency (CVID)
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has an incomplete penetrance, is clinically mild and concurs
with a marked decrease in B-cell numbers and immunoglobulin
levels as well as autoimmunity (175, 350, 351). The early-onset
dominant negative CVID, on the other hand, is characterized
by innate and adaptive immune defects of the B, T and
myeloid cell lineage (171). Notably, 2/29 of patients with the
late onset form developed B-ALL and 1/7 patients as well as
another independently reported one with the early onset form
developed T-ALL (171, 346, 351). Based on these observations,
Churchman and colleagues screened remission samples from
4,963 childhood ALL cases, identified a total of 28 unique IKZF1
variants in 43 and succeeded to prove a functional consequence
in 22 of them (172, 173). Evans et al. even attempted to
elucidate the influence of a parental environmental exposure
on such leukemia-predisposing risk alleles (352). They found
some preliminary albeit hitherto unexplainable evidence that
the IKZF1 risk genotype might have a stronger effect if the
mother took folic acid or if the father did not smoke prior to
pregnancy (352).

Finally, Auer et al reported a first intriguing example of a
“double-hit one-pathway” scenario, in which the biparental
inherited combination of two rare germline variants, JAK2
(G571S) and STAT3 (K370R), whose products synergistically
interact in the same disease-relevant JAK/STAT signal
transduction pathway, is obviously sufficient to induce a
Ph-like BCP-ALL (49).

CONCLUDING REMARKS

During their entire development and ongoing existence, both
the immune system as well as malignant diseases need to
adapt themselves to highly variable and continuously fluctuating
environmental conditions, which requires a high flexibility that is
largely driven by a combination of interacting antagonistic as well
as synergistic deterministic events and regulatory probabilities.
“Immunodeficiency” and “tumor susceptibility” are thus two
closely intertwined concepts, whose original understanding was
based on easily explicable clinical symptoms as well as certain
genetic norms. As long as these were based on such more
or less simple phenotypic and genotypic features, one did not
require any further explanatory definitions. However, the switch
from phenotypic to genetic ascertainment programs include
now much less obvious disease categories, healthy carriers as
well as only vaguely defined potentially predisposed individuals.
Although this approach enables of course unprecedented insights
into the fine-scale structural and regulatory organization of
biological system, the boundaries of classification standards get
increasingly blurred, which goes hand in hand with the awareness
that it becomes increasingly difficult and virtually impossible to
define either of these terms in an unambiguous manner anymore.
The more closely one looks, the harder it gets to find genes that
are not in one or the other way part of this game.

In his highly recommendable and readable book “Tending
Adam’s garden,” Irun Cohen portrays the immune system as
a cognitive system (353). Like its prototypic equivalent, the
brain, it learns through individual experience and thereby forms
a functionally highly efficient, flexible, and to some extent
also redundant interactive structure. As Cohen pointed out, a
particular gene may only become essential once the system has
organized itself around it so that thereafter the system becomes
dependent on it. In case this particular gene is already defective at
the beginning, the system often can compensate for this loss and
organize itself around an alternative gene, which then becomes
the essential one.

Thus, organizational entities depend not only on distinct
features of particular sub-units but even more so on their
functional interactions. In case of the immune system, such
multi-component, self-emergent networks comprise a variety
of distinct cellular as well as humoral host constituents, but
also a manifold of environmental factors, such as the maternal
immune system, the microbiome, infectious agents, as well as
physical and chemical agents, that co-govern and modulate, but
often also interfere and disrupt its normal development during
different stages.

Thus, organizational entities depend perhaps less on the
appropriate function of particular genetic sub-units alone but
much more on the successful interaction of their cellular and
humoral products, an observation that is readily evident in case
of genetically determined developmental disorders that can cause
both immune system deficiencies as well as malignant diseases.

The essential implication of Cohens’ model is that we onlymay
become more successful in curing such disease when we begin to
understand the decision-making processes of the immune system
rather than that of the effects of individual components alone.
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