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Recently, Kuipers et al.1 reported an exciting devel-

opment: the first disease-focused, locus-specific

mutation database (LSDB), developed through the

automated extraction of mutation data from full-text

articles taken from the scientific literature. Although

this report clearly constituted a landmark in its field,

neither the idea nor the methodology is entirely

new, since Horn et al.2 successfully extracted point

mutation data reported (mainly in an evolutionary

context) in G protein-coupled receptors and nuclear

hormone receptors from full-text literature some

years ago. Since then a range of different approaches

has been attempted, with varying degrees of

success.3–6 Kuipers et al.1 employed their own

search tool, Mutator, however, specifically to extract

disease-related missense and nonsense mutation

data from the scientific literature, with a view to

constructing an LSDB for Fabry disease (FMDB)

containing mutations in the a-galactosidase (GLA)

gene. Briefly, these authors employed a disease-

oriented PubMed keyword search to identify rele-

vant articles from the literature to be downloaded.

The full text of relevant publications was then auto-

matically screened for mutation data, and those

mutations found to occur in amino acid residues that

appeared to match the GLA protein sequence were

selected for inclusion in the database. Although the

results appear at first glance to be impressive, they

warrant closer inspection.

Using Mutator, Kuipers et al.1 identified 367

‘unique GLA gene mutations’ (listed in their

Supplementary Table), 108 of which they claimed

to be absent from the Human Gene Mutation

Database (HGMD7). Despite the fact that the

authors failed to evaluate Mutator with respect to

‘standard’ performance measures (eg precision and

recall), their tool appears to be a significant

improvement over previously published methods,

particularly those that simply screened PubMed

abstracts rather than full text.6,8–12. In their com-

parison with HGMD data, however, Kuipers et al.1

appear to have used the somewhat outdated (but

nevertheless freely available) online version of the

database (http://www.hgmd.org) rather than the

up-to-date subscription version, HGMD

Professional (http://www.biobase-international.

com/pages/index.php?id=hgmddatabase). We

examined the 108 GLA mutations claimed to be

absent from HGMD, and found that 48 were actu-

ally present in HGMD Professional. Of the remain-

der, seven were listed in HGMD under an

alternative mutation type (eg small indels), four still

remained unresolved (in that the precise nature of

the nucleotide change was unclear or ambiguous in

the original report), while 24 were non-Fabry

disease false positives (see below). The remaining

25 mutations (�7 per cent of the total number of

bona fide GLA mutations), reported in 12 different

papers, appear to have been inadvertently omitted

by HGMD. This is most likely because (i) they

were mentioned only briefly within the text of the

article concerned and (ii) no hint of the articles’
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mutation content could have been gleaned from

inspection of article titles, abstracts or keywords.

False negatives appear to be less of a problem than

false positives, with Mutator failing to recognise

only nine of the GLA mutations logged by

HGMD Professional.

The success of Mutator in identifying these

hitherto latent lesions certainly testifies to the

future potential utility of automatic tools designed

to search for and extract mutation data directly

from full-text articles. Indeed, we are currently

exploring ways of incorporating automated full-text

searching into HGMD’s mutation identification

strategy. In terms of the currently available version

of the Mutator program, however, there would

appear to be a significant problem with false posi-

tives. As mentioned above, when we carefully

examined the 108 identified GLA mutations that

were claimed to be absent from HGMD, 24 entries

(22 per cent) proved to be non-GLA/non-Fabry

disease false positives. Hence, even the insertion of

a step into the search program which was designed

to check that all identified mutations matched the

GLA protein sequence had not prevented Mutator

from identifying spurious mutation data (eg

mutations in other genes located within article

titles cited in the reference list that coincidentally

matched the GLA protein sequence etc.). Taken

together, it would appear that considerable work

remains to be done in order to optimise the per-

formance of the program, even for the missense/

nonsense mutation category that constitutes the

specific target mutation type for Mutator. As it

stands, a significant amount of manual validation

and curation would still need to be performed in

order for the GLA mutation dataset to be reliable

in terms of its content.

Assuming that these initial difficulties can be

overcome, what is the potential of this approach in

terms of scaling up the extraction of mutation data

for the .3,800 human genes13 currently known to

harbour mutations causing and/or associated with

human inherited disease? On the basis of the report

of Kuipers et al.,1 we would say that the long-term

prospects are likely to be very good, assuming that

the search criteria can be suitably refined, using

Boolean parameters, so as to exclude the false posi-

tives. As the authors discovered, however, each

gene/protein is likely to have its own particular

false positives to contend with. Thus, the search for

GLA mutations also pulled out mutations in the

Gla (g-carboxyglutamic acid) domains of various

coagulation factors. It follows that significant effort

must be devoted to avoiding such false positives on

a gene-wise basis. In this context, it is pertinent to

point out that there are likely to be a number of

categories of mutation that will be very difficult to

identify correctly (or alternatively to weed out) in

an entirely automated fashion. These are likely to

include:

† Somatic mutations, which, unlike germline

mutations, are not heritable and hence are not

causative of inherited disease. Some types of

gene (eg tumour suppressors) are characterised

by both germline and somatic mutations and

both types of lesion may often be reported in

the same paper. Careful reading of the manu-

script is required in order to identify the germ-

line mutations unequivocally.

† Mutations introduced by in vitro mutagenesis

and/or molecular modelling and which have

not actually been reported in nature (‘exper-

imentally generated mutations’) will be difficult

to distinguish automatically from genuine

disease-associated lesions.

† Mutations that have occurred in an evolution-

ary context (ie in orthologous proteins in

non-human organisms over evolutionary time)

will be difficult to distinguish in an automated

fashion from human disease-associated lesions.

† Mutations at residues that are abundant within

specific proteins (eg Gly residues in the col-

lagens) or which occur at identically numbered

amino acid residues in many proteins (eg the

initiator methionine codon) are likely to rep-

resent significant sources of error (especially of

the false-positive kind).

† Mutations other than missense and nonsense

mutations will require somewhat different

search procedures. Thus, identifying other

types of micro-lesion (ie micro-deletions,
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micro-insertions, indels, splicing-relevant and

regulatory mutations) and different types of

gross gene rearrangement (which together con-

stitute .40 per cent of reported mutations

causing human inherited disease; see HGMD7)

will not only have to take account of the DNA

sequence of the gene in question, but will also

require the adoption of new text-mining

techniques.

† Polymorphic missense variants that are neutral

with respect to function/clinical phenotype

and synonymous (silent) mutations that are of

direct pathological significance (eg via an influ-

ence on splicing) represent two categories of

mutation that will be difficult to respectively

exclude from, and include in, a given dataset

solely by automated methods.

† Mutations in genes whose proteins are (or have

been) subject to different amino acid number-

ing systems will be difficult to identify unequi-

vocally. Nowadays, protein numbering has been

largely standardised, so that the initiator meth-

ionine is invariably attributed þ1. In the litera-

ture, however, numbering systems for one and

the same protein frequently differ, depending

upon, for example, whether the initiator meth-

ionine is given as þ1 or –1 or whether the

amino acid numbering starts before or after the

pre-pro-peptide. Since newly discovered exons

can also alter amino acid numbering, number-

ing schemes tend to change over time and fre-

quently display inconsistencies between

different literature reports. Such difficulties are

not likely to be insuperable, however, particu-

larly if an up-to-date amino acid reference

sequence is used as a standard and the DNA

sequence context of the mutation can be cap-

tured and used in the validation process.

† Mutations reported only at the amino acid

sequence level, and which cannot be unequivo-

cally assigned a single valid nucleotide sequence

level alteration, will require further manual

curation.

† Mutations that appear at first sight to be

genuine but upon closer inspection prove to

have been mis-typed by the original authors of

the article (a very common example is provided

by Glu/Gln transpositions), will in all likeli-

hood represent a continual problem for purely

automated search procedures.

For all the above-mentioned reasons, it is, at

present, hard to see how the automated collation of

mutation data can be wholly accurate and reliable

without the subsequent deployment of labour-

intensive manual validation and curation steps.

Even as it stands, however, it is evident that the

automated data extraction tool described by

Kuipers et al.1 is likely to represent a very valuable

adjunct to the semi-automated data-collation pro-

cedures currently employed by both the LSDBs and

HGMD. The authors are therefore to be congratu-

lated for the remarkable degree of success that their

Mutator tool has already achieved at the pilot stage

of its development. While the prospect of next-

generation tools for the extraction and validation of

mutation data is awaited with keen interest, for the

time being we concur with the view expressed by

Winnenburg et al.14 and Caporaso et al.15 that the

most cost-effective and reliable approach to

mutation data collection and annotation is currently

for automated text-mining methods to be inte-

grated into the manual annotation process, and for

manual and automated approaches to be used in

concert to mine the biomedical literature for

pathological gene lesions.
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