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Abstract

Background Limited evidence suggests that female breast

tissue ages faster than other parts of the body according to

an epigenetic biomarker of aging known as the ‘‘epigenetic

clock.’’ However, it is unknown whether breast tissue

samples from healthy women show a similar accelerated

aging effect relative to other tissues, and what could drive

this acceleration. The goal of this study is to validate our

initial finding of advanced DNA methylation (DNAm) age

in breast tissue, by directly comparing it to that of

peripheral blood tissue from the same individuals, and to

do a preliminary assessment of hormonal factors that could

explain the difference.

Methods We utilized n = 80 breast and 80 matching blood

tissue samples collected from 40 healthy female partici-

pants of the Susan G. Komen Tissue Bank at the Indiana

University Simon Cancer Center who donated these sam-

ples at two time points spaced at least a year apart. DNA

methylation levels (Illumina 450K platform) were used to

estimate the DNAm age.

Results DNAm age was highly correlated with chrono-

logical age in both peripheral blood (r = 0.94, p\ 0.0001)

and breast tissues (r = 0.86, p\ 0.0001). A measure of

epigenetic age acceleration (age-adjusted DNAm Age) was

substantially increased in breast relative to peripheral blood

tissue (p = 1.6 9 10-11). The difference between DNAm

age of breast and blood decreased with advancing

chronologic age (r = -0.53, p = 4.4 9 10-4).

Conclusions Our data clearly demonstrate that female

breast tissue has a higher epigenetic age than blood col-

lected from the same subject. We also observe that the

degree of elevation in breast diminishes with advancing

age. Future larger studies will be needed to examine

associations between epigenetic age acceleration and

cumulative hormone exposure.

Keywords Breast cancer � Tissue aging � DNA

methylation � Epigenetics � Biomarker of aging � Estrogen �
Cell cycling

Introduction

We recently developed a multi-tissue age estimator (re-

ferred to as epigenetic clock) that accurately estimates

chronological age across multiple cells and tissues based
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on DNA methylation data [1]. The resulting age estimate is

referred to as ‘‘epigenetic age’’ or ‘‘DNA methylation age.’’

An increasing body of literature shows that the epigenetic

age estimate captures aspects of the biological age of the

underlying tissue. For example, the epigenetic age of blood

is predictive of all-cause mortality after adjusting for

chronological age and known risk factors of mortality

[2–5]. The epigenetic clock method has shown that certain

tissues exhibit age acceleration due to obesity [6], Alz-

heimer’s disease [7], Down syndrome [8], Parkinson’s

disease [9], HIV [10, 11], Huntington’s disease [12], life-

time stress [13], and menopause [14].

This epigenetic aging measure lends itself to contrasting

the biologic ages of different tissues of the human body

[15]. In an earlier publication, we presented evidence that

female breast tissue may be biologically older than other

parts of the body, using data from 82 publicly available

Illumina datasets from many different tissues [1]. However,

the earlier analysis surrounding epigenetic aging effects in

breast tissue had a methodological limitation, which was

that it was mostly based on normal adjacent tissues from

breast cancer patients. The only normal breast tissue

dataset (N = 23) in that study was used in the training data,

and there were two normal adjacent breast tissue datasets

(N = 81 and N = 27) from breast cancer patients from

TCGA used in the test data. Since cancer field effects and

other hidden biases may have confounded our original

analysis, the purpose of this study was to validate the

accelerated aging effect of female breast tissue using

matched specimens from the breast tissue and peripheral

blood from healthy female volunteers. Further, we aimed to

expand our original analysis by examining longitudinal

changes in epigenetic age in breast compared with blood

using matched samples within subject over time, and

adding a preliminary assessment of the influence of

menopausal status and reproductive factors on the epige-

netic age acceleration in breast and blood tissue.

Methods

Study specimens

This study made use of specimens from the Susan.

G. Komen Tissue Bank (KTB) at the Indiana University

Simon Cancer Center funded by Susan G. Komen Foun-

dation. This is a unique resource developed with the goal of

understanding normal breast biology, to better understand

the disruption that occurs during breast carcinogenesis, and

to accelerate breast cancer prevention research. Partici-

pants in the KTB are healthy tissue donors without a his-

tory of breast cancer.

We requested samples from a subset of healthy female

donors who had provided both peripheral blood and breast

tissue at two time points spaced at least a year apart,

focusing on groups selected for parity and menopausal

status: (1) pre-menopausal and nulliparous, (2) pre-meno-

pausal with C1 live birth, (3) post-menopausal and nulli-

parous, and (4) post-menopausal with C1 live birth. Study

specimens were anonymized, with detailed risk annotation.

Samples for our study were selected based on whether

the participant had specimens and data available at least

two visits, spaced at least 1 year apart. When more than

two longitudinal samples were present, we requested all

samples. The time interval between visits was allowed to

vary, provided it was greater than 1 year.

Tissue acquisition and processing

Breast tissue

Six core samples were taken from the upper outer quadrant

of the breast from each donor under local anesthesia.

Within 5 min of procurement, each core was placed into an

embedding cassette, and the cassettes were placed into 10%

buffered formalin and stored at room temperature. The

specimens were then embedded in paraffin. After flash

freezing in liquid nitrogen, frozen cores were placed in

labeled, chilled cryovials, and stored in liquid nitrogen at

-166.2 �C. 84 breast tissue samples, with 50 mg of breast

tissue per sample, were shipped to UCLA neurogenetics

core laboratory, where DNA and RNA were extracted

using the AllPrep kit. 38 of 84 samples had low DNA yield

([20 ll at 100 ng/ll) potentially because of increased

percent of fatty tissue and DNA extraction was repeated

using leftover tissue from these specimens, with adequate

yields in all but one case (0.8 lg total). Extracted DNA was

then used for bisulfite sequencing experiments.

Peripheral blood specimens

At the Komen Tissue Bank, blood was drawn into the

blood collection tube (EDTA 9 ml) and gently mixed.

After centrifugation, plasma was withdrawn and the

remaining red cells and buffy coat were stored at -80 �C
until DNA extraction. DNA was extracted from the blood

cells at Indiana CTSI Specimen Storage Facility lab using

an AutogenFlex Star (SN 401033) instrument and the

Flexigene AGF3000 blood kit for DNA extractions from

whole fresh and frozen blood. Four 50 ll aliquots of each

sample were pipetted into pre-labeled DNAstable tubes,

and stored at ambient temperature. These DNA samples

were then shipped to the UCLA for bisulfite sequencing

experiments.
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DNA extraction

AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, cat #

80224) was used for the DNA extractions for frozen tissue

samples. 30 mg of frozen tissue was lysed with 600 ul

guanidine-isothiocyanate-containing Buffer RLT Plus in a

2.0 ml micro centrifuge tube, and homogenized using

TissueLyser II (Qiagen) with 5 mm stainless steel beads.

Tissue lysate was continued with the AllPrep protocol for

simultaneous extraction of genomic DNA and total RNA

using RNeasy Mini spin column technology.

DNA methylation data pre-processing

Bisulfite conversion using the Zymo EZ DNA Methylation

Kit (ZymoResearch, Orange, CA, USA) as well as subse-

quent hybridization of the HumanMethylation450k Bead

Chip (Illumina, SanDiego, CA), and scanning (iScan,

Illumina) was performed according to the manufacturer0s
protocols by applying standard settings. DNA methylation

levels (b values) were determined by calculating the ratio

of intensities between methylated (signal A) and un-

methylated (signal B) sites. Specifically, the b value was

calculated from the intensity of the methylated (M corre-

sponding to signal A) and un-methylated (U corresponding

to signal B) sites, as the ratio of fluorescent signals

b = Max(M,0)/[Max(M,0) ? Max(U,0) ? 100]. Thus, b
values range from 0 (completely un-methylated) to 1

(completely methylated).

Laboratory performance

We analyzed 22 sets of duplicate samples (13 peripheral

blood and 9 breasts) in order to examine for concordance.

Blood samples and breast samples were randomized across

the Illumina chip to avoid confounding due to technical

sources of variation.

Statistical methods and analysis

Study variables

Survey data were available on age at tissue donation,

education, ethnicity, age at menarche, menopausal status,

age at menopause, gravidity, parity, duration of breast-

feeding (months), use of oral contraceptives, and hormone

replacement (ever used). We examined the covariate Total

Menstrual Years, which was calculated as the difference

between age at menopause if post-menopausal (replaced by

current age if pre-menopausal) and age at menarche.

Epigenetic biomarker of aging

The epigenetic measure of tissue age is calculated by

combining the DNA methylation levels of 353 dinucleotide

markers known as cytosine phosphate guanines or CpGs

[1]. The weighted average of these 353 epigenetic markers

gives rise to an estimate of tissue age (in units of years),

which is referred to as ‘‘DNA methylation age’’ (DNAm

age) or as ‘‘epigenetic age.’’ This epigenetic clock method

to estimate age applies to any tissue or cell type that

contains DNA (with the exception of sperm) and applies to

all 3 versions of the Illumina methylation array (Infinium

27K, Infinium 450K, and the most recent EPIC array).

Mathematical details and software tutorials for the epige-

netic clock can be found in the Additional files of Horvath

[1]. An online age calculator can be found at our webpage

(https://dnamage.genetics.ucla.edu).

Multivariate analysis

Pearson correlation was examined between DNAm age and

chronologic age in both breast and peripheral blood. We

used multivariate linear regression models in order to

examine relationships between DNAm age and the demo-

graphic and reproductive variables listed above. Because

DNAm age was available at multiple time points for both

breast and peripheral blood, we used linear mixed effects

models to examine the association between longitudinal

changes in DNAm age and the dependent variables listed

above.

CpG islands

To delve more deeply into the difference between breast

and blood tissue, we looked at the effect of chronological

age on the methylation levels of individual CpGs. It is

well known that CpGs islands, regions with a high fre-

quency of CpG sites located at or near the transcription

start site of genes, tend to gain methylation with age,

while those outside of islands tend to lose methylation

levels [16]. We calculated mean methylation at CpGs

within islands for each participant and compared these

values to those located in other chromosomal locations,

with separate analyses for breast and peripheral blood.

Pearson correlation statistic of methylation levels against

age was calculated for breast and peripheral blood. Non-

parametric group comparison tests (Kruskal–Wallis) were

performed to test for mean differences in methylation

between (1) island versus non-island CpGs, and (2) breast

versus peripheral blood groups.

Breast Cancer Res Treat (2017) 164:209–219 211

123

https://dnamage.genetics.ucla.edu


Results

Comparison of epigenetic clock in breast

and peripheral blood samples from healthy

women donors

We received DNA isolated from peripheral blood and

matched breast tissue samples from 49 healthy women who

donated at two or more time points. 9 of the women in our

sample did not have adequate breast tissue specimens and

our analysis was focused on the remaining 40 women who

had matched peripheral blood and breast samples. Indi-

viduals in our sample were aged 18–65 years, with 22 pre-

menopausal, 18 post-menopausal, 17 nulliparous, and 23

with at least one live birth. We analyzed data from n = 192

breast and peripheral blood samples from 2 or more time

points from 40 individuals. All samples were profiled in a

single batch using the Illumina 450k platform. 24 of these

samples were duplicates (13 peripheral blood, 9 breast).

Analysis of 24 sets of duplicate samples revealed excellent

concordance (correlation coefficient 0.97, p\ 0.0001)

between samples. Blood samples and breast samples were

randomized across the Illumina chip to avoid confounding

due to technical sources of variation.

An overview of our participant population is presented

in Table 1. Chronological age at the time of sample col-

lection ranged from 18 to 65 years (mean age = 42.5) at

the first time point, 21–70 years (mean age = 46.7) at the

second time point, with a mean age difference between the

two assessments of 4.2 years (range 2–7 years) between

the two assessments. There were two individuals who were

pre-menopausal at the first visit and post-menopausal at the

second. There were three individuals who were nulliparous

at the first visit and had at least 1 live birth at the second.

Our sample included 6 Hispanic, 1 African American,

and 1 East Asian woman. Two individuals were Ashkenazi

Jewish. We have previously shown that race/ethnicity has a

weak association with epigenetic age acceleration in blood

tissue [17]. However, race/ethnicity was not associated

with epigenetic age acceleration in this study, which might

reflect the low sample sizes.

As expected, DNAm age has a strong linear relationship

with chronological age in all samples, with the correlation

coefficient being higher for peripheral blood (q = 0.94,

p\ 0.0001 at the baseline visit) than for breast tissue

(q = 0.86, p\ 0.0001) (Fig. 1, panels A–C). Using the

Fisher r-to-z transformation, a z-value of 1.74 was calcu-

lated with a one-tailed p value of 0.04 revealing a signifi-

cant difference between the correlation coefficients of 0.94

and 0.86. To formally measure age acceleration effects, we

defined age acceleration residual for each sample by taking

the residuals from the linear regression of DNAm age on

chronologic age. This measure was significantly higher in

breast compared with blood (Fig. 1d).

When we examine the linear relationship between

DNAm age and chronologic age in breast and blood tissue

separately, we can calculate the distance between these two

regression lines to compare the difference in DNAm age

between breast and blood for varying chronologic ages. For

women aged 21 years, breast appears 17.5 years older than

blood, whereas for women aged 55 years, breast appears

8 years older than blood. The full distribution of tissue

differences of DNAm age between breast and blood is

shown in Fig. 2a. For the majority of participants, breast

was much older than blood. Interestingly, the degree of

separation in DNAm age between breast and blood is

greatest at younger ages, and there is convergence around

the age range that is typically associated with the meno-

pausal transition. The absolute difference in DNAm age

between breast and blood was inversely correlated with

advancing age (r = -0.53, p = 4.4 9 10-4) (Fig. 2b). We

found that the difference between breast and blood was

significantly higher in pre-menopausal women than in post-

menopausal women (p = 0.0098 using the non-parametric

Table 1 Overview of the KTB breast and peripheral blood methylation dataset

Age\ 50 years Age C 50 years Overall

Participants (n) 24 16 40

Age at first donation (mean, SD) 33.8 (8.8) 55.4 (4.3) 42.5 (12.9)

Years between first and second donation (mean, range) 3.9 (2–7) 4.7 (3–6) 4.2 (2–7)

Nulliparous (n) 12 5 17

No.of live births (mean, SD) 0.92 (1.0) 2.0 (1.4) 1.2 (1.2)

No. of pregnancies (mean, SD) 1.0 (1.3) 2.1 (1.5) 1.5 (1.5)

Pre-menopausal (n) 20 2 22

Total menstrual years (mean, range) 20.2 (5–37) 32.6 (13–41) 25.3 (5–41)

Age at menopause (mean, SD) 33.0 (7.2) 45.1 (6.3) 42.5 (8.0)

Participant characteristics for baseline demographic and reproductive variables
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Kruskal–Wallis test) (Fig. 2c). However, in multivariate

analyses, we found that there was not a significant asso-

ciation between difference in DNAm age between breast

and blood and menopausal status (b = 1.1 for pre-meno-

pausal women, p = 0.68) after adjusting for chronologic

age (b = -0.26, p = 0.02).

Longitudinal changes in DNAm age with advancing

chronologic age

Figure 3 shows individual trajectories of DNAm age over

the study interval in both breast tissue and blood. To

examine longitudinal changes in DNAm age over time

between breast tissue and blood, we defined the rate of

change in DNAm age as follows:

Rate of change in DNAm age

¼ ðDNAm age visit 2 � DNAm age visit 1Þ
ðAge visit 2 � Age visit 1Þ :

We can examine the full distribution of rate of change in

DNAm age in both breast and blood (Supplementary

Fig. 1a, b). We find that the rate of change in DNAm age is

significantly higher in blood (mean = 0.97) than breast

(mean = 0.61) (p = 0.038 using the non-parametric com-

parison Kruskal–Wallis test) in our sample (Fig. 2d).

While chronological age differences between the first

and second visits ranged from 2 to 7 years (mean 4.2 years,

SD = 1.5), the biologic age difference ranged from -2.6

to 11.7 years (mean 4.1 years, SD = 3.2) as measured by

peripheral blood, and the biologic age difference in breast

tissue ranged from -8.1 to 13.1 years (mean 2.0 years, SD

5.6). It is of note that while 4 peripheral blood samples

demonstrated a younger biologic age at visit 2 than visit 1,

a greater number of breast samples (N = 18) had an esti-

mated DNAm age that was younger at visit 2 than visit 1.

In only one woman, both breast tissue and blood had

estimated younger biologic ages at follow-up compared

with baseline. T-tests comparing the intraindividual dif-

ferences in age between visits 1 and 2 revealed no signif-

icant difference between change in DNAm age of blood

and change in chronologic age across visits (mean change

of 4.1 years vs. 4.2 years p = 0.81), while there was a

significant difference between change in DNAm age of

breast and change in chronologic age across visits (mean

change of 2.0 years vs. 4.2 years, p = 0.025).

Using a linear mixed effects model, we find that the

difference between DNAm age of breast and blood is

associated with chronologic age (b = -0.40, 95% CI

-0.26 to -0.54), and not associated with parity (b = -2.1

for nulliparous women, 95% CI -0.78 to 5.0) or menstrual

status (b = 0.34, 95% CI -3.4 to 4.0). There was a bor-

derline association between the difference between DNAm

age of breast and blood and total menstrual years

(b = 0.16, 95% CI -0.02 to 0.35).
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Fig. 1 Epigenetic clock

analysis of breast tissue and

peripheral blood. a Scatter plot

of DNAm age (y-axis) versus

chronological age (x-axis) for

breast tissue (red) and

peripheral blood (black)

samples at baseline visit,

correlation coefficient = 0.8,

p value = 5.5 9 10-19.

Regression lines demonstrate

the linear relationship between

DNAm age and chronologic age

in all samples (a), in breast

(b, q = 0.86, p value = 1.2 9

10-12) and in blood (c,

q = 0.94, p value = 2.4 9

10-19) separately. d This bar

plot shows the relationship

between epigenetic age

acceleration and tissue type,

using data at baseline visit,

demonstrating the mean value

(y-axis) and one standard error,

with p value = 1.6 9 10-11

from the results from a non-

parametric group comparison

test (Kruskal–Wallis)
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Age effects on individual CpGs differ between breast

and blood

We also studied the effects of chronological age on indi-

vidual CpGs in our dataset. Aging effects were quite dif-

ferent between breast and blood tissue (Fig. 4). In blood,

CpGs that are located in CpG islands tend to have a pos-

itive correlation with chronological age (Fig. 4a). This is a

well-known effect, which has been observed in many other

tissues [16, 18, 19], and is also reflected by a positive

correlation between chronological age and the average

methylation level of island CpGs in blood (q = 0.44,

p = 5.8 9 10-6, Fig. 4c). Surprisingly, this well-known

result from blood cannot be reproduced in breast tissue

(Fig. 4b, d). It is even more surprising that the average

DNA methylation levels of CpGs that are located outside

of CpG islands exhibit a positive correlation with

chronological age in breast tissue (q = 0.24, p = 0.02,

Fig. 4f), which contrasts with the non-significant (negative)

association in blood tissue (Fig. 4e). Overall, these results

suggest that aging effects differ greatly between the two

tissues. We find that the mean methylation levels of CpGs

are lower in breast tissue samples (compared with blood

samples). The effect is particularly significant for CpGs

located outside of CpG islands (p = 6.4 9 10-33, Fig. 4h)

but can even be observed for CpGs located inside of CpG

islands (p = 9 9 10-12, Fig. 4g).

Discussion

To our knowledge, this is the first study to demonstrate that

breast tissue epigenetic age exceeds that of blood tissue in

healthy female donors. In addition to validating our earlier
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Fig. 2 Tissue difference in DNAm age between breast and blood.

a Frequency distribution of the absolute difference DNAm age breast

and DNAm age blood at first visit. On average, DNAm age of breast

is 11.4 years older than that of blood (SD = 7.1, range -7.9 to 23.5

years). b While DNAm age of breast is significantly higher than blood

at younger ages, the gap closes with advancing age. This scatter plot

shows a strong inverse correlation between chronologic age and the

absolute difference DNAm age breast and DNAm age blood

(correlation coefficient = -0.53, p = 4.4 9 10-4), c The absolute

difference between DNAm age breast and DNAm age blood is higher

in pre-menopausal women (mean 13.9, SD 6.3 years) compared with

post-menopausal women (mean 8.3, SD 6.9 years, with

p value = 0.0098 from non-parametric group comparison Kruskal–

Wallis testing). d The rate of change in DNAm age is higher in blood

than breast tissue. This bar plot shows the relationship between rate of

change in DNAm age and tissue type, demonstrating the mean value

(y-axis) and one standard error. While the DNAm age in breast starts

out higher, DNAm age in blood eventually catches up to breast tissue,

with results from a non-parametric group comparison test reveal a

significantly faster rise in DNAm age in blood than breast over time,

with p value = 0.038 (Kruskal–Wallis)
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finding of age elevation in breast tissue, we further

demonstrate that the magnitude of the difference between

epigenetic age of breast and blood is highest in the

youngest women in our study (age 20–30 years) and

gradually diminishes with advancing age. As women

approach the age of the menopausal transition, we found

that the epigenetic of age of blood approaches that of the

breast.

Our studies were performed on whole breast tissue.

Diverse types of cells make up whole breast tissue, with the

majority of cells being adipocytes. Other types of cells

include epithelial cells, cuboidal cells, myoepithelial cells,

fibroblasts, inflammatory cells, vascular endothelial cells,

preadipocytes, and adipose tissue macrophages. This raises

the possibility that the magnitude of the effects we observe,

of breast tissue DNAm age being greater than other tissues,

might be an underestimation, since it is possible that not all

of the cells of the heterogenous sample have experienced

this effect. Since it is difficult to extract DNA from adipose

tissue, we suspect that the majority of DNA extracted from

our whole breast tissues was from epithelial and myoep-

ithelial cells. We hypothesize that the myoepithelial and

epithelial cells in the mammary gland are the cells

responsible for the observed increase in DNAm age,

because these cells are exposed to variability in hormone

levels including estrogen and growth hormone during

puberty, development, and menstrual cycles, and oxytocin

during lactation, with resultant proliferation and cell

cycling. It is of note that across most cell types and tissues

(except breast), there is excellent agreement in estimated

DNAm age from different cells and tissues. Further

experiments are needed to confirm that DNAm age of

isolated breast epithelial and myoepithelial cells is higher

than observed in our study. Furthermore, with advancing

age, the composition of the types of cells within the breast

changes, with increasing proportion of adipose tissue.

Therefore, it is unclear whether the deceleration observed

in our study as a woman approaches menopause is a true

deceleration or whether this observation is a result of loss

of the cell types that experience the deceleration.

We found that the biologic age of peripheral blood was

tightly correlated with chronologic age in the age range

that we studied, consistent with previous studies. The

degree of intraindividual and interindividual variability in

DNAm age of healthy breast tissue had not been previously

quantified. At the baseline visit, the variance in chronologic

age was 167.7, with the variance in biologic age as mea-

sured by DNAm age of the peripheral blood being 161.8,

and breast 92.7. Examining the intraindividual difference

in DNAm age between visits 1 and 2, we note that the

variance of this difference is greater in breast (31.4)

compared with blood (10.4) and chronologic age (2.3).

While we note that a higher proportion of women (18/40)

appeared to have ‘‘younger’’ breasts at follow-up, than the

proportion of women (2/40) who appeared to have

‘‘younger’’ blood at follow-up, there was only one woman

who had both younger blood and breast tissue, suggesting

that this observation may be attributable to the variability

in this measurement. Further studies are needed to examine

whether true reversal of epigenetic aging in breast tissue

ever occurs under any circumstances.

We have observed a strong linear relationship between

DNAm age and chronologic age for both breast and blood

tissue. We infer that a non-linear increase in DNAm age of

breast occurs prior to the adulthood as evidenced by the

higher DNAm age of breast at the youngest adult ages we

have studied. We note that the rate of change in breast

tissue is slower than that of both chronologic age and the

rate of change in peripheral blood. Further studies may

examine for non-linear effects around the age of the

menopausal transition, and for the relationship between

non-linear change in DNAm age and the risk of later

developing breast cancer.

Our findings raise the question of what factors regulate

the aging process in the breast, and whether there are

common mechanisms underlying accelerated aging and

carcinogenesis. We postulate that biologic aging in female

breast tissue may be accelerated beginning at puberty, and

may be linked to stimulation by estrogen, progesterone,

and oxytocin, and cell cycling, so that by early adulthood

the DNAm age in female breast is higher than that of other
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Fig. 3 Individual trajectories of DNAm age with advancing chrono-

logic age. This plot shows the longitudinal changes in DNAm age of

blood (left panel) and breast (right panel) for each individual at visits

1 and 2
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tissues, as we observe. Breast cancer overall shows a

bimodal distribution with respect to age, with the first peak

occurring at age 50 years (more commonly medullary or

inflammatory breast cancer), and the second peak reached

at over 70 years of age (more commonly estrogen and

progesterone receptor-positive lobular or mucinous can-

cers) [20]. It is well known that risk of breast cancer is

linked with endogenous estrogen and progesterone expo-

sure, including early menarche, late menopause, nullipar-

ity, age at first birth [21–25], as well as exogenous

exposure to hormone replacement [26]. These relationships

are true in breast cancers diagnosed in pre-menopausal as

well as post-menopausal women [27], and in breast cancers

that are estrogen receptor-positive or negative [28].

Estrogen is known to be involved in the development of the

mammary gland and epithelial stem cell regulation

[29–31]. Estrogen regulates cell cycle progression through

the cyclin-dependent kinase pathway [32]. Proliferation

rates of normal breast epithelial cells as measured by

labeling index studies have shown a decline in proliferation

with advancing age [33–35]. However, the relationship

between estrogen and progesterone stimulation, chronic

cell cycling, and cellular senescence in breast tissue is

poorly understood.

Previous studies have examined the relationship of

hormonal risk factors and the age incidence of breast
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cancer [35, 36]. Noting the linear log–log relationship

between cancer incidence and age is not observed in breast

cancer compared with most other non-hormone-dependent

cancers, Pike et al. constructed a mathematical model

describing the relationship between cancer incidence and

age that incorporated a decline in the rate of breast tissue

aging starting at age 40 and ending at the last menstrual

period. This modification led to excellent agreement

between observed and predicted effects of age at menarche,

first full-term pregnancy, and menopause on breast cancer

risk. The results of their modeling suggest that hormones

have a major role in determining breast tissue age, and that

the important etiologic elements for breast cancer appear to

be present in pre-menopausal women and sharply reduced

following the menopause [35, 36]. Our finding that epi-

genetic age elevation in adult female breast is highest

following development and gradually diminishes with

advancing age and the menopausal transition is consistent

with the concept that hormonal factors drive breast aging

and the degree of difference between breast and other tis-

sues is reduced with advancing age.

Many reproductive factors may influence changes in

DNAm age of healthy female breast tissue. While our

explorative, hypothesis-generating study reported here was

not powered to answer these important questions, the

Komen Tissue Bank provides a rich resource to examine

the influence of cumulative estrogen exposure on DNAm

age. Future studies are needed to examine overlapping

effects of nulliparity, age at first birth minus age at

menarche, age at menopause, exogenous estrogen expo-

sure, lactation, fertility treatments, and proximity of preg-

nancy to the time of sampling, and whether these factors

modulate DNAm age acceleration. Using large cohort

studies, we have recently shown that early menopause is

associated with accelerated epigenetic age of blood [14].

Our limited sample size did not allow us to test whether a

similar age acceleration effect can also be observed in

breast tissue from post-menopausal women. We hypothe-

size an acceleration in breast tissue epigenetic aging occurs

beginning a puberty, leading to an elevated DNAm age that

persists until menopause. We anticipate that the rate of

epigenetic aging following the menopausal transition may

coincide with the rate of other tissues. Furthermore, with

advancing age, the composition of the types of cells within

the breast changes, with increasing proportion of adipose

tissue. Therefore, it is unclear whether the deceleration

observed in our study as a woman approaches menopause

is a true deceleration or whether this observation is a result

of loss of the cell types that experience the deceleration.

We will direct future studies in healthy women to examine

accelerations in epigenetic aging, cumulative hormone

exposure, and cellular changes in response to pregnancy.

Future studies should also explore epigenetic age

differences in male and female breast tissue, and examine

whether the degree of epigenetic age acceleration is asso-

ciated with increased risk of breast cancer. In the present

study, we confirm that healthy breast tissue exhibits

accelerated aging relative to other tissues, and we have

previously shown that epigenetic age of normal adjacent

breast tissue in breast cancer patients is accelerated. While

the current study does not directly compare methylation

patterns in healthy breast tissue versus normal adjacent

breast tissue in breast cancer patients, future studies are

needed to assess for cancer field effects on epigenetic

aging.

Further analyses will be improved by the addition of

variables related to breast cancer risk, including history of

benign breast disease, and family history. While our study

was not powered to examine these effects, future studies

will include these variables and test whether they are

associated with accelerations in breast epigenetic age. By

extending the Pike model to data from the Nurses’ Health

Study, a large cohort study examining risk factors for major

chronic diseases in women, Rosner and Colditz were able

to show that age at all births, benign breast disease, type of

menopause and use of post-menopausal hormones, and

alcohol use have long-term influence on breast cancer

incidence [37, 38]. Furthermore, recent results reported

using survey data from The Growing Up Today Study, a

large study of girls who are daughters of Nurses’ Health

Study participants, show body size factors from pregnancy

to late adolescence were associated with risk of benign

breast disease [39]. Future work should be directed towards

the important question of whether epigenetic age of the

breast is related to body size, body mass index, and risk of

benign breast disease.

Mammographic breast density is known to be associated

with breast cancer risk [40–42]. A longitudinal cohort

study tracking change in percent mammographic density

over 3–12 years revealed a slowing in the rate of decline,

with annual rates of decline of 1.4, 0.7, and 0.1% at age 50,

57, and 60 years, respectively [43]. Higher body mass

index, greater parity, and younger age at first child’s birth

are associated with lower percent mammographic density,

while more immediate factors such as the use of hormone

therapy and the menopausal transition affect the rate of

change in mammographic breast density [43, 44]. Our work

also motivates the question of whether there may be a link

between epigenetic age and breast density, whether accel-

erated breast epigenetic aging may explain the difference in

biology and risk factors for pre-menopausal and post-

menopausal breast cancer, and whether epigenetic signa-

tures in female breast biopsies may provide additional

information, beyond known risk factors, of breast cancer

risk in a population of women at high risk for breast cancer.

Identifying mechanisms by which age-related changes may
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contribute to breast cancer development and progression

may aid in the development of a clinical biomarker of

elevated breast cancer risk.
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