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ABSTRACT

Although structures of many DNA-binding proteins
have been solved, they fall into a limited number
of folds. Here, we describe an approach that led to
the finding of a novel DNA-binding fold. Based
on the behavior of Type II restriction–modification
gene complexes as mobile elements, our earlier
work identified a restriction enzyme, R.PabI, and its
cognate modification enzyme in Pyrococcus abyssi
through comparison of closely related genomes.
While the modification methyltransferase was easily
recognized, R.PabI was predicted to have a novel
3D structure. We expressed cytotoxic R.PabI in
a wheat-germ-based cell-free translation system
and determined its crystal structure. R.PabI turned
out to adopt a novel protein fold. Homodimeric
R.PabI has a curved anti-parallel b-sheet that forms
a ‘half pipe’. Mutational and in silico DNA-binding
analyses have assigned it as the double-strand
DNA-binding site. Unlike most restriction enzymes
analyzed, R.PabI is able to cleave DNA in the
absence of Mg2þ. These results demonstrate the
value of genome comparison and the wheat-germ-
based system in finding a novel DNA-binding motif
in mobile DNases and, in general, a novel protein
fold in horizontally transferred genes.

INTRODUCTION

Determination of the 3D structure of DNA-binding pro-
teins has played a key role in the study of various cellular
genetic processes involving DNA, such as transcription,
replication, repair, mutagenesis and recombination.
Although many structures of DNA-binding proteins
have been solved, they fall into a limited number of
folds. Finding a novel DNA-binding fold and, therefore, a
novel mode of protein–DNA interaction from the point of
view of structural biology will broaden our understanding
of these processes, genomes and life. In the present
work, we introduce a new approach in search of novel
DNA-binding folds. This approach is based on the struc-
tural diversity of restriction enzymes and the behavior of
their genes as mobile elements.

Restriction–modification systems consist of two
enzymatic activities—namely, a restriction enzyme that
recognizes a specific DNA sequence and introduces a
double-strand break, and a cognate modification enzyme
that can methylate the same sequence and thereby render
it resistant to the restriction enzyme. Their genes are often
tightly linked and form a restriction–modification gene
complex. There are several lines of evidence that some
restriction–modification gene complexes behave as selfish
mobile genetic elements, similar to viral genomes and
transposons (1–3). These include their attack on the host
chromosome (1), the presence of restriction–modification
gene complexes on a variety of mobile elements, their

*To whom correspondence should be addressed. Tel: þ81 3 5449 5326; Fax: þ81 3 5449 5422; Email: ikobaya@ims.u-tokyo.ac.jp
Present address:
Masayuki Kamo, Intercyto Nano Science CO., LTD, Saito Bio-Incubator #1037-7-15, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



aberrant GC content and codon usage suggesting their
recent transfer from distantly related organisms (2,3), and
their association with genome rearrangements suggested
from comparison of closely related prokaryotic genomes
(4,5) and verified in the laboratory (6).

So far, restriction enzymes have been found to belong to
four evolutionarily unrelated superfamilies with different
folds (7). Initially, all the structurally characterized restric-
tion enzymes belonged to the PD-(D/E)XK superfamily,
which is represented by enzymes such as R.EcoRI and
R.EcoRV (8). Only recently was the structure of R.BfiI
solved, revealing a completely different 3D fold and
membership of this enzyme in the phospholipase D (PLD)
superfamily (9). A number of restriction enzymes were
also predicted to belong to the HNH superfamily (10,11),
and for some of these the predictions were confirmed by
mutagenesis and biochemical studies, e.g. R.KpnI (12).
The fourth group with a tentatively assigned different 3D
fold is comprised of a few restriction enzymes from the
GIY–YIG superfamily (11). However, for the majority
of restriction enzyme sequences, the structure has been
neither determined nor predicted, and it remains to be
determined if the so far ‘unassigned’ sequences belong to
one of the four ‘old’ superfamilies or to some other fold,
known or unknown.

Genome comparison is a powerful approach for the
identification of new restriction enzymes and accompany-
ing modifying enzymes because of the behavior of some
restriction–modification gene complexes as a mobile
element (2,3,7). A new restriction enzyme, R.PabI, which

catalyzes the cleavage of 50-GTAC generating a TA30

overhang, was found by comparing the genomes of
two hyperthermophilic archaea, Pyrococcus abyssi and
Pyrococcus horikoshii (13,14). R.PabI exhibited a new
pattern of sequence conservation and predicted secondary
structure that did not match any of the four canonical
restriction-enzyme motifs (Figure 1), prompting it as
a candidate for a new fold or a significant modification
of one of the known folds (14).
One problem encountered in pursuing the determina-

tion of the crystal structure of R.PabI was its toxicity to
the cells. The uninduced level of R.PabI killed Escherichia
coli cells even when the cognate methyltransferase M.PabI
(15) was co-expressed (M.W. and I.K., unpublished data).
In vitro translation systems, in contrast, can synthesize
almost any protein, often with high accuracy and at a
speed approaching in vivo rates (16). Among the cell-free
systems, the wheat-germ-based system is of special interest
(17): the translation machine has little codon preference;
translation is uncoupled from transcription, so that
digestion of the template DNA by the produced restriction
enzyme does not take place; and the system has little
discrimination between methionine and selenomethionine
(SeMet), a characteristic that is useful in crystal structure
determination.
In this study, we produced R.PabI proteins, unlabeled

and SeMet-labeled, in this wheat-germ-based system,
obtained their crystals and solved their structure.
The crystal structure, mutagenic analysis and in silico
modeling of DNA binding of R.PabI reveals that the

Figure 1. Sequence alignment between R.PabI and its homologs identified in protein sequence databases. jhp0455 and HPAG1_0479 are putative
translation products of open reading frames (ORFs) from Helicobacter pylori strains J99 and HPAG1. HP0504þ 0505 and Hac_0824þ 0825 are
reconstructed translation products of pseudogenes disrupted by frameshift mutations in H. pylori 26695 and H. acinonychis str. Sheeba. CUP0001 is
a product of an incomplete ORF from Campylobacter upsaliensis RM3195. Amino acid residues with similar physico-chemical properties are
indicated by color (hydrophobic—gray, negative—red, positive—blue, polar—green, cysteine—brown). Identical residues are highlighted. Residues
analyzed by alanine mutagenesis in this work are indicated in the top by ‘-’ (mutant is partially active) or ‘¼’ (mutant’s activity is undetectable).
The bottom panel shows secondary structure determined for R.PabI.
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protein adopts a novel fold and a novel mode of protein–
DNA interaction.

MATERIALS AND METHODS

Large-scale preparation of R.PabI in wheat-germ-based
cell-free expression system

The new nomenclature and abbreviations for restriction
enzymes and their genes (18) were used. P. abyssi GE5
genomic DNA was provided by Dr Yoshizumi Ishino
(University of Kyushu, Japan) (14). The pabIR ORF
was amplified from this DNA template by polymerase
chain reaction (PCR) as described previously (14). It was
inserted into a pEU3b vector (19), which is transcribed
with SP6 polymerase. The insert was confirmed by DNA
sequencing. This plasmid was named pMW40.
For crystallization, wild-type R.PabI was synthesized

in a large-scale, wheat-germ-based, cell-free translation
system. An extract was prepared from purified wheat
embryos, and endogenous small molecules such as amino
acids were removed by gel filtration (20). The mRNA
was transcribed in vitro from the R.PabI gene that was
cloned into a vector specialized for cell-free expression (see
above). A large-scale cell-free protein production was
carried out using the bilayer reaction method (21). Briefly,
0.5ml of the translation mixture containing 60 A260 units
of the extract, the synthesized mRNA and all of the
necessary ingredients such as 20 amino acids (250 mM
each), ATP, GTP, energy-generating system and ions were
placed on the bottom of a well in a 6-well plate (3.2 cm in
diameter, Asahi Techno Glass Corp.), then 5.5ml of the
substrate mixture containing the same ingredients except
for the extract and mRNA was carefully overlaid. After
incubation at 268C for 12 h, the protein synthesis solution
containing R.PabI was heated at 908C for 15min and the
denatured proteins and insoluble materials were removed
by centrifugation (12 000 r.p.m., 48C, 15min). The super-
natant was purified through a Heparin–Sepharose affinity
column (GE Healthcare). Twenty-four wells of the above
reaction gave 3mg of R.PabI with a purity of approx-
imately 90%. For the preparation of SeMet-labeled
protein, similar reactions were carried out in the presence
of SeMet (250 mM) instead of methionine in the reaction
solutions. The content of endogenous methionine in
the translation mixture was measured as 2 mM by an
amino-acid analyzer (L-80800, Hitachi), so that the
fraction of SeMet incorporated was calculated to be
more than 99%.

Crystallization

The crystallization conditions of R.PabI were screened by
the sparse-matrix method using Crystal Screen HT, Grid
Screen PEG6000 (Hampton Research) and Wizard I & II
(Emerald Biostructures). Because of the low solubility
of R.PabI, we used a low concentration (0.5mg/ml) for
the first screening. The crystallization experiments of
R.PabI were performed by the sitting drop vapor diffusion
method. Crystallization drops were made by mixing 1 ml of
the protein solution [0.5mg/ml protein in 10mM Tris-HCl
(pH 7.5), 200mM NaCl and 1mM dithiothreitol (DTT)]

and an equal amount of reservoir solution. The best
crystal of R.PabI appeared under the reservoir conditions
containing 100mM MES (pH 6.0) and 5% PEG6000
2 weeks later. Crystals of the SeMet variant of R.PabI
were obtained under identical crystallization conditions,
but were too small to collect data for enough resolution.
Larger crystals of the SeMet variant were obtained when
the protein solution was concentrated to 1.9mg/ml and
the buffer composition was changed to 10mM MES
(pH 6.0), 200mM NaCl, 10mM MgCl2 and 10mM DTT.
The best crystal of the SeMet variant of R.PabI was grown
under the reservoir conditions containing 50mM MES
(pH 6.8) and 1% PEG6000 using concentrated protein
solution 1 day later.

Structure determination

Our data collection and refinement statistics are summar-
ized in Table 1. X-ray diffraction datasets of native and
SeMet variant crystals of R.PabI were collected at the
BL-5A and NW-12 beam-lines at the Photon Factory
(Tsukuba, Japan), respectively. All the measurements
were carried out under cryogenic conditions (95K) using
20% ethylene glycol (final concentration) as the cryopro-
tectant. A native crystal of R.PabI diffracted X-rays to
a resolution of 3.0 Å. The X-ray diffraction data were
integrated and scaled with HKL2000 (22). The native
R.PabI crystal belonged to the space group P21 with the
unit cell dimensions of a¼ 84.6 Å, b¼ 114.0 Å, c¼ 89.2 Å
and b¼ 116.38. Consideration of the values of VM suggests
that this crystal has six protein molecules per asymmetric
unit (VM¼ 2.5 Å3/Da; (23). Diffraction data of the SeMet
variant of R.PabI were collected and processed in the
same way. A SeMet variant crystal diffracted X-rays to a
resolution of 2.9 Å and belonged to the same space group

Table 1. Summary of data collection and refinement statistics

R.PabI SeMet variant
of R.PabI
Peak

Wave length (Å) 1.0000 0.9792
Space group P21 P21
Unit cell dimensions

a (Å) 84.6 84.6
b (Å) 114.0 114.2
c (Å) 89.2 89.4

b (deg.) 116.3 116.3
Resolution (Å) 2.00–3.0

(3.11–3.00)
2.00–2.9
(3.00–2.90)

Completeness (%) 99.3 (96.7) 100.0 (100.0)
Unique reflection 30 687 33 650
Averaged redundancy 3.6 (3.4) 7.5 (7.6)
Rmerge (%) 6.7 (28.3) 7.7 (28.0)
I/sigma 14.8 (4.5) 17.8 (5.1)

Number of non-hydrogen atoms
Protein 10599
Water 0

Rcryst/Rfree (%) 24.9/31.8

R.m.s. deviations from ideal values
Bond length (Å) 0.009
Bond angle (deg.) 1.5

Average B-factor 65.4

Note: Values in parentheses are for the highest-resolution shell.
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with the native crystal, P21 with the unit cell dimensions of
a¼ 84.6 Å, b¼ 114.2 Å, c¼ 89.4 Å and b¼ 116.38.

The crystal structure of R.PabI was determined by the
single wavelength anomalous diffraction (SAD) phasing
method using the diffraction data set of the SeMet variant
of R.PabI. The selenium substructure was solved using
the SnB program (24). A total of 19 selenium sites were
determined in the asymmetric unit. The initial phase was
calculated with the program SHARP (25) using the
coordinates of selenium sites solved by SnB program.
Phase calculation resulted in an overall figure of merit
(FOM) of 0.31 for the resolution range of 20–2.9 Å. After
that, density modification and initial model building was
performed with the program RESOLVE (26). Molecular
models of 759 residues (56% of the total) were auto-
matically built with this calculation. The initial model of
the SeMet variant of R.PabI was refined and manually
rebuilt with the programs CNS (27) and XtalView
(28), using 10% (randomly chosen) of the reflections
to calculate the Rfree. The partially refined model was
transformed into five other subunits using the program
MOLREP (29) in CCP4 (30), and refined with the prog-
ram REFMAC5 (31) with non-crystallographic symmetry
(NCS) restraints. The crystal structure of native R.PabI
was determined by a molecular replacement method
using the coordinates of the SeMet variant structure of
R.PabI with the program MOLREP. The final structure
of R.PabI was refined and built using a native crystal
diffraction data set (20–3.0 Å) with the program CNS
(without NCS restraints) and XtalView. We did not use
NCS refinement in the final step of refinement because
R-factor and Rfree values became worse when refined with
NCS restraint. We could not build coordinates of water
molecules in this structure. Though we see some electron
density peaks around R.PabI molecules, we could not
clearly determine whether they were from water molecules
or simply from noises.

Construction, small-scale expression and assay
of R.PabI mutants

Site-directed mutagenesis of pKI2 (¼pEU-NII::pabIR,
made from pEU-NII, a vector in PROTEIOSTM

kit below) with specific primers was carried out using
QuikChange Site-directed MutagenesisTM kit (Strata-
gene), following the manufacturer’s instruction. The
synthetic oligonucleotides used (synthesized by Operon
Biotechnologies) are listed in Supplementary Table 1. All
the mutant plasmids were checked by DNA sequencing
(Takara Bio). Wild-type R.PabI protein and the R.PabI
mutant proteins were synthesized using PROTEIOSTM

ver.2 (TOYOBO), a kit for small-scale, wheat-germ-based,
cell-free protein synthesis, by the bilayer method as des-
cribed previously (14,19). After synthesis, we heated the
resulting solution at 908C for 5min to remove denatured
proteins and insoluble materials by centrifugation.
Expression of the R.PabI mutants in a soluble form
in the supernatant was confirmed by SDS–PAGE.

To assess the restriction activity of the mutants,
a 2559 bp linear substrate DNA with a single recogni-
tion sequence (50-GTAC) was treated as described

previously (14). Its cleavage by R.PabI produces two
DNA fragments of 563 bp and 1996 bp, respectively (14).
The reaction mixture contained 50mM MES (pH 6.5 at
258C), 100mM NaCl, 0.2 mg of this DNA and appropriate
concentrations of each of the above R.PabI enzyme
preparations. The mixture was incubated at 758C for 1 h.
To remove small molecules of mRNA present in the
wheat-germ extract, the reaction mixture was treated with
RNase A (14). The DNAs were separated by electrophor-
esis through a 1% agarose gel in TAE buffer (¼ 50mM
Tris-HCl pH8.0, 20mM CH3COONa, 1mM EDTA) and
visualized with ultraviolet light after ethidium bromide
staining.

DNA binding

The heated supernatant of R.PabI (wild-type and R32A
mutant) were incubated with 5 nM of 33P-labeled, 40-mer
double-stranded oligonucleotides containing one (#1: 50

GGACGCTTCACCGGATGTACAGGCATGCGACG
ACCCCTAG 30 and its complement) or no R.PabI site
(#2: 50 GGACGCTTCACCGGATGCTAAGGCATGC
GACGACCCCTAG 30 and its complement) in a buffer
(50mM MES, pH 6.0 and 100mM NaCl) at 258C for
10min. The free DNA and enzyme-bound DNA were
separated on 8% native polyacrylamide gel in 1�TBE
buffer (50mM Tris-HCl, pH 8.0, 50mM boric acid, 1mM
EDTA) and autoradiographed.

R.PabI DNA cleavage in the absence of added
divalent cation

R.PabI was prepared as described previously (14). In brief,
the protein was synthesized using wheat-germ-based cell-
free protein synthesis system PROTEIOSTM (TOYOBO)
and purified by heat treatment and chromatography
through Heparin-Sepharose, followed by dialysis and
concentration. To assess the restriction activity, the same
substrate described in the section of mutant analysis was
used. The reaction mixture contained buffer A (¼ 50mM
Tris–HCl, pH 7.5, 100mM NaCl, 1mM DTT), 0.2mg of
this DNA, the above purified R.PabI, and either 1mM
EDTA or 10mM MgCl2. The mixture was incubated at
858C for 1 h. The DNAs were separated by electrophoresis
through 1% agarose gel in TAE buffer (¼ 50mM
Tris-HCl pH 8.0, 20mM CH3COONa, 1mM EDTA)
and visualized with ultraviolet light after ethidium
bromide staining.

In silico analysis

Structure was analyzed with CCP4 (30) and APBS (32)
and visualized with PyMol. The DNA-binding region
was predicted using the PreDs program (33). PreDs
classifies each residue on the surface of a protein to the
DNA-binding and non-DNA binding regions using a
statistical evaluation function (34). The evaluation func-
tion was developed based on an analysis of the shape
and electrostatic properties of DNA-binding regions in
structures of 63 protein–DNA complexes. GRAMM 1.03
(35) was used in the low-resolution docking mode
to generate 2000 alternative docking orientations between
the idealized symmetrical structure of R.PabI dimer
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(two identical copies of chain A) and idealized B-DNA
24-mer with the PabI site. The construction of an ideal-
ized dimer was necessary for docking because chain B
exhibited missing density in the predicted DNA-binding
interface. All 2000 orientations were filtered to retain only
those matching the DNA-binding site that was predicted
using PreDs (33) and clustered. The variant with the best
shape complementarity and minimal number of clashes
was refined manually to obtain symmetrical positioning
of B-DNA to each monomer of R.PabI.

RESULTS

Preparation in wheat-germ-based cell-free protein
synthesis system

Our attempts to establish recombinant plasmids for
expression of R.PabI in E. coli strains were not successful,
apparently because even the slightest expression of this
4 bp cutter is toxic to the cells. We were, however, able
to prepare R.PabI in the wheat-germ-derived, cell-free
translation system (19), in a native form and in a form
with SeMet substitution, in amounts that were sufficient
for crystal structure determination (Materials and
methods section). After synthesis in vitro, the solution
containing R.PabI, which is hyperthermoresistant (14),
was heated at 908C for activation (14) and for eliminat-
ing most of the endogenous proteins by centrifugation.
R.PabI was purified through a Heparin–Sepharose affinity
column. The above reaction gave 3mg of R.PabI of
approximately 90% purity. Selenomethionyl R.PabI was
prepared using similar reactions, except for the inclusion
of SeMet instead of methionine. The content of SeMet
incorporated was calculated to be more than 99% of the
total methionine residues from the ratio of methionine
and SeMet in the reaction solution (see Materials and
methods section).

Structure determination

The structure of R.PabI was solved by the single wave-
length anomalous diffraction (SAD) method. The current
model has been refined to an R-factor of 24.9% (Rfree

31.8%) as the diffraction data 20–3.0 Å resolution covers
96% of the total number of atoms (AB, CD and EF
dimers of R.PabI). Due to the poor electron densities and
low resolution, we could not build or sufficiently refine the
structure of several residues in the N-termini of subunit B,
D and F and in some loop regions. Though magnesium
ion, frequently used in the catalytic reaction of Type II
restriction endonucleases, was included in the SeMet
R.PabI crystal, we could not detect binding of magnesium
ion to SeMet R.PabI molecule. PROCHECK (36)
analysis indicates that 96.3% of the residues were in
the most favored or additional allowed regions in the
Ramachandran plot (37).

Overall structure: a novel fold

The overall structure and topology of the R.PabI proto-
mer are illustrated in Figure 2A and B. The R.PabI
protomer is composed of 10 b strands, 5 a helices

and 2 310 helices. The R.PabI monomer folds into a a/b
structure with a topology of bbbb310baaabbbb310baa. Six
b strands—b4–b3–b5–b9–b8–b7—form an extended anti-
parallel b-sheet that is curved to form an extended groove,
which is the unique architecture of R.PabI.
Approximately half of the convex surface of this b-sheet
forms a sandwich with a nearly perpendicular additional
antiparallel b-sheet that is formed by the N-terminal
b-hairpin (strands b1 and b2) and strand b10 (see also
Supplementary Figure S2). Finally, two pairs of a-helices
form an interlocked bundle, which is partially inserted
into one side of the sandwich and covers the other half of
the convex surface of the main b-sheet.

A

B

C

Figure 2. Structure of R.PabI. (A) The protomer structure of R.PabI
(subunit A). Color coding runs from blue at the N-terminal region to
red at the C-terminal region. Secondary structure assignments are
labeled on the ribbon model. (B) Topology diagram of R.PabI dimer.
Helices and strands are shown as cylinders and arrows, respectively.
Antiparallel b-sheets consisting of b4–b3–b5–b9–b8–b7–b70–b60

and b6–b7–b70–b80–b90–b50–b30–b40 form two half-pipe structures.
(C) Stereo diagram of the dimer structure of R.PabI. One protomer
is colored in light blue (a and 310 helices) and pink (b strands), and the
other is colored in gray.
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Searches of the Protein Data Bank with a number
of programs (DALI, VAST, TOPSCAN, FATCAT and
SSM) indicate that there are no proteins with a globally
similar 3D structure to the overall fold of R.PabI.
We found only partial matches: the fragment 134–207
of R.PabI shows limited similarity to the gelsolin fold
(Supplementary Figure S1), whereas the helical bundle
(aa 78–104 and 194–222) has an analogous substructure
in a globally dissimilar fold of a carotenoid-binding pro-
tein (1m98 in the PDB, data not shown). Thus, the R.PabI
monomer exhibits a novel fold. This fold is partially
similar to that of the b barrel motif in lipocalin present in
human tears (38), although R.PabI possesses only half
of a side of the barrel and exhibits a different b–strand
topology. Thus, we refer to this fold as a ‘half pipe’.

Homodimerization of R.PabI is mediated by the
very long b7 strand (Figure 2A) of both protomers and
a highly curved anti-parallel b-sheet is formed by strands
of both protomers (residue range of 128–141). By this
intermolecular interaction, the anti-parallel b-sheet
forming the half pipe structure is extended by 2 bstrands
(b4–b3–b5–b9–b8–b7–b70–b60; Figure 2B and C). The
buried surface area of the R.PabI dimer is 3198 Å2, which
is equivalent to 12.8% of the total surface area.

Prediction of active sites

Mapping of the electrostatic potential on the molecular
surface of dimeric R.PabI reveals that a large patch with

positive charges encompasses the extended groove that
is formed between two protomers (Figure 3A), which
suggests that this extended groove can interact with the
negatively charged target DNA. In fact, this groove was
also predicted to be the DNA-binding region by the PreDs
program (Figure 3B), which takes into account the shape
and electrostatic properties of the molecular surface (33).
Two pairs of b-hairpins (b3/b4 and b8/b9) protrude from
each monomer into the concave side of the sheet, forming
a very rugged groove (Figure 2C).
Structural analysis of R.PabI also enables prediction of

residues involved in sequence recognition and catalysis of
phosphodiester bond cleavage. Charged or neutral resi-
dues located in the groove, such as Lys30, Arg32, Lys34,
Glu63, Gln65, Tyr134, Lys152, His153, Lys154, Gln155,
Arg156 and Gln161, could be involved in sequence recog-
nition and cleavage. Interestingly, some of these residues
were predicted to be involved in catalysis and/or DNA
binding by amino acid sequence alignment (14).

Mutant analysis

To evaluate functional importance, we constructed ala-
nine-substitution mutants for 13 residues—Lys30, Arg32,
Lys34, Glu63, Gln65, Tyr134, Lys152, His153, Lys154,
Gln155, Arg156, Gln161 and Tyr165—and expressed them
in the wheat-germ-based in vitro translation system.
Specific DNA cleavage by approximately the same
amount (as estimated by SDS-PAGE) of the soluble form

Figure 3. A model of R.PabI complexed with DNA. (A) Mapping of the electrostatic potential (as calculated by APBS tools) onto the surface of the
R.PabI structure in a low-resolution model of a complex with DNA. The blue color indicates a positive charge and the red color indicates a negative
charge. The DNA is shown in gray, with specifically recognized nucleotides in light orange. (B) DNA-binding residues (predicted by PreDs) mapped
onto the surface of R.PabI structure in a low-resolution model of a complex with DNA. The residues that are predicted to bind DNA are shown in
red, whereas the residues that are predicted not to be involved in DNA binding are shown in light gray. The DNA is shown in green, with specifically
recognized nucleotides in light orange. (C) Functionally important residues of R.PabI. The protein is shown as gray ribbons together with the
transparent surface of a space-filling view. The DNA is shown in green, with specifically recognized nucleotides in yellow. Residues in which a
mutation abolished cleavage activity of R.PabI are shown as red sticks. Residues in which a mutation decreased cleavage activity of R.PabI are
represented as blue sticks.
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of each mutant enzyme was examined with a linear
substrate DNA with a single recognition site. As a result,
Arg32Ala, Glu63Ala and Tyr134Ala mutants showed no
detectable cleavage activity, whereas Lys30Ala, Lys34Ala,

Gln65Ala, Lys152Ala, His153Ala, Lys154Ala, Gln155Ala,
Arg156Ala, Gln161Ala and Tyr165Ala showed a lower
activity than the wild-type R.PabI enzyme (Figure 4A and
data not shown).
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Amodel for DNA binding

To predict the DNA-binding mode of R.PabI, we
performed computational docking of a 24-mer ideal
B-DNA to the idealized symmetrical structure of the
R.PabI dimer (constructed from two identical copies of
chain A). The largest clusters of docking solutions were
consistent with PreDs prediction, by which DNA should
bind in the positively charged cleft. Figure 3 shows an
idealized averaged docking solution (corrected manually
to obtain symmetrical positioning of B-DNA to each
monomer of R.PabI). The binding surfaces show a
high degree of complementarity—loops comprising of aa
154–159 and aa 43–49 make contacts in the major groove
of DNA, and aa 25–29 make contacts in the minor groove.
However, the fit is not perfect, and a number of protein–
DNA clashes exist. Apparently, the structure of the
R.PabI dimer, especially the loop regions that interact
with DNA, and/or the DNA itself undergo conforma-
tional changes upon complex formation (e.g. the DNA
might be bent or distorted in some other way).

Despite the imperfect fit of B-DNA in the groove of
the R.PabI structure, the docking model is consistent
with the results of site-directed mutagenesis with the
mutants. Indeed, according to the docking model, side
chains of all residues except Glu63 and Tyr165 (Arg32,
Lys34, Gln65, Lys152, His153, Lys154) can form close
contacts with DNA (Figure 3C).

Functional analyses

We examined DNA binding of R.PabI in an electro-
phoretic mobility shift assay (Figure 4B left). Its binding
to an oligoduplex with one recognition sequence (see
Materials and methods for sequence) was stronger than
that to an oligoduplex without one. We then analyzed
Arg32 residue, which is located in the large groove (Figure
3C) and was shown to be essential for the cleavage activity
(see above). Binding of its alanine-substitution (R32A)
mutant protein turned out to be comparable for the
cognate DNA and non-cognate DNA (Figure 4B right),
a result indicating that Arg32 is responsible for specific
binding to the recognition sequence. This finding explains
why the R32A mutant is defective in cleavage activity
and provides further support for a model in which the
groove serves as the site of DNA binding.

Requirement of Mg2þ or other divalent cations for
DNA cleavage is a general feature of Type II restriction
enzymes with the exception of R.BfiI, a member of the
PLD/Nuc family (8,39). Interestingly, R.PabI was able
to cleave DNA in the absence of added Mg2þ (Figure 4C,
lane 3) as well as in the presence of 10mM Mg2þ (lane 4).
DNA cleavage was observed even in the presence of
10mM EDTA (data not shown). These results indicate
the unique nature of of R.PabI and its interaction with
the DNA.

DISCUSSION

The crystal structure of R.PabI restriction enzyme repor-
ted in this work reveals a new 3D fold. This result provides
a proof of principle for our strategy in the search for

restriction enzymes of novel folds through the following
steps: (i) to compare closely related genome sequences
to find evidence of recent horizontal gene transfer of
a putative restriction–modification gene complex, (ii) to
identify a methyltransferase gene through its conserved
motifs, (iii) to identify the restriction enzyme candidate as
an ‘ORFan’ with no detectable sequence similarity to any
protein family and (iv) to predict whether it is compatible
with known folds or is likely to assume a new fold.
One candidate protein obtained by this approach indeed
showed restriction enzyme activity (14), and here we
demonstrate that it assumes a novel fold. This result
demonstrates that bioinformatics can be useful not only
for the identification of homologies to previously known
structures, but also for the prioritization of candidates
for experimental validation of potential new folds.
Toxicity to cells represents a serious problem in

expressing proteins for structure determination. The
wheat-germ-based, cell-free translation system was able
to bypass this problem by providing the R.PabI protein
in a sufficient amount and quality for crystal structure
determination. SeMet labeling in vivo often results in
low incorporation and low productivity. The low incor-
poration causes heterogeneity in the protein sample, which
is not good for crystallization. In contrast, the wheat-germ
cell-free system has the advantage of efficient SeMet
labeling. To our knowledge, this report represents the first
scientific publication of crystal structure determination
using protein that has been entirely prepared by the
wheat-germ-based cell-free translation system.
In this report, we determined the crystal structure

of R.PabI at 3.0 Å resolution. Homodimer R.PabI forms
a highly curved anti-parallel b sheet with a positively
charged, extended groove on one side and a negatively
charged surface on the other. Comparison with the known
protein structures suggests that R.PabI exhibits a novel
fold. Mutational and in silico analyses of DNA-binding
indicate that R.PabI binds double-stranded DNA in the
groove (Figure 3). R.PabI also provides a novel model
of DNA binding. Although TATA-box binding protein
(TBP) recognizes TATA sequence by its curved anti-
parallel b sheet as R.PabI (40), its mode of DNA binding
is different from that modeled for R.PabI with DNA
(Figure 3C) with respect to the extent of DNA bending
and the mutual orientation of the protein and the
DNA. The exact mode of protein–DNA interactions
remains to be characterized through high-resolution
analysis of the co-crystal structure. We recently obtained
R.PabI-DNA co-crystals, which, however, have not
yet been solved completely (Miyazono, K. Watanabe,
M. Nagata, K. Kobayashi, I. and Tanokura, M.
unpublished data).
Mutational analysis has revealed that there are three

residues, Arg32, Glu63, and Tyr134 (present in b3, b5 and
b7, respectively), which are indispensable for the catalytic
activity of R.PabI. This evidence suggests that these
residues would be the catalytic residues. This prediction
is consistent with the results of docking simulation.
The distance between the two putative catalytic sites
of the R.PabI dimer is approximately 18 Å (the distance
between two midpoints of putative catalytic residues).
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Because the residues included in the b-strands forming the
curved b-sheet possess lower B values than the residues
in the other parts, the structure of the DNA-binding
groove and, especially, the distance of the two catalytic
sites of an R.PabI dimer, will not change significantly by
DNA binding. On the other hand, the structure of loops
connecting the b strands (b3–b4 and b8–b9), which show
higher B values, will change by DNA binding. Meanwhile,
DNA structure bound to R.PabI will be significantly
similar to the ideal B-form DNA in this model. If B-DNA
is cleaved with a 30-TA overhang, the distance between
two scissile phosphates is about 13 Å. The contacts
between the proposed catalytic residues and the scissile
phosphates in the DNA cannot be modeled with confi-
dence. However, as shown in Figure 3C, the position of
both scissile phosphates accurately matches the position
of essential residues; hence, we expect that only a minor
adjustment of the R.PabI active site occurs at DNA
binding. Our preliminary DNA binding analysis of the
extract containing the R32A mutant (Figure 4B) suggested
that Arg32 is also involved in specific recognition of
the recognition sequence. The definitive conclusion would
require the use of purified R.PabI and the R32A mutant,
preferably in connection with the analysis of the
R.PabI-DNA co-crystal structure that remains to be
solved.
Tyr134 is present in b7, with which two R.PabI proto-

mers interact to form a dimer (Figure 2B and C). We
do not yet know whether the lack of detectable restriction
enzyme activity in the Y134A mutant (Figure 4A) is due
to its defect in dimer formation. The dimerization will
be discussed again below.
The crystal structure of R.PabI has revealed a novel

fold with a new putative active site, which was previously
never observed for any restriction endonucleases, thus
raising the number of experimentally solved ‘restriction
endonuclease folds’ to three [PD-(D/E)XK, PLD and
half pipe]. The spatial localization of R.PabI secondary
structure elements is similar to that in PD-(D/E)XK
enzymes, but their directionality and connectivity are
different and significantly more complex (Supplementary
Figure S2A, B), arguing for its independent evolutionary
origin. R.PabI is also topologically different from other
two-layer proteins that use b-sheet for DNA binding,
e.g. nucleases from the LAGLIDADG superfamily or the
TBP (Supplementary Figure S2).
The great majority of restriction enzymes, in particular

members of the well-studied PD-(D/E)XK superfamily,
require Mg2þ (8). The requirement of divalent cations
was observed also for Type II restriction enzymes from
two other superfamilies, e.g. MboII, from the HNH
superfamily (11,41,42), and MraI from the GIY-YIG
superfamily (11,43). Thus far, R.BfiI, a member of
the PLD superfamily, was the only restriction enzyme of
experimentally determined structure that cleaves DNA
in the absence of metal ions (39). Here, we demonstrated
that R.PabI, despite having no structural similarity
to R.BfiI, also cleaves DNA in the absence of the Mg2þ

ion (Figure 4C). This is in accordance with the absence of
any metal ion peaks in X-ray analysis of a SeMet R.PabI
crystal prepared in the presence of Mg2þ and provides

another line of evidence for the unique nature of the
cleavage reaction by R.PabI and, by extrapolation, its
homologs. PD-(D/E)XK family requires Mg2þ (8), but
PLD/Nuc family does not (39). Requirement of divalent
cations was observed with MboII, a Type II restriction
enzyme similar to HNH family of homing endonucleases
(11,41,42), and MraI, a Type II restriction enzyme similar
to GIY-YIG family of homing endonucleases (11,43).

R.PabI protomers form a dimer structure, as is the case
with other Type II restriction endonucleases that recog-
nize a palindrome. Because the dimerization mode is an
important factor for the determination of the cleavage
pattern of DNA, there is a moderate correlation between
quaternary structures of restriction enzymes and their
DNA cleavage patterns (44). Restriction endonucleases
that cleave DNA with a 50 overhang, such as R.EcoRI and
R.BamHI, dimerize through contact of helices of the core
domain (a ‘forehead’ of the catalytic domain, where the
active site corresponds to a ‘mouth’), whereas enzymes
that produce blunt DNA ends, such as R.EcoRV and
R.PvuII, dimerize using mainly the N-terminal extension
(a ‘chin’ of the catalytic domain). Restriction endonu-
cleases that generate a 30 overhang, exemplified by R.BglI
and R.PabI, dimerize using one side of the subunit (a
‘cheek’ of the catalytic domain). R.PabI dimerization
involves interaction between b-strands that protrude from
the protein core of the monomers, which leads to mutual
extension of both b-sheets. This dimerization mode is
similar to that of R.BglI, despite the absence of tertiary
structural similarity on the level of the monomer.

The R.PabI homologs in Epsilon proteobacteria share
overall organization in secondary structure with R.PabI
(Figure 1). However, they are more similar to each other
than to R.PabI; for example, in the regions of b5 to a1,
b6 to b7 and around 3102. The region between b5 to a1
of R.PabI homologs is rich in acidic and basic residues
and poor in hydrophobic residues and, therefore, may
form a flexible loop. We do not yet know whether these
differences are related to the biology of these archaeal
and eubacterial groups or to the hyperthermophilicity
of R.PabI.

PabI sites (50 GTAC) are not rare in Pyrococcus genomes
but are extremely rare inHelicobacter genomes (REBASE),
probably through the selection by past attacks of the
R.PabI homolog. It is possible that PabI family were
originally present in Epsilon-proteobacteria and invaded
Pyrococcus more recently so that the number of sites
has not yet dropped. It is also possible that Pyrococcus
genomes with archaeal chromatin are more resistant to
these enzymes than eubacterial Helicobacter genomes (45).
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