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Abstract: Floral scent is important in plant reproduction and also has aesthetic implications. However,
the accurate determination of aroma is presently limited by the available collection and analysis tools.
In this study, the floral scents of four crabapple taxa exhibiting faint, weak, clear, and strong scent
intensities were comparatively analyzed by electronic nose (E-nose) and gas chromatography–mass
spectrometry (GC–MS). The E-nose was able to effectively group the different taxa in the principal
component analysis in correspondence with scent intensity. GC–MS analysis identified a total of
60 volatile compounds. The content of nitrogen-containing compounds and aliphatics and the number
of unique components of the more aromatic taxa was significantly higher than the less aromatic
taxa. α-Cedrene, β-cedrene, 5-methyl-1,3-dihydro-2H-benzimidazol-2-one, benzyl alcohol, linalool,
and 4-pyrrolidinopyridine contributed significantly to taxon separation. The pattern recognition
results confirmed that the E-nose results corroborated the GC–MS results. Furthermore, partial least
squares regression analysis between the aromatic constituents and sensors indicated that particular
sensors were highly sensitive to N-containing compounds, aliphatics, and terpenes. In conclusion,
the E-nose is capable of discriminating crabapple taxa of different scent intensities in both a qualitative
and quantitative respect, presenting a rapid and accurate reference approach for future applications.
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1. Introduction

Floral scent plays an important role in the reproductive processes of many plants, as well as in
guaranteeing the yield and quality of many economically valuable plants. It also enhances the aesthetic
properties of ornamental plants and cut flowers. Traditional scent analysis in plants has typically
relied on sensory evaluation methods that perceive types and intensity of odors. Odor intensity is very
complex, due to the effect of the odor detection threshold (ODT). ODT is the lowest concentration
of a certain odor compound that is perceivable by the human olfactory system. The threshold of a
chemical compound may change due to its shape, polarity, partial charges, or the addition of other
compounds [1]. Therefore, sensory evaluation has various limitations, including strong subjectivity
and poor repeatability.
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Chromatographic techniques, such as gas chromatography–mass spectrometry (GC–MS),
solid-phase micro extraction (SPME), and headspace analysis, have increasingly been used to
identify and quantify the aromatic components of fragrant plants, such as Silene latifolia [2], rose [3],
Luculia pinceana [4], and Osmanthus fragrans [5]. However, these methods often fail to provide a
global fingerprint of the scent sample, as the compounds detected are typically dependent on the
selected sample pretreatment method. Furthermore, they are hampered by their complex technology,
high running costs, and prolonged analysis time. In response to chromatographic technologies,
an electronic nose (E-nose) has emerged as an olfactory simulation test tool that allows for the
high-throughput analysis of volatile organic compounds in a complex matrix [6]. Using specific nano
sensor arrays which reflect the changes in conductivity produced by the adsorption of compounds
together with pattern recognition software, a global fingerprint of the volatile components in a sample
can be obtained. In contrast to chromatographic techniques, which focus on the separation and
detection of individual chemical components, the E-nose relies on response and recognition technology,
which can rapidly identify and separate complex odors [6]. In addition, the E-nose is able to accurately
distinguish the odor of complex samples at a low cost without the need to quantitatively analyze each
individual component in the test sample, as is required for GC–MS. Thus far, the E-nose has primarily
been used in food processing [7], evaluating the shelf-life of fruits, vegetables [8,9], meat, and aquatic
products [10,11], and determining the authenticity of tobacco, alcohol, and other beverages [12,13].
Scholars have recently attempted to train the E-nose to predict the response of the human sensory
system to particular odors. For instance, the E-nose was trained to predict odor pleasantness [14]
and was found to correlate well with the human data (above the 0.60 level) for single-component
odorants [15]. However, none of the models in the pattern recognition software are able to accurately
predict the human values or pleasantness for more than a few descriptors. Hence, the prediction of
human sensory ratings from instrumental measurements is still arguably the greatest challenge of
sensor-based machine olfaction. With regard to floral scent detection, the E-nose has been applied to
germplasm differentiation [16,17], flowering stage distinction [18], and flower organ differentiation [19].
If the E-nose can be applied to the fast screening of the interested taxon, such as a strong scent taxon or
a special floral scent type, and accurately mapped to sensory evaluation, it would have very important
applications in the evaluation of floral scent.

E-nose technology has not been previously applied to the evaluation of scent intensity in crabapple.
In this study, using headspace solid-phase micro extraction coupled with gas chromatography–mass
spectrometry (HS–SPME)-GC–MS in conjunction with the E-nose, we evaluated the scent characteristics
of crabapple (Malus, Rosaceae) taxa of different scent intensities. The aims of the study were as follows:
(1) to evaluate the main differences in compounds among the different taxa; (2) to assess the ability of
the E-nose to distinguish the different taxa; and (3) to explore the relationship between the detected
compounds and the different E-nose sensors in order to assess the potential functionality of the E-nose
in floral fingerprinting, scent type classification, and scented flower breeding.

2. Materials and Methods

2.1. Plant Material

More than one hundred Malus taxa scent intensities are evaluated by 30 trained assessors
(unpublished) using a 6-point scale method [20]. Based on the sensory evaluation results, four taxa
with higher ornamental value, M. ‘Hillieri’, M. sylvestris, M. ‘Van Eseltine’, and M. ‘Brandywine’,
had different scent intensities, categorized as faint, weak, clear, and strong, respectively.

Fresh early-flowering inflorescences of these four Malus taxa were collected from the National
Crabapple Germplasm Genetic Database (Yangzhou City, Jiangsu Province, China). Each taxon
was represented by three different plants. The plants were situated more than 50 m apart,
and 10 inflorescences per plant were randomly selected for analysis. Inflorescences from the different
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taxa were separately placed into deionized water before being transported to the Nanjing Forestry
University (Nanjing, China), where they were maintained at room temperature (25 ± 1 ◦C).

2.2. Floral Scent Determination

On the following day, the experiments were carried out at 8:00 a.m.–11:00 a.m. Approximately 4 g
of fully expanded flowers were placed into a 200 mL capped SPME vial. After approximately 30 min
equilibration between the flower and the headspace, the floral scent was analyzed using the E-nose
and HS–SPME-GC–MS. Three replicates were tested for each taxon (4 g flowers from 10 inflorescences
per replicate).

2.2.1. E-Nose Analysis

A PEN3 portable E-nose (Airsense Company, Schwerin, German) was used in the experiment.
The basic structure of this device consists of a sensor array unit, a sampling apparatus,
and pattern-recognition software (Win Muster v.1.6). The sensor array includes 10 metal oxide
semiconductor (MOS) sensors, the characteristics of which are indicated in Table 1 [21,22]. The sensor
response is reflected as resistivity (Ohm) and relies on the changes in conductivity produced by the
adsorption of chemical molecules in the gas state and on the subsequent surface chemical reaction or
physical effect.

Table 1. Sensors used in this study and their main application in PEN3.

Sensor No. Sensor Name Sensitive Components Reference,
mL·m−3 (ppm)

1 W1C Aromatic compounds Toluene, 10

2 W5C Broad-range sensitivity, reacts with nitrogen oxides, very
sensitive with negative signal NO2, 1

3 W3C Ammonia, used as a sensor for aromatic compounds Benzene, 10

4 W6S Mainly hydrogen, selectively (breath gases) H2, 100

5 W5S Alkenes, aromatic compounds, less polar compounds Propane, 1

6 W1S Sensitive to methane, broad range, similar to No. 8 CH3, 100

7 W1W
Reacts with sulfur compounds, sensitive to many terpenes
and sulfur organic compounds, which are important for smell,
limonene and pyridine

H2S, 1

8 W2S Detects alcohols, partially aromatic compounds, broad range CO, 100

9 W2W Aromatic compounds, sulfur organic compounds H2S, 1

10 W3S Reacts at high concentrations, sometime very
selective (methane) CH3, 10

During the measurement process, the headspace gas was pumped into the sensor chamber at a
constant rate of 150 mL·min−1. The measurement phase lasted 50 s, which is sufficient to reach a stable
state. The interval time was 10 s. In this study, the stabilized response sensor values were selected at
46–48 s to analyze the pattern recognition. To return the sensors to the baseline, a 300 s cleaning phase
was undertaken after each measurement. Three replicates were tested for each taxon.

2.2.2. HS-SPME-GC-MS Analysis

HS-SPME extraction was performed using a 65 µm polydimethylsiloxane/divinylbenzene
(PDMS/DVB) SPME filed portable sampler(Supelco, Bellefonte, PA, USA), which could be capable of
retaining volatile compounds for up to two weeks without significant loss [23]. The fiber was exposed
to the headspace of the capped vial to absorb volatile compounds for 0.5 h at room temperature
(25 ± 1 ◦C). Following volatile component absorption, the needle of the SPME was inserted into the
GC. In addition, an empty capped vial was used as a blank control, and the samples were injected into
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the GC in a random fashion. All scent of the samples was extracted at the same time by 12 SPME filed
portable samplers, then stored in dry ice, and measured in one day.

The GC system (Thermo Fisher Scientific, Waltham, MA, USA) was equipped with a DB-5MS
fused silica capillary column (5% phenylmethyl siloxane, 30 m × 0.25 mm i.d.; 0.25 µm film thickness;
Agilent Technologies, Santa Clara, CA, USA). Following HS-SPME extraction, the fiber that had been
exposed to the headspace was inserted into the GC injector port for desorption at 250 ◦C for 5 min in
splitless mode. Helium was used as the carrier gas at a constant flow rate of 1.0 mL·min−1. The column
oven temperature program was as follows: 50 ◦C for 1 min, increasing thereafter at 4 ◦C·min−1 to
120 ◦C and then held for 1 min, followed by an increase at 1.5 ◦C·min−1 to 140 ◦C, and then a final
increase at 12 ◦C·min−1 to 230 ◦C, with no hold. The temperature of the transfer line and ion source
were 230 and 210 ◦C, respectively. The electron ionization potential of the mass detector was 70 eV
and the scan range was from 35 to 450 amu. Linear retention indices (LRI) of the volatile compounds
were calculated using an alkane series standard (C5–C30) (Sigma, St. Louis, MO, USA) under the
same conditions. Identification of volatile compounds was made by comparing the mass spectra with
the National Institute of Standards and Technology (NIST) 12 library (similarity > 75%) and previous
reports on linear retention indices, as well as published index data (SuperScent: http://bioinf-applied.
charite.de/superscent/index.php?site=scentsearch; PubChem: http://pubchem.ncbi.nlm.nih.gov/;
ScentBase: http://www2.dpes.gu.se/SCENTbase.html). Therefore, in our study, no standard was
used, and that the identifications are tentative, based only on MS similarity and LRI. Each taxon sample
has three replicates, and mean values with relative standard deviations (mean standard deviation, %)
were reported. The relative contents of each volatile constituent were calculated by normalizing the
peak area (Xcalibur 3.1 (Thermo Fisher Scientific, Waltham, MA, USA)).

2.3. Data Analysis

A biplot, which is the combination of a score and loading plot, was used to illustrate the principal
component analysis (PCA) and partial least squares regression (PLSR) results. The non-supervised PCA
was used to reveal the distribution of the samples and determine the factors that contributed most to
the data separation. This method was used to evaluate the separation of the different taxa based on the
E-nose sensors, as well as the contribution of the compounds to the observed data separation. PLSR was
used to assess the correlation among the different taxa, E-nose sensors, and volatile compounds.
The jack-knife method was used to assess the significance of the variables. PCA, PLSR, and jack-knife
significance testing were performed in The Unscrambler software v. 10.4 (CAMO, Oslo, Norway;
http://www.camo.com/). The metabolite variance between the different taxa was analyzed using
SPSS v. 19.0 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Discrimination of the Different Taxa Using the E-Nose

PCA was used to evaluate the separation of the different taxa by the E-nose (Figure 1). The first
two principal components (PCs) accounted for 98% of the total variance. The four taxa were clearly
separated in the plot and were located in both the positive and negative axes of PC1 (91%). The scent
intensity showed an increasing trend in a negative direction along the x-axis.

The contribution of the sensors to the PCA discrimination was assessed (Figure 1). Sensors W1W,
W1S, and W2S influenced PC1 more heavily, whereas sensors W2W, W3S, and W5C made a significant
contribution to PC2, as indicated by their longer projections on the axes. The sensor W1W is sensitive
to terpenes and sulfurous organic compounds, W1S is sensitive to broad-range methane, and W2S
is sensitive to alcohols. Sensors W2W, W3S, and W5C are sensitive to sulfurous organic compounds,
methane, and nitrogen oxides, respectively (Table 1). This indicated that terpenes, S-containing
compounds, aliphatics, N-containing compounds, and alcohols were probably responsible for the
observed separation.

http://bioinf-applied.charite.de/superscent/index.php?site=scentsearch
http://bioinf-applied.charite.de/superscent/index.php?site=scentsearch
http://pubchem.ncbi.nlm.nih.gov/
http://www2.dpes.gu.se/SCENTbase.html
http://www.camo.com/
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Figure 1. PCA biplot based on the E-nose data of the flowers of the four Malus taxa.

3.2. Discrimination of the Different Taxa Using GC–MS

3.2.1. Identification and Comparison of the Volatile Compounds among the Different Taxa

To determine the significant volatile components, the identified aromatic compounds and their
relative contents (%) were summarized (Figure 2, Table 2). A total of 60 volatile compounds
were putatively identified in the four taxa. There were significant differences in the types and
relative contents of volatile compounds in the flowers from the different taxa. The main volatile
components in M. ‘Brandywine’ was 5-methyl-1,3-dihydro-2H-benzimidazol-2-one (constituting
23.8% of the total content). The primary volatile components in M. ‘Van Eseltine’ also included
5-methyl-1,3-dihydro-2H-benzimidazol-2-one, as well as linalool and benzyl alcohol (constituting
50.1% of the total). Benzyl alcohol also constituted the primary volatile compounds in in M. sylvestris,
along with α-cedrene and 4-pyrrolidinopyridine, constituting 46.3% of the total. Similarly, in M.
‘Hillieri’, the main volatiles were benzyl alcohol and α-cedrene (51.7% of the total content).

The relative contents of the different chemical classes (aliphatics, benzenoids, terpenes,
N-containing compounds, and S-containing compounds) among the four taxa were calculated and
compared, and the results are shown in Figure 3. Interestingly, Terpenes, benzenoids and N-containing
compounds were the highest in all four taxa. Among the most aromatic taxa (‘Brandywine’ and ‘Van
Eseltine’), the content of N-containing compounds and aliphatics was significantly higher than in the
other less aromatic taxa (Figure 3A). The volatile composition of M. sylvestris and M. ‘Hillieri’ was
similar, and these two taxa shared 23 compounds in common and also exhibited a greater diversity of
compounds than ‘Brandywine’ and ‘Van Eseltine’ (Figure 3B). Seven compounds were shared between
the four taxa (dodecane, linalool, α-cedrene, β-cedrene, geranylacetone, 4-pyrrolidinopyridine, and
cocarboxylase). ‘Brandywine’, which is the most aromatic taxon, possessed 13 unique compounds,
which was higher than the other taxa (Figure 3B).
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Table 2. Volatile compounds identified in the flowers of four Malus taxa using SPME-GC-MS.

Peak RT Compound Name Published ODT/ppm LRI(calc) LRI(lit)

Relative Content/%

Aroma Intensity: Strong→ Faint

M.
‘Brandywine’

M. ‘Vans
Eseltine’ M. sylvestris M. ‘Hillieri’

Aliphathics

1 9.3 Methylheptenone 260 [24] 881 964 2.25 ± 0.18Aa – – 1.00 ± 0.26Aa
2 9.69 Butyl butanoate 0.1 [25] 906 – 0.39 ± 0.08 –
3 10.12 (Z)-3-Hexenyl acetate 0.0121 [24] 933 1016 – – 0.48 ± 0.10 –
4 11 (E)-2-Decenal 0.15–5.5 [24] 944 1039 – 0.56 ± 0.07 – –
5 17.81 (Z)-3-Hexenyl Butyrate 6.8 [26] 1044 1273 0.97 ± 0.18Aa – 1.17 ± 0.17Aa –
6 18.41 Dodecane 0.11 [1] 1148 1270 0.46 ± 0.10Bb 1.18 ± 0.19Aa 0.48 ± 0.16Bb 0.60 ± 0.10Bb
7 19.81 (Z)-3-Hexenyl-α-methylbutyrate 0.004 [27] 1121 1203 0.4 ± 0.11Bb – 1.04 ± 0.20Aa 0.54 ± 0.06Bb
8 22.29 1-Methylnaphthalene 1.4 [24] 1157 * 0.86 ± 0.09
9 22.82 Tridecane 2.14 [28] 1251 1293 – 0.41 ± 0.08Aa – 0.52 ± 0.02Aa
10 25.86 Texanol na 1248 * 0.94 ± 0.17Aa – 0.41 ± 0.08Cc 0.69 ± 0.10Bb
11 26.24 (Z)-3-hexenyl hexanoate 0.0052 [27] 1254 1233 0.88 ± 0.13 – – –
12 30.92 2-Tridecanone 0.5 [24] 1344 1496 3.37 ± 0.96 – – –
13 37.88 2-Pentadecanone na 1518 1693 1.06 ± 0.26 – – –
14 41.21 Methyl hexadecanoate 4000 [24] 1702 1909 0.22 ± 0.06 – – –

Benzenoids

15 6.09 Styrene 0.12 [23] 676 679 – 1.75 ± 0.11Bb 3.33 ± 0.6Aa 1.65 ± 0.04Bb
16 8.35 Benzaldehyde 0.5 [23] 748 782 – 1.15 ± 0.18 – –
17 10.55 4-Methylanisole 0.0029 [24] 961 1001 2.18 ± 0.53 – – –
18 11.14 Benzyl alcohol 5.5 [24] 925 1030 – 10.45 ± 0.35Cc 13.52 ± 1.45Bb 32.57 ± 0.79Aa
19 13.68 Methyl benzoate 0.028 [24] 1160 1107 0.51 ± 0.24 – – –
20 14.48 2-Phenylethanol 0.045 [24] 1211 1129 0.54 ± 0.10 – – –
21 15.59 Benzyl nitrile 1–10 [24] 1282 1098 1.87 ± 0.33Aa 0.36 ± 0.06Bb – –
22 16.78 Benzyl acetate <0.001 [27] 1048 1107 – – 1.88 ± 0.43 –
23 22.62 (2-Nitroethyl)benzene 0.002 [29] 1729 * 0.89 ± 0.08 – – –
24 22.95 Cinnamyl alcohol 2.8 [30] 1215 1304 – – – 0.97 ± 0.18
25 25.56 4-Methoxyphenethyl alcohol na 1286 1250 3.35 ± 0.20 – –
26 31.29 Cuparene na 1446 1502 – – – 0.48 ± 0.11
27 31.62 2,6-di-tert-butyl-4-methylphenol 1 [31] 1450 * – – 0.53 ± 0.15Bb 1.17 ± 0.15Aa
28 39.11 Benzyl benzoate 1–10 [24] 1461 1789 – 0.3 ± 0.05 – –

Monoterpenes

29 5.16 leaf alcohol 0.01–0.2 [24] 465 552 1.25 ± 0.19Bb 1.86 ± 0.08Aa 0.68 ± 0.15Cc
30 7.46 α-Pinene 0.12–1.01 [24] 892 943 – – 2.22 ± 0.67Aa 1.23 ± 0.11Bb
31 10.19 α-Ocimene na 932 1044 – – 0.76 ± 0.10 –
32 10.96 Limonene 0.5–0.7 [24] 943 994 – – 0.44 ± 0.14 –
33 11.81 (E)-α-Ocimene 0.034 [32] 956 1058 – 0.48 ± 0.05 – –
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Table 2. Cont.

34 13.94 Linalool 0.0015 [24] 987 1098 2.3 ± 0.32Cc 19.94 ± 0.98Aa 3.04 ± 0.64Bb 1.49 ± 0.10Dd
35 19.38 Limonene oxide 0.01 [33] 1068 1057 – 0.25 ± 0.08 – –
36 22.15 Bornyl acetate 0.075 [34] 1199 1270 – – 0.38 ± 0.11 –

Sequiterpenes

37 26.71 β-Elemen na 1396 1336 – – 3.26 ± 0.06Aa 2.73 ± 0.43Aa
38 27.49 α-Cedrene 0.00003–0.00213 1404 1411 1.76 ± 0.13Bb 0.68 ± 0.07Cc 19.51 ± 0.65Aa 19.13 ± 0.7Aa
39 27.82 β-Cedrene 0.00003–0.00213 1408 1418 0.69 ± 0.10Cc 0.34 ± 0.06Dd 7.99 ± 0.65Aa 6.61 ± 0.52Bb
40 28.26 (Z)-Thujopsene na 1413 1434 – – 1.52 ± 0.15Aa 1.37 ± 0.28Aa
41 29.75 (+)-α-Longipinene na 1429 1352 – – 0.47 ± 0.12Aa 0.44 ± 0.17Aa
42 30.16 ç-Muurolene na 1434 1476 – – 0.55 ± 0.14Ab 0.88 ± 0.10Aa
43 30.32 α-Muurolene na 1435 1491 – – 0.41 ± 0.10Ab 0.87 ± 0.20Aa
44 30.41 Curcumene na 1436 1346 – – – 0.31 ± 0.10
45 30.53 β-Selinene na 1438 1521 – – 0.47 ± 0.12Aa 0.69 ± 0.11Aa
46 30.9 γ-Gurjunene na 1442 1409 – 0.43 ± 0.14Aa 0.59 ± 0.07Aa
47 31.47 α-Farnesene 2 [24] 1448 1505 – 0.25 ± 0.08Cc 0.60 ± 0.08Bb 1.19 ± 0.13Aa
48 32.05 d-Cadinene na 1454 1467 – – 0.52 ± 0.13Aa 0.79 ± 0.13Aa
49 35 Cedrol 0.00013–0.001 [35] 1487 1597 – – 1.68 ± 0.32Bb 4.24 ± 0.10Aa

Irregular terpenes

50 3.09 Methyl isobutyl ketone 0.1–5 [24] * * – 0.73 ± 0.13 – –
51 14.75 (E)-4,8-dimethyl-1,3,7-nonatriene na 1049 * – 0.37 ± 0.08Bb – 1.00 ± 0.16Aa
52 28.15 α-Ionone 0.001–0.006 [24] 1312 1411 1.30 ± 0.31 – – –
53 28.44 Geranylacetone 0.06 [36] 1316 1431 2.43 ± 0.52Aa 0.36 ± 0.08Bb 0.38 ± 0.08Bb 0.31 ± 0.03Bb
54 30.53 trans-á-Ionone 0.001–0.006 [24] 1339 1466 0.38 ± 0.11 – – –

N-containing compounds

55 5.5 N-Benzylaniline na 1054 * 0.78 ± 0.16 – – –
56 22.41 Indole 0.5 [24] 1416 1307 – 1.15 ± 0.19 – –
57 27.08 4-Pyrrolidinopyridine na 1327 * 5.51 ± 0.54Bb 4.26 ± 0.4Cc 13.19 ± 0.49Aa 2.6 ± 0.43Dd
58 27.2 5-methyl-1,3-dihydro-2H-benzimidazol-2-one na 2021 * 23.76 ± 1.37Aa 16.41 ± 0.5Bb – –

S-containing compounds

59 40.47 Cocarboxylase na 1445 * 0.27 ± 0.07Aa 0.44 ± 0.02Aa 0.16 ± 0.06Aa 0.22 ± 0.10Aa
60 40.72 L-Methionine 750 [24] * * 0.44 ± 0.14 – – –

Note: ODT: odor detection threshold. All ODTs presented in this table constitute human olfactory thresholds in the air. “na” indicates that no ODT value was available
in the references. –indicates that the compound has not been detected. The different letters in each column represent significant differences at the 5% level. Different
lower-case letters behind data indicate significant differences at p ≤ 0.05, and upper-case letters indicate significant differences at p ≤ 0.01 between taxa by using
Duncan’s test. The compound data of each taxon was expressed as the mean ± SD of three samples. LRI (calc), linear temperature-programmed retention indices
calculated; LRI (lit), linear temperature-programmed retention indices reported in the literature [2–5,37] (LRI Database on the web: http://www.odour.org.uk/
lriindex.html). * indicates that the retention index of the compound could not be calculated (the standard series of n-alkanes is not sufficient to calculate) or could not
be retrieved.

http://www.odour.org.uk/lriindex.html
http://www.odour.org.uk/lriindex.html
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3.2.2. PCA Based on the GC–MS Data

To determine the volatile compounds that play a critical role in differentiating scent
intensity, the 60 compounds identified using SPME–GC–MS were subjected to PCA. The four
taxa could be clearly discriminated based on the first two PCs, which explained 91% of the
total variance (Figure 4). Scent intensity increased in a positive direction along the x-axis.
Several compounds were found to contribute significantly to the discrimination between the four taxa.
5-methyl-1,3-dihydro-2H-benzimidazol-2-one, benzyl alcohol, and α-cedrene contributed greatly to
PC1, whereas linalool, benzyl alcohol, 4-pyrrolidinopyridine, α-cedrene, and β-cedrene showed a high
contribution to PC2. These six compounds were predominantly N-containing compounds, terpenes,
and alcohols, which corroborates our results obtained in Section 3.1, above. The relative contents of
these six compounds were high, accounting for 33% to 48% of the total content. These findings allowed
for an evaluation of the correlation between the effective volatile compounds and the sensors.
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3.3. Correlation between E-Nose and GC–MS

PLSR was used to compare the E-nose measurements and volatile compounds detected by GC–MS.
The regression coefficients obtained from the jack-knife significance testing indicated that some of the
X-variables (compounds) were significantly correlated (p ≤ 0.05) with one or more of the 10 sensors
(Figure 5). In PC1, aliphatics, N-containing compounds, S-containing compounds, and sensors W5C,
W1S, W2S, W2W, and W3S were all located in the right section of the plot and explained between 50%
and 100% of the cross-validated variance, indicating that these variables were significantly positively
correlated (p ≤ 0.05).Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Similarly, terpenes were significantly correlated with sensors W1C, W3C, W5S, and W1W
(p ≤ 0.05). In addition, benzenoids (alcohols) were also positively associated with sensors W5C,
W1S, W2S, W2W, W3S and sensors W1C, W3C, W5S, W1W (p ≤ 0.05). However, most benzenoid
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alcohols are concentrated on the left-hand side of the plot, particularly near sensor W2S (which is
sensitive to alcohol), while other benzenoid alcohols are distributed on the right-hand side of the plot.

4. Discussion

4.1. Correlation between the Scent Discrimination of the E-Nose and Sensory Evaluation

The human olfactory system is highly nonlinear in many respects [38,39], and cross-adaptation,
masking, and other processes involved in the human perception of odors further complicate the
signal processing in olfaction [40,41]. In addition, sensory evaluation is subjective and depends on the
long-term accumulation of human practices and behavior, and thus data standardization is challenging.
This study found that the PCA based on the E-nose data and sensory aromatic intensities of the
taxa did not exhibit a simple linear correspondence (Figure 1). Furthermore, the contribution of the
sensors W1S, W2S, and W1W, which are sensitive to broad range methane, alcohols, and terpenes
as well as sulfur organic compounds, respectively, was higher. E-nose recognition is based on the
multi-dimensional response values of the sensor to the aromatic components, thereby obtaining an
overall fingerprint of the volatile components in a sample rather than the qualitative and quantitative
results of one or more components [6]. Therefore, the intensity of the floral aroma recognized by the
E-nose considers both the compound and its concentration concurrently.

4.2. Correlation between the E-Nose and GC–MS Analysis

As GC–MS is widely used in volatiles analysis, it is thus necessary to evaluate the correlation
between the E-nose and the GC–MS results. A comparative evaluation of E-nose and GC–MS allowed
for an assessment of the contribution of the compounds detected by the E-nose. Different types
of E-nose instruments and sensors have various sensitivities to each component [6]. Data were
collected by a particular E-nose, and a prediction model was then established to provide a basis for
future research on the same material. In this study, we discovered that specific sensors were highly
correlated with majority of compounds in crabapple, thereby producing different sensor behaviors
and leading to successful scent type differentiation. For example, N-containing compounds, terpenes,
and S-containing compounds were highly associated with sensors W5C, W1W, W2S, respectively.
This provided a reference for the establishment of the rapid detection of crabapple flower fragrance in
the future.

4.3. The Contribution of Compounds to Flower Aroma of Crabapple

The sensory characteristics of floral scent are not only related to the aromatic components and
their proportions, but also to the aromatic threshold. The odor detection threshold (ODT) refers to the
minimum concentration of a certain volatile compound that is perceivable by the human olfactory
system and is the quantitative representation of the intensity of a fragrance [2]. The smaller the
threshold, the stronger the aromatic intensity. The threshold for monomeric aromatic substances
may change due to the addition of other aromatic substances, i.e., different components may exhibit
mutual masking or coordinated enhancement [42]. Studies have shown that a mixture of components
with a low ODT has coordinated enhancement, while a mixture with a high ODT will have masking
properties [42]. In terms of the aromatic substances detected in this study, the ODTs of 42 of the
compounds were found in the literature [24–36], 32 of which had an ODT less than 1 ppm. Among
the six compounds that contributed most highly to the aromatic properties of the taxa, the aromatic
thresholds of 5-methyl-1,3-dihydro-2H-benzimidazol-2-one and 4-pyrrolidinopyridine are unknown;
the threshold of benzyl alcohol is 5; while the other three compounds (α-cedrene, β-cedrene, and
linalool) exhibit extremely low thresholds (ODT < 1 ppm), indicating that these four compounds
contribute greatly to the aromatic intensity. Although M. ‘Brandywine’ did not have the greatest
number of compounds, this taxon did possess the highest numbers of compounds with low ODTs
(i.e., high aromatic intensities), while M. ‘Hillieri’ possessed the least. These findings explain the greater
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aromatic intensity of M. ‘Brandywine’. Typically, ODT is not included in PCA analyses; however, if the
ODT values of all the compounds were measured and combined with the compound detection data in
the pattern recognition process, the accuracy of the classification results would be further improved.
In addition, there were no obvious differences between the compounds detected in this study and other
related studies on apples and crabapples [39,43–46]. However, the main compounds, constituting the
primary compounds detected in these studies, were not completely identical. This phenomenon can
primarily be attributed to different sample pretreatment methods. Soxhlet extraction, steam distillation,
simultaneous distillation–extraction (SDE), and supercritical fluid extraction (SFE) can be used for
fragrance analysis; however, these methods can influence the results and also require many reagents.
SPME, dynamic-headspace sampling (DHS), and purge and trap (P&T) can also affect the results due
to the selective adsorption of compounds by extraction coating. No standard method for determining
floral fragrance thus exists.

5. Conclusions

This study is the first to evaluate the volatile constituents of crabapple flowers using E-nose
technology. The results indicated that among the more aromatic taxa, the contents of N-containing
compounds and aliphatics were significantly higher than the less aromatic taxa. Furthermore, the most
aromatic taxon M. ‘Brandywine’ possessed a significantly higher number of unique compounds than
the other taxa. α-Cedrene, β-cedrene, 5-methyl-1,3-dihydro-2H-benzimidazol-2-one, benzyl alcohol,
linalool, and 4-pyrrolidinopyridine were found to contribute greatly to the separation of the different
taxa. The E-nose was capable of identifying the different crabapple taxa based on their sensory
characteristics, and the sensors W1W, W1S, W2S, W2W, W3S, and W5C played an important role
in distinguishing the taxa. The correlation between the aromatic constituents and sensors indicated
that particular sensors were more sensitive to N-containing compounds, aliphatics, and terpenes.
Based on the results obtained in this study, volatile profiling by GC–MS and E-nose in combination
with multivariate statistical analysis constitutes a promising tool for an overall quality evaluation of
crabapple flower scent.
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