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Summary

Plants have a broad capacity to regenerate damaged organs. The study of wounding inmultiple

developmental systems has uncovered many of the molecular properties underlying plants’

competence for regeneration at the local cellular level. However, in nature, wounding is rarely

localized to one place, and plants need to coordinate regeneration responses at multiple tissues

with environmental conditions and their physiological state. Here, we review the evidence for

systemic signals that regulate regeneration on a plant-wide level. We focus on the role of auxin

and sugars as short‑ and long-range signals in natural wounding contexts and discuss the varied

origin of these signals in different regeneration scenarios. Together, this evidence calls for a

broader, system-wide view of plant regeneration competence.

I. Introduction

Outside laboratory settings, plants rarely grow undisturbed, and
physical damage is a ubiquitous part of their lives. Recovery from
damage is a complex response involving wound closure, prepara-
tion of the defense systems for invasion, nutrients rerouting, and
activation of tissue-specific repairmechanisms. In certain scenarios,
wounding triggers restorative growth, a response ascribed to the
‘regeneration competence’ of the injured tissue. The competence to
regenerate in plants is broad but limited by developmental stage
and physiological conditions. Thus, dissection of the rootmeristem
near its tip results in root meristem reformation, but the meristem
fails to regenerate when a similar injury is inflicted at a more
proximal position (Sena et al., 2009; Durgaprasad et al., 2019).
Similarly, dissection of a young leaf tip triggers growth at its base to
compensate for themissing leaf tissues, whereas older leaves lose the

competence to initiate such growth (Sena et al., 2009; Kuchen
et al., 2012). Young shoots or leaves removed from their mother
plant generate wound-induced shoot-borne (or ‘adventitious’)
roots to replace the missing root system, but such capacity
diminishes in older shoots or detached leaves (Steffens &
Rasmussen, 2016; Li et al., 2020). The molecular definition of
‘regeneration competence’ is still unclear, but it is usually ascribed
to a certain autonomous cell state, either epigenetic (He
et al., 2012; Chen et al., 2016; Hern�andez-Coronado et al., 2022),
transcriptional (Sena et al., 2009; Durgaprasad et al., 2019), or
hormonal (Ikeuchi et al., 2019).

Most experimental setups studying plant wound-response focus
on a single wound, but wounding in nature is often a whole-plant
affair and systemic signals may be involved in coordinating and
prioritizing wound repair. Recent high-resolution studies of plant
regeneration have begun to uncover the contribution of local vs
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systemic signals to plant regeneration; key amongst these is the
phytohormone auxin (Canher et al., 2020;Hoermayer et al., 2020;
Matosevich et al., 2020), and evidence from cuttings calls for a
more holistic, whole-plant view, of plant regeneration that goes
beyond local tissue competence (Druege et al., 2019). Here, we
discuss the systemic control of plant regenerative response. Many
factors, including jasmonic acid and cytokinin, control tissue
regeneration and canmove systemically through the plant (Ikeuchi
et al., 2019; Zhang et al., 2019). However, local vs systemic effects
ofmany such factors are often difficult to untangle. In this piece, we
focus on two signals, auxin and sugars, whose systemic effects on
regeneration have been studied in most detail (summarized in
Fig. 1). We limit ourselves to natural, or close-to-natural, wound-
ing contexts. Though much has been learned about regeneration
from tissue-culture experiments, the nature of these artificial
systems often precludes distinction between systemic and local
activity.

II. Auxin as a systemic regeneration signal

The small molecule auxin is closely implicated in enabling
regeneration, and it is used in controlling plant clonal propagation

and tissue culture growth (Ikeuchi et al., 2019). It is produced in
multiple places in the plant and is transported in a polar manner,
mostly basipetally, to form short‑ and long-range gradients within
the plant (Robert & Friml, 2009; Zhao, 2018). The relationship
between auxin gradients and regeneration response is likely an
ancient trait. When the thallus of liverworts is dissected, a new
meristem is initiated from the cut site of only one of the cut halves
(Larue & Narayanaswami, 1957; Nishihama et al., 2015). This
differential response is guided by depletion of the plant-wide auxin
gradient formed by the meristem (Ishida et al., 2022), and
exogenous application of auxin inhibited the regeneration response
(Larue & Narayanaswami, 1957).

The aerial parts of many plant species can form shoot-borne
roots from stems or leaves when these parts are removed. Many
signals control this process, but auxin remains a key factor (Bellini
et al., 2014). Auxin accumulation at the site of root initiation site
was demonstrated for many species, and exogenous application of
auxin, or auxin-like molecules, is often sufficient to promote root
initiation (Steffens & Rasmussen, 2016).

Current evidence suggests that most of the auxin activating
wound-induced root initiation is coming from remote tissues.
When a rosette leaf of Arabidopsis was detached and placed on
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Fig. 1 The origin of local and systemic signals in different regeneration scenarios. Arrows mark the flow of the signal (red, auxin; blue, sugars). Curved arrow
marks site of synthesis. Co, cortex; En, endodermis; Ep, epidermis; St, stele.
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hormone-free media, it initiates roots from its basal parts (Chen
et al., 2014; Bustillo-Avenda~no et al., 2018). This process required
the activation of auxin biosynthesis in the distal part of the detached
leaf, away from the cut site, and disruption of auxin transport by
application ofN-1-naphthylphthalamic acid (NPA) inhibited root
formation (Liu et al., 2014; Xu, 2018). Application of NPA also
inhibited the formation of roots in stem cuttings of Petunia hybrida
(Ahkami et al., 2013) and cut tomato and Arabidopsis hypocotyls
(Sukumar et al., 2013; Alaguero-Cordovilla et al., 2021), suggest-
ing these restorative growth responses are also controlled by remote
production of auxin.

Given that auxin can, and is often, synthesized near its site of
action (Brumos et al., 2018; Zhao, 2018; Matosevich et al., 2020),
it is not clear why auxin produced away from the site of injury
should be required for wound repair. One possible hypothesis is
that injury to part of the plant can prime the rest of it for
regenerative growth. In this scenario, auxin can serve as a systemic
signal that tunes the regenerative response to the environmental and
physiological state of the plant (Mroue et al., 2017).

The systemic levels of auxin are responsive to damage and
environmental conditions. Physical damage and increased tem-
perature lead to increased synthesis of auxin in the leaf, which then
spreads systemically throughout the plant (Machado et al., 2016;
Serivichyaswat et al., 2022). This response is not limited to leaves,
as damage to the Arabidopsis hypocotyl also increased the
expression of the auxin-responsive promoterDR5 in all aerial parts
of the plant (Huang et al., 2020). This wound-induced systemic
increase in auxin is sensitive to physiological factors such as plant
age. The expression of microRNA156-targeted SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE (SPL) increases with
plant age (Wu et al., 2009). In cut leaves, these SPLs suppress the
induction of auxin biosynthesis, leading to a reduced number of
shoot-borne roots. Exogenous auxin application restored root
initiation in leaves with high SPL levels (Ye et al., 2020).

Consistent with systemic auxin acting as a priming or modu-
lating agent during regeneration, different sources of auxin, either
local or remote, are important in different scenarios of tissue
regeneration. During shoot-borne root initiation, NPA treatment
does not abolish root initiation, and at least some of the auxin
accumulation can be ascribed to local biosynthesis near the cut site,
independent of the shoot-derived auxin (Alaguero-Cordovilla
et al., 2021). In some cases, remote auxin is not required at all, such
as during regeneration of the root meristem from dissection. Here,
auxin signaling is induced in cells near the cut site that proliferate to
replace the missing distal part of the meristem (Sena et al., 2009;
Efroni et al., 2016). This accumulation results from the induction
of auxin biosynthesis YUCCA genes at the cut root tip itself
(Matosevich et al., 2020).

The systemic source of auxin required for regeneration may not
even be the shoot.When the entire apical rootmeristem is removed
(‘root pruning’), lateral roots are induced above the injury site. This
response is the result of induction of YUCCA-mediated auxin
biosynthesis near the cut site, followed by acropetal (rather than
shoot-derived basipetal) transport to the root initiation site (Xu
et al., 2017). Strikingly, the source of auxin during repairmay differ
even for adjacent tissues. Cell death in the root internal stele triggers

auxin accumulation in adjacent endodermis cells, leading to
restorative cell division. No induction of auxin biosynthesis genes
could be detected near the dying cells, and in silico simulations are
consistent with auxin accumulation resulting from dying cells
blocking the basipetal auxin flow, although its ultimate source is
unclear (Canher et al., 2020). By contrast, repair of ablated cells in
external root tissues, which also results in increased auxin
accumulation, occurred even when auxin biosynthesis and polar
transport were chemically inhibited, suggesting auxin may be
derived from internal stores (Hoermayer et al., 2020).

Another example of systemic auxin acting as a modulator of
tissue repair is during the reconnection of severed vasculature in
graft formation. In this case, wound healing initiates with callus
growth at the site of injury, followed by the formation of new
vasculature strands connecting the scion and rootstock across the
graft junction. The activation of the auxin response machinery is
required for the process (Melnyk et al., 2015). As it was demon-
strated that regeneration of damaged vasculature is promoted by
auxin application, it was generally thought that graft formation is
promoted by shoot-derived auxin (Wulf et al., 2019). Recent
evidence, however, paints a more complex picture. Removal of the
cotyledons and treatment with NPA led to reduced proliferation at
the graft junction, but vasculature still regenerated at normal rates
(Melnyk et al., 2015; Serivichyaswat et al., 2022). And while
treatment with the auxin transport inhibitor 2,3,5-triiodobenzoic
acid could inhibit cell proliferation at the graft junction (Matsuoka
et al., 2016), removal of both cotyledons could promote graft
formation in Arabidopsis micrograft when low levels of sucrose
were added, suggesting cotyledon-derived auxin does not play a
major role in vasculature regeneration (Marsch-Mart�ınez
et al., 2013). Indeed, vascular reconnection in heterografts did
not correlate with auxin flow (Wulf et al., 2019). However, a
systemic increase in auxin level induced by elevated temperature
had a promotive effect on proliferation at the graft site and
connections were made faster (Serivichyaswat et al., 2022). Taken
together, this suggests that though wound healing at the graft site
probably relies on local auxin supply, it can be enhanced by remote
signals influenced by environmental conditions.

It should be noted that auxin is involved in a plethora of plant
developmental processes, and its effect on regeneration cannot be
considered specific (Vanneste & Friml, 2009). Further, other
remote signals may act in parallel or together with auxin to control
growth and regeneration. Thus, removal of the shoot of Arabidop-
sis resulted in severe inhibition of lateral root initiation and
regeneration of cut root apical meristems. However, exogenous
auxin had only a very mild effect on lateral root initiation in shoot-
less plants and could not rescue root meristem regeneration at all,
suggesting other long-range factors may be at play (Reed
et al., 1998; Matosevich et al., 2020).

III. The role of sugars in regeneration

Apart fromhormonal control, other systemic factors contribute to a
coordinated wound response, an aspect that ismostly studied in the
initiation of shoot-borne roots. Sugars, produced in the shoot via
photosynthesis and transported systemically through the plant via
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the phloem, were shown to affect regenerative responses. In
hibiscus cuttings, leaf removal reduced the rooting capacity even
when treated with auxin, but this could be rescued by sucrose
supplementation to the cutting base (van Overbeek et al., 1946).
The sucrose effect depended on adequate ammonium levels;
indeed, the wound-induced root primordium is also a sink for
nitrogen-based compounds and microelements (Svenson &
Davies, 1995; Zerche et al., 2016).

Sucrose application promoted shoot-borne roots in dark-treated
Arabidopsis seedlings or leaf explants (Takahashi et al., 2003;Chen
et al., 2014) and rescued the reduction in shoot-borne roots in
shoot-less cucumber seedlings (Qi et al., 2020). The sugars
required for wound-induced shoot-borne root formation are
unlikely to come from local stores, as dark pretreatment of
cuttings, which drains internal carbohydrate stores, could even
improve rooting when cuttings were returned to normal light
regimes (Klopotek et al., 2010).

Carbohydrates are transported from leaves via the phloem, but it
is unclear how they are recruited to wound-induced root initiation
sites. Some evidence, mainly from gene expression studies, suggests
an active change in sugar transport may induce the formation of a
new sink. In Arabidopsis, mechanical wounding upregulates the
expression of the hexose transporter SUGAR TRANSPORTER4
(STP4) and the sucrose transporter SUCROSE PROTON
SYMPORTER3 (SUC3) (Truernit et al., 1996;Meyer et al., 2004).
Expression of sucrose exporters from the SUGARS WILL
EVENTUALLY BE EXPORTED TRANSPORTERS (SWEET)
family are induced during the formation of roots from detached
leaves (Chen et al., 2012; Liu et al., 2022). In rice, herbivory
feeding of leaves led to the upregulation of OsSUC4 (Chang
et al., 2019). Fungi attack in Arabidopsis leaves increased STP4
expression and the sucrose hydrolysis activity of the membrane-
bound CELL-WALL INVERTASE (CWINV) (Fotopoulos
et al., 2003; Sauer, 2007). Transcriptome analysis of P. hybrida
cuttings revealed a temporal upregulation ofCWINV and STP near
the site of injury, followed by an increase in hexose content, shortly
before wound-induced root emergence (Ahkami et al., 2009;
Klopotek et al., 2016).

What regulates the induction of these sugar transport and
metabolism genes is unknown.However, recently, a group ofDOF
(DNA-binding with one finger) transcription factors was found to
be inducedbyphysical damage to the plant. Curiously, amongst the
genes induced by these DOFs was a SWEET transporter (Zhang
et al., 2022), suggesting they could also play a role in regulating
sugar transport. Indeed, a mutant in a rice orthologue of the same
DOFs was defective in sugar uptake and had reduced expression of
SUC andSWEET genes (Wu et al., 2018).Though these correlative
studies suggest a link between changes in carbohydratemetabolism,
transport, and wound response, functional studies are required to
determine their role in controlling tissue regeneration.

Sugar signaling may also play a role in controlling regenerative
growth.TheArabidopsis gin-2mutant, defective in the sugar sensor
hexokinase1, does not initiate wound-induced roots in response to
glucose and auxin application (Moore et al., 2003). The target of
rapamycin (TOR) protein kinase, integrates environmental cues
and cellular energy levels to developmental andmetabolic responses

(Dobrenel et al., 2016). Chemical inhibition (Deng et al., 2017) or
genetic perturbation (Stitz et al., 2022) ofTOR leads to a reduction
in root initiation in potato wound-induced roots or Arabidopsis
lateral roots, respectively.

Signals rarely act on their own, and sugars and auxin have a
reciprocal effect on one another, with a large overlap between
glucose‑ and auxin-responsive genes (Mishra et al., 2021). Consis-
tently, there is an additive effect for these factors during rooting
(van Overbeek et al., 1946; Calamar & De Klerk, 2002; Moore
et al., 2003; Corrêa et al., 2005; Agull�o-Ant�on et al., 2011); at the
moment, however, the nature of this interaction during regener-
ation is unclear.

IV. Conclusions

Studies of regeneration have mostly focused on uncovering the
molecularmechanisms underlying tissue regeneration competence.
By contrast, this review highlights the systemic and coordinated
nature of the regeneration response. Though we have limited
ourselves to just twomobile signals,manymolecules and hormones
are systemically transported in the plant and can potentially affect
tissue repair. Although research of this topic is still at an early stage,
future studies can provide a broader, plant-wide view of the
regeneration process and the factors controlling the decision of
whether or not to regenerate.
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