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Objective. Fulminant type 1 diabetes (FT1D) is a type of type 1 diabetes, which is characterized by rapid onset of disease and severe
metabolic disorders. We intend to screen for crucial genes and potential molecular mechanisms in FT1D in this study.Method. We
downloaded GSE44314, which includes six healthy controls and five patients with FT1D, from the GEO database. Identification of
differentially expressed genes (DEGs) was performed by NetworkAnalyst. The Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses of DEGs were screened by an online tool—Database for Annotation,
Visualization, and Integration Discovery (DAVID). Protein-protein interaction (PPI) network and hub genes among DEGs were
analyzed by NetworkAnalyst. And we also use NetworkAnalyst to find out the microRNAs (miRNAs) and transcription factors
(TFs) which regulate the expression of DEGs. Result. We identified 130 DEGs (60 upregulated and 70 downregulated DEGs)
between healthy controls and FT1D patients. GO analysis results revealed that DEGs were mostly enriched in generation of
precursor metabolites and energy, neurohypophyseal hormone activity, and mitochondrial inner membrane. KEGG pathway
analysis demonstrated that DEGs were mostly involved in nonalcoholic fatty liver disease. Results indicated that NCOA1, SRF,
ERBB3, EST1, TOP1, UBE2S, INO80, COX7C, ITGAV, and COX6C were the top hub genes in the PPI network. Furthermore,
we recognized that LDLR, POTEM, IFNAR2, BAZ2A, and SRF were the top hub genes in the miRNA-target gene network, and
SRF, TSPAN4, CD59, ETS1, and SLC25A25 were the top hub genes in the TF-target gene network. Conclusion. Our study
pinpoints key genes and pathways associated with FT1D by a sequence of bioinformatics analysis on DEGs. These identified
genes and pathways provide more detailed molecular mechanisms of FT1D and may provide novel therapeutic targets.

1. Introduction

Fulminant type 1 diabetes (FT1D) is a novel type of type 1
diabetes (T1DM) raised by Imagawa et al. in 2000 [1], which
is featured by abrupt disease onset, no C-peptide secretion,
negative islet-related autoantibodies, and elevated pancreatic
enzymes. At first, FT1D was identified as idiopathic T1DM
because patients with FT1D lack autoimmune markers such
as protein tyrosine phosphatase antibody or glutamic acid
decarboxylase autoantibody. Over the past 20 years, the
understanding of FT1D has increased. And a sequence of
studies indicated that the immunity has a role in the
occurrence and development of FT1D, which convinced that
FT1D is possibly an autoimmune disease [2–4].

There are studies that reported that genetic and envi-
ronmental factors take part in the initiation and progres-
sion of FT1D. Numbers of studies indicated that CTLA-4,
HLA-B, and HLA DR-DQ are related with FT1D [5–7].
Many studies advocate that in FT1D, immune response
against viral infection in islets caused the β cell destruction
[8–10]. Numerous virus infections were covered in FT1D
patients, including coxsackievirus, enterovirus, and human
cytomegalovirus [11–13]. Genes such as lymphocyte cyto-
solic protein 1, melanoma differentiation-associated protein
5, DEAD box helicase 5, and C-X-C motif chemokine 10,
which take part in the virus infection, have been proved to
be associated with the pathogenesis of FT1D [3, 11, 14]. To
further reveal the mechanism of FT1D, a microarray data
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numbered GSE44314 was deposited by Nakata et al., and it
has reported that NKG2E-CD94 were significantly reduced
in FT1D, indicating that the reduced expression of NK
activating receptor gene and low proportion of NK cells are
probably involved in the progression of FT1D [15]. However,
there are no studies that had reported the possible regulatory
mechanisms of transcription factors (TFs) and microRNAs
(miRNAs) related to the development of FT1D.

In our study, we reanalyzed the dataset of GSE44314 by
the method of bioinformatics, which includes screening
differentially expressed genes (DEGs), functional enrichment
analysis, protein-protein interaction (PPI) analysis, and the
regulatory TFs/miRNAs related to DEG prediction. Through
these analyses, we expect to determine novel insights for the
knowledge of FT1D and provide more detailed molecular
mechanisms underlying the development of FT1D.

2. Materials and Methods

2.1. Microarray Data. We downloaded the gene expression
profile data of GSE44314 from the Gene Expression
Omnibus (GEO) database in the National Center for Bio-
technology Information (NCBI, https://www.ncbi.nlm.nih
.gov/geo/). The microarray data was based on the platform
of GPL6480 (Agilent-014850Whole Human GenomeMicro-
array 4x44K G4112F). The datasets available in this analysis
were uploaded by Nakata et al. [15], which include 11 sam-
ples, containing 6 healthy controls and 5 patients with FT1D.

2.2. Identification of Differentially Expressed Genes. Networ-
kAnalyst [16, 17] (https://www.networkanalyst.ca), a website
for integrative statistical and visualizing tool, was used to
determine the DEGs between healthy controls and FT1D

patients. The cutoff of the P value was adjusted to 0.05, and
∣log fold change ∣ ð∣log FC ∣ Þ > 0:585 for the DEG discrimi-
nation, using the false discovery rate (FDR) found on the
Benjamini-Hochberg program and moderated t-test based
on the Limma algorithm.

2.3. Functional and Pathway Enrichment Analysis. We used
an online tool named DAVID [18] (https://david.ncifcrf
.gov/) in conducting the Gene Ontology (GO) term [19]
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[20] pathway enrichment analyses of DEGs, with the thresh-
olds of count ≥ 2 and P value < 0.05.

2.4. Protein-Protein Interaction (PPI) Network Analysis and
Hub Gene Searching. Based on the analyzed DEGs, Networ-
kAnalyst [21] was used to perform the PPI Network iden-
tification with a hypergeometric algorithm, and P < 0:05
was identified as having statistically significant differences.
Besides, we used NetworkAnalyst to recognize the most
significant modules of hub genes using the “module explorer
tool,” found on the random walk-dependent Walktrap
algorithm.

2.5. Prediction of Target Gene-MicroRNA Network. The gene
expression was affected by microRNAs in a disease condition
through posttranscriptional control. In the present study, the
online tool NetworkAnalyst [17] was used to search the miR-
NAs associated with DEGs, which integrates microRNA data-
bases miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/
download.php) [22] and TarBase (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=tarbase/index) [23].

2.6. Prediction of Target Gene-Transcription Factor Network.
The gene expression was influenced by TFs in a disease
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Figure 1: Volcano plot of differentially expressed genes. Genes with a significant change of more than 1.5-fold were selected.
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condition by transcriptional control. In our study, Networ-
kAnalyst [17] was used for recognizing the TFs associated
with DEGs, which combines TF database JASPAR (http://
jaspar.genereg.net/) [24].

3. Results

3.1. Identification of Differentially Expressed Genes in
Fulminant Type 1 Diabetes. We identified 130 DEGs in
FT1D patients compared to healthy controls in total, includ-
ing 60 upregulated genes and 70 downregulated genes
(Supplementary Table 1). We draw a volcano plot of the
DEGs (Figure 1) and a hierarchical clustering heat map of

DEGs (Figure 2). It turned out that these DEGs were well
distinguished between the FT1D group and the healthy
control group. NK2 homeobox 3 (NKX2-3) and Ring finger
protein 182 (RNF182) were, respectively, identified as the
most significantly upregulated and downregulated genes in
FT1D patients.

3.2. Functional Enrichment Analysis.We recognized 21 Gene
Ontology terms (Table 1) and 5 KEGG pathways (Table 2)
when analyzed with DAVID. The DEGs were mainly focused
on the generation of precursor metabolites and energy,
hydrogen ion transmembrane transport, and mitochondrial
electron transport, cytochrome c to oxygen by biological
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Figure 2: Heat map of differentially expressed genes. The abscissa represents different samples, and the ordinate represents different genes.
The red boxes indicate upregulated genes, and the green boxes indicate downregulated genes.
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process (BP) analysis. For the cellular component (CC)
group, mitochondrial inner membrane, extracellular space,
and cell junction were the enriched terms. Molecular func-
tion (MF) analysis showed that the DEGs were remarkably
focused on neurohypophyseal hormone activity, cytochrome
c oxidase activity, and neuregulin binding. Moreover, the
KEGG pathway analysis indicated that the DEGs were signif-
icantly involved in nonalcoholic fatty liver disease, Hunting-
ton’s disease, Alzheimer’s disease, and Parkinson’s disease as
well as oxidative phosphorylation.

3.3. PPI Network and Hub Gene Identification. There were
363 nodes and 409 edges in the PPI network (Figure 3). In
this PPI network, sixteen genes with degrees > 10 were found

as key genes (Table 3). The node size is influenced by the fold
change between FT1D patients and healthy controls, and the
red or orange color nodes indicate that they have a higher
score. The core of the whole PPI network was the most key
genes in this cluster, including NCOA1, SRF, ERBB3, ETS1,
TOP1, UBE2S, INO80, COX7C, ITGAV, COX6C, ATF4,
PAF1, YARS, TTI1, UBC, EEF1B2, and AHSA1. Thence,
the seventeen genes were recognized as the hub genes.

3.4. miRNA-DEG and TF-DEG Regulating Network Analysis.
The miRNAs and TFs for DEGs are displayed in Figures 4
and 5, respectively. The top five targeted genes regulated by
miRNA are shown in Supplementary Table 2. It turned out
that 167 miRNAs regulate LDLR, 124 miRNAs regulate

Table 1: The results of Gene Ontology (GO) of DEGs ranked by P value.

Term Count P value Genes

GO-BPs

Generation of precursor metabolites and energy 4 0.004 AVP, UQCR11, COX7C, COX6C

Hydrogen ion transmembrane transport 4 0.006 NDUFA4, UQCR11, COX7C, COX6C

Mitochondrial electron transport, cytochrome c to oxygen 3 0.006 NDUFA4, COX7C, COX6C

Extrinsic apoptotic signaling pathway in the absence of ligand 3 0.017 MOAP1, ERBB3, ITGAV

Positive regulation of female receptivity 2 0.018 NCOA1, OXT

Positive regulation of gene expression 6 0.02 AMH, ATF4, AVP, LDLR, ERBB3, GPER1

Maternal aggressive behavior 2 0.024 AVP, OXT

Hyperosmotic salinity response 2 0.029 AVP, OXT

Cellular response to lipopolysaccharide 4 0.03 TNFRSF1B, ADAMTS13, PAF1, CACTIN

Social behavior 3 0.033 AVP, OXT, DLG4

Positive regulation of apoptotic process 6 0.034 MOAP1, ATF4, NCOA1, ARHGEF6, GPER1, PDCD1

Male mating behavior 2 0.035 NCOA1, OXT

Positive regulation of uterine smooth muscle contraction 2 0.041 OXT, GPER1

Drinking behavior 2 0.041 HTR1B, OXT

Positive regulation of cytosolic calcium ion concentration 4 0.046 AVP, OXT, DLG4, GPER1

GO-MFs

Neurohypophyseal hormone activity 2 0.011 AVP, OXT

Cytochrome c oxidase activity 3 0.013 NDUFA4, COX7C, COX6C

Neuregulin binding 2 0.028 ERBB3, ITGAV

GO-CCs

Mitochondrial inner membrane 8 0.014
NDUFA4, UQCR11, SLC25A25, COX7C,
ROMO1, MRPL30, NDUFB1, COX6C

Extracellular space 14 0.046
INA, AVP, CXCL5, ERBB3, ADAMTS13, OXT,
FETUB, AMH, IFNAR2, C1QTNF5, CLEC3B,

CD59, SEMA4D, PRSS33

Cell junction 7 0.05 CNIH2, OTOF, PRRT1, DLG4, PAF1, GPER1, GPR142

Table 2: The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) of DEGs ranked by P value.

Term Count P value Genes

Nonalcoholic fatty liver disease (NAFLD) 6 0.0017 NDUFA4, ATF4, UQCR11, COX7C, NDUFB1, COX6C

Huntington’s disease 6 0.0048 NDUFA4, UQCR11, DLG4, COX7C, NDUFB1, COX6C

Oxidative phosphorylation 5 0.0071 NDUFA4, UQCR11, COX7C, NDUFB1, COX6C

Parkinson’s disease 5 0.0089 NDUFA4, UQCR11, COX7C, NDUFB1, COX6C

Alzheimer’s disease 5 0.0158 NDUFA4, UQCR11, COX7C, NDUFB1, COX6C
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POTEM, 109 miRNAs regulate IFNAR2, 107 miRNAs
regulate BAZ2A, and 92 miRNAs regulate SRF. The top five
targeted genes regulated by TFs are shown in Supplementary

Table 3. It turned out that 25 TFs regulate SRF, 18 TFs
regulate TSPAN4, 16 TFs regulate CD59, 16 TFs regulate
ETS1, and 15 TFs regulate SLC25A25.

4. Discussion

FT1D is a disease with a state of insulin dependency due to
the rapid destruction of almost all pancreatic β cells, which
causes the radical onset of ketoacidosis in a few days after
the appearance of hyperglycemic symptoms [25–27]. It has
been reported that most of the patients with FT1D are found
in East Asia, but recently, Western countries also reported
this disease [8, 28, 29]. FT1D makes up about 20% of
abrupt-onset T1DM cases in Japan [8]. It is important to
understand the molecular mechanisms of FT1D. We down-
loaded and analyzed a dataset (GSE44314) that contains five
FT1D patients and six healthy controls from the GEO
database. We identified 130 DEGs in total, including 60
upregulated DEGs and 70 downregulated DEGs. Among
the 130 DEGs, we noticed that programmed cell death-1
(PD-1) was downregulated in FT1D patients. PD-1 is a
critical member of the B7-CD28 family and is one of the
important costimulatory molecules [30]. PD-1 can regulate
the T cell response and keep maintaining peripheral toler-
ance by delivering critical inhibitory signals [30]. Inhibiting
the PD-1 pathway would bring about excessive T cell prolif-
eration, failure of tolerance, and autoimmune activation [31].

Figure 3: Protein-protein interaction network of the differentially expressed genes. Red and orange nodes stand for hub genes.

Table 3: Sixteen genes with degrees < 10 in the protein-protein
interaction network of the differentially expressed genes.

Gene Regulation Degree Betweenness Expression

ETS1 Up 26 15103.54 1.145

AHSA1 Up 11 3565 0.82

TOP1 Up 23 10312.37 0.764

NCOA1 Up 34 9967.16 0.752

PAF1 Up 18 5908.12 0.732

SRF Up 31 22498.06 0.647

YARS Up 15 4237.33 0.644

INO80 Up 22 7030.5 0.606

ITGAV Down 20 9973.24 -0.603

ATF4 Down 18 11878.52 -0.705

COX6C Down 20 3314.17 -0.759

COX7C Down 22 4037.83 -0.801

EEF1B2 Down 11 11109 -0.817

UBE2S Down 23 7532.83 -0.858

TTI1 Down 14 11460.5 -1.226

ERBB3 Down 29 19037.55 -1.422
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Therefore, PD-1 has gained popularity in the treatment of
several advanced cancers [32, 33]. Studies have proved that
treatment with PD-1 inhibitors can cause FT1D [34–36].
And the termination of anti-PD1 antibody therapy may
preserve inherent insulin secretion capacity in “anti-PD1
antibody-induced” FT1D [37]. It seems that PD-1 should
be upregulated in FT1D, which is totally opposite to our
result. Various researchers have identified that cellular
immunity, especially T cell, played a crucial role in β cell
destruction in FT1D [38–40]. However, a Japanese study that
compares PD-1 expression in peripheral CD4+ T cells
between type 1A diabetes (classical type 1 diabetes), FT1D,
and healthy controls found that there is no difference
between FT1D and healthy controls in PD-1 expression
and that there is lower PD-1 expression in CD4+ T cells in
patients with type 1A diabetes [41]. Different studies have
different conclusions in PD-1 expression in FT1D, which
need further studies to confer this question and explore
how PD-1 take part in the occurrence and progression of
FT1D. Among the increased DEGs, NK2 homeobox 3
(NKX2-3) is the most upregulated gene in FT1D, and an ani-
mal study has indicated that NKX2-3 is related to T1DM
[42], but further study is needed to figure out how NKX2-3
acts in FT1D.

In the current study, the most significant GO BP term for
DEGs is generation of precursor metabolites. UQCR11,
COX7C, and COX6C are the new biomarkers for the
progression of FT1D. The most significant GO MF term for
DEGs is neurohypophyseal hormone activity. Arginine vaso-
pressin (AVP) and oxytocin are associated with type 2 diabe-
tes but are new biomarkers for the progression of FT1D. The
most significant GO CC term for DEGs is mitochondrial
inner membrane. NDUFA4, SLC25A25, ROMO1, MRPL30,
and NDUFB1 are novel biomarkers for the development of
FT1D. Nonalcoholic fatty liver disease is the most significant
KEGG pathway for DEGs. Activation of activating transcrip-
tion factor 4 (ATF4) contributes to diabetic hepatotoxicity by
ER stress [43]. Besides, ATF4 is a transcription factor impli-
cated in β cell survival and susceptibility to stress [44]. ATF4
is a new biomarker for the progression of FT1D. Parkinson’s
disease, Alzheimer’s disease, and Huntington’s disease also
are significant KEGG pathways for DEGs. Diabetes mellitus
(DM) adversely affects multiple organ systems, including
the brain [45]. These evidences suggest that FT1D may also
lead to neurodegenerative diseases and adversely affect
cognition. Discs large MAGUK scaffold protein 4 (DLG4)
is related to neurological disorders and type 2 diabetes [46–
48]; DLG4 is a new biomarker for the progression of FT1D.

Figure 4: Target gene-miRNA regulatory network. Red and orange nodes stand for differentially expressed genes; blue diamonds stand
for miRNA.
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In the present study, NCOA1, SRF, ERBB3, ETS1, TOP1,
UBE2S, INO80, COX7C, ITGAV, and COX6C were recog-
nized as top 10 hub genes in the PPI network. A genome-
wide meta-analysis study confirmed that nuclear receptor
coactivator 1 (NCOA1) is a T1DM susceptibility gene [49].
An animal study suggests that serum response factor (SRF)
is decreased in diabetic nephropathy compared to healthy
controls [50]. Many studies confirmed that ERBB3 was the
most important T1DM association locus in the non-HLA
gene [51–53]. ETS proto-oncogene 1 (EST1) was found asso-
ciated with T1DM in the NOD mouse and then confirmed
in human population [54–56]. Tissues derived from the
T1DM animals show that DNA topoisomerase I (TOP1)
activity and enzyme protein level decreased, whereas the
enzyme mRNA level was not altered, which demonstrates
that TOP1 activity is regulated by high glucose levels and
may lead to the pathogenesis of diabetic complications [57].
Ubiquitin-conjugating enzyme E2 (UBE2S) takes part in
T1DM by enhancing M2 macrophage polarization [58]. Jin
et al. compared integrin subunit alpha V (ITGAV) expres-
sion between diabetic nephropathy and normal human
kidney and found that ITGAV is higher in diabetic nephrop-
athy [59]. Although there are evidences that the hub genes
are contacted with T1DM, they are novel biomarkers for
the development of FT1D.

LDLR, POTEM, IFNAR2, BAZ2A, and SRF were identi-
fied as top five targeted genes in the miRNA-target gene reg-
ulatory network. Low-density lipoprotein receptor (LDLR) is
increased in a NOD mouse compared with a nondiabetic
mouse [60]. A study in Ins2(Akita)Ldlr-/- mice revealed that
lack of LDLR will accelerate atherosclerosis in T1DM ani-
mals [61]. When lacking the r type II interferon receptor
(IFNAR2), diabetes happened only in female NOD mice
[62]. POTEM and BAZ2A are novel biomarkers for the
development of FT1D. SRF, TSPAN4, CD59, ETS1, and
SLC25A25 were identified as top five targeted genes in the
TF-DEG regulatory network. Due to the lack of complement
regulatory protein CD59, the development of diabetes-
induced atherosclerosis in mice is accelerated [63]. Besides,
CD59 is reduced in diabetic subjects compared with healthy
controls [64]. Tetraspanin 4 (TSPAN4) is a new biomarker
for the progression of FT1D.

We noticed that there are two bioinformatics analysis of
type 1 diabetes, and there are some the same conclusions
between our study and theirs [65, 66]. Fang et al. reported
that programmed cell death ligand 1 (PD-L1) was upregu-
lated in the new-onset T1DM samples [66]. This is identical
with our result. PD-1/PD-L1 is a negative modulatory signal-
ing pathway for activation of T cell. The upregulated PD-L1
and downregulated PD-l cause the same result, which are

Figure 5: Transcription factor-target DEG regulatory network. Orange and yellow nodes stand for differentially expressed genes; blue
diamonds stand for transcription factors.
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the inactivation of T cell and the progression of immune
tolerance, which play a protective role in the pathogenesis
of T1DM. Liu et al. found that HLA-DQA1 and HLA-
DRB4 might be targets for the treatment of T1D, and IL8 is
likely to be a newmarker for the diagnosis of T1D [65]. These
results indicated that T1DM is an autoimmune disease,
which is in accordance with our result.

5. Conclusions

Our data provide a comprehensive bioinformatics analysis of
DEGs to search molecular mechanisms related to the pro-
gression of FT1D. We found a set of useful genes for future
research into the molecular mechanisms of FT1D progres-
sion, while further molecular biological experiments are
needed to confirm the effect of these DEGs in the progression
of FT1D.
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