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Abstract: The role of dietary probiotic strains on host anti-cancer immune responses against
experimental colon carcinoma was investigated. We have previously shown that Lactobacillus casei
administration led to tumor growth suppression in an experimental colon cancer model. Here,
we investigated the underlying immune mechanisms involved in this tumor-growth inhibitory
effect. BALB/c mice received daily live lactobacilli per os prior to the establishment of a syngeneic
subcutaneous CT26 tumor. Tumor volume, cytokine production, T cell differentiation and migration,
as well as tumor cell apoptosis were examined to outline potential immunomodulatory effects
following L. casei oral intake. Probiotic administration in mice resulted in a significant increase
in interferon gamma (IFN-γ), Granzyme B and chemokine production in the tumor tissue as well
as enhanced CD8+ T cell infiltration, accompanied by a suppression of tumor growth. Cytotoxic
activity against cancer cells was enhanced in probiotic-fed compared to control mice, as evidenced
by the elevation of apoptotic markers, such as cleaved caspase 3 and poly (ADP-ribose) polymerase
1 (PARP1), in tumor tissue. Oral administration of Lactobacillus casei induced potent Th1 immune
responses and cytotoxic T cell infiltration in the tumor tissue of tumor-bearing mice, resulting in tumor
growth inhibition. Thus, the microorganism may hold promise as a novel dietary immunoadjuvant
in raising protective anti-cancer immune responses.

Keywords: probiotics; syngeneic murine colon carcinoma; immune responses; oral administration;
Lactobacillus casei

1. Introduction

Probiotics are defined as live microorganisms that when administered in adequate amount confer
a health benefit to the host [1]. Most probiotics are part of a heterologous group known as lactic acid
bacteria (LAB) (Lactobacillus, Enterococcus) and bacteria of the genus Bifidobacteria [2].

A wide variety of disorders have been shown to respond positively to LAB administration, such
as intestinal inflammation [3], diarrhea [4], allergic diseases [5] and psychiatric disorders [6]. Recent
studies suggest that some of them exhibit immunoregulatory properties, amplifying host defense
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mechanisms, especially against colon cancer [7]. Activation of specialized anticancer immune responses
seems to be part of their repertoire, although how this is achieved has not been fully verified [8].

Various mechanisms have been put forward as potential explanations for the effects exhibited
by probiotics. Among them are alterations in the gut microbiota, antagonizing pathogenic strains [9],
strengthening of the intestinal mucosal barrier [10], regulation of immune responses [8], direct
anti-proliferative and pro-apoptotic effects [11] and induction of immunogenic cell death [12].

Several in vitro experiments have revealed that probiotic bacteria demonstrate cytotoxicity against
human cancer cell lines [13,14]. Viable bacteria, metabolites [15] and cell free extracts [16] have been
proposed as anti-proliferative agents. The aforementioned components have also been linked with
increased interleukin 1 (IL-1) and tumor necrosis factor alpha (TNF-a) production by murine peritoneal
macrophages [17] and increase of Th1 cells induced through a highly controlled IL-12 production by
immune cells originating from mouse spleen and Peyer’s patches (PP) [18]. The same effect has also
been observed in human activated peripheral mononuclear cells [19,20].

In vivo experiments have revealed notable anti-tumor and immunomodulatory effects [21]
following lactobacilli administration [22], as well as modulation of intestinal micro flora, an event that
affects host immune responses. This activity has been linked to the increase in stimulatory cytokines
that favor cytotoxicity [18]. Intranasal administration of L. casei BL23 [23] resulted in increased natural
killer (NK) cell activity in mice challenged with TC-1 cells, and oral administration of Lactobacillus
plantarum promoted intratumor migration of CD8+ and NK cells [24]. Consumption of probiotic
bacteria has also been linked with prolonged survival of tumor-bearing mice, an effect associated with
increased IL-12 production [25]. The combination of increased IL-12 secretion with interferon gamma
(IFN-γ) production and augmentation of the NK cells and CD4+ T cells populations has been verified
by multiple studies [26,27]. Sivan et al. have reported that a cocktail of lyophilized Bifidobacteria species,
when administered in mice bearing B16.F10 melanoma, resulted in the development and accumulation
of highly effective tumor-specific CD8+ cells, which in combination with anti-programmed cell-death
ligand 1 (PD-L1) treatment, nearly abolished tumor overgrowth [28].

Administration of lactobacilli has been documented to not only stimulate production of cytotoxic
cell development, but also maturation of Th1 helper T cells [26]. Th1 cytokine production has
resulted in regulation of complex signaling pathways of differentiation, development and targeted
intra-tumor migration of specialized effector immune cell populations, such as CD8+ T cells and NK
cells [29,30]. Their recruitment results in increased cancer cell apoptosis through cell interactions and
secretion of anti-cancer factors, making the host’s immune response against tumorigenic incidents
more efficient [31].

As we had previously reported, Lactobacillus casei ATCC 393 demonstrates potent anti-proliferative
and pro-apoptotic activity in vitro as well as significant tumor growth inhibitory effects in a syngeneic
CT26 cancer model when orally administered in tumor-bearing BALB/c mice [11]. In this study, we
explored the immunomodulatory properties of the probiotic in the production and migration of effector
immune cells, as well as their ability to secrete various chemotactic agents and highly active cytotoxic
cytokines, like IFN-γ and granzyme B.

2. Results

2.1. Oral Administration of Live Lactobacillus casei Suppresses Subcutaneous Colon Carcinoma Growth in Mice

The protective effect of L. casei against CT26-induced colon carcinoma was evaluated. As shown
in Figure 1a, BALB/c mice received a daily oral administration of 109 colony-forming unit (CFU) live
bacteria for 13 days. Control mice received an equal volume of phosphate-buffered saline (PBS). At day
10, 5 × 106 CT26 cells were injected subcutaneously. Seven days post CT26 inoculation, animals were
euthanized by cervical dislocation and tumors were isolated. No signs of disease or discomfort were
observed during the experimental procedure. Oral Lactobacillus administration resulted in a statistically
significant tumor growth inhibition compared to control mice that only received PBS for the same time
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period (Figure 1b). The respective box-plots of each group of mice are illustrated in Figure 1c. Notably,
the tumor volume was significantly suppressed in the L. casei administered BALB/c mice by 63.1%
compared to the control group (p < 0.05).
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day 10, 5 × 106 CT26 cells were injected subcutaneously. Growing tumors were excised 7 days 
post-inoculation of CT26 cells; (b) Representative photographic presentation of tumors from both 
groups; (c) Diagram showing mean tumor volume inhibition in probiotic-fed mice (LC) compared to 
control mice. *, p < 0.05, groups were repeated three times. 
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isolated from mice were mechanically homogenized in PBS and cytokine production was evaluated 
with enzyme-linked immunosorbent assay (ELISA ) (Figure 2). A statistically significant increase in 
IFN-γ was observed in patches originating from treated mice both three (3) and seven (7) days (p < 
0.05) post CT26 inoculation, at d13 and d17 from start, respectively (Figure 2a). IL-12 levels were also 
found to be elevated in treated mice on day 13, while levels of IL-12 were undetectable 7 days post 
cancer cell injection (Figure 2b). No significant differences in IL-10 levels were detected between the 

Figure 1. Oral administration of Lactobacillus casei (LC) suppressed subcutaneous tumor growth in
BALB/c mice. (a) Schematic representation of the in vivo tumor model. Female BALB/c mice received
daily 109 CFU of live L. casei per os for 13 days (n = 9/10). Control group received PBS (n = 9/10).
On day 10, 5 × 106 CT26 cells were injected subcutaneously. Growing tumors were excised 7 days
post-inoculation of CT26 cells; (b) Representative photographic presentation of tumors from both
groups; (c) Diagram showing mean tumor volume inhibition in probiotic-fed mice (LC) compared to
control mice. *, p < 0.05, groups were repeated three times.

2.2. Elevated IFN-γ and IL-12 Production in Response to Lactobacillus casei Administration

In order to examine the effect of lactobacilli administration in intestinal cytokine secretion, PP
isolated from mice were mechanically homogenized in PBS and cytokine production was evaluated
with enzyme-linked immunosorbent assay (ELISA ) (Figure 2). A statistically significant increase in
IFN-γ was observed in patches originating from treated mice both three (3) and seven (7) days (p < 0.05)
post CT26 inoculation, at d13 and d17 from start, respectively (Figure 2a). IL-12 levels were also found
to be elevated in treated mice on day 13, while levels of IL-12 were undetectable 7 days post cancer cell
injection (Figure 2b). No significant differences in IL-10 levels were detected between the two groups
(Figure 2c). It is worth mentioning that production of all three cytokines examined was elevated at three
days post CT26 inoculation, which corresponds to the pause of probiotic administration (d13), while
IL-10 was the only one detected in the patches of control animals at the endpoint of the experimental
procedure, 7 days after tumor establishment (d17).
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Figure 2. Effect of Lactobacillus casei administration on the ex vivo cytokine production. BALB/c mice
received daily 109 CFU of live L. casei for 13 days (n = 4/5). Control group received PBS (n = 4/5).
On day ten (10) of oral administration, 5 × 106 CT26 cells were injected subcutaneously. PP were excised
after euthanasia three (d13 from start) or seven (d17 frorm start) days post-inoculation of CT26 cells.
Cytokine levels of (a) IFN-γ, (b) IL-12 and (c) IL-10 were quantified by ELISA in a PP lysate of L. casei
(LC)-fed mice as compared to the respective lysate of PBS-fed control mice. Cytokine production was
determined at the indicated time points by ELISA following the manufacturer’s instructions. *, p < 0.05,
groups were repeated two times.

2.3. Lactobacillus casei Consumption Shows Distinct Immune Effector Cells in the Spleen

We then aimed to observe the effect of L. casei administration on selected lymphocyte populations
in the spleen. Harvested spleens were homogenized, and following erythrocyte depletion, single-cell
spleen cells were labeled with appropriate antibodies and analyzed with flow cytometry. As shown
in Figure 3a,b, analysis of spleen cells unveiled a 2.5% increase (p < 0.05) of CD45+CD8+ T cells in
probiotic-fed mice as compared to control animals, while there were no distinguishable differences
on CD4+ T cells or CD3-CD49b+ NK cell populations between the two groups. Cytokine secretion
from cultured spleen cells was evaluated by ELISA. Re-stimulation of splenocytes with L. casei for
48 h in vitro revealed an increase in IFN-γ secretion in the culture medium, an effect more prominent
(p < 0.05) with spleen cells isolated at d17, seven (7) days post cancer cell injection. Production of IL-10
after L. casei re-stimulation in vitro was demonstrably not affected by consumption of the probiotic at
either time point of spleen cell isolation (Figure 3c).

2.4. Lactobacillus casei Administration Resulted in Distinct Immunoadjuvant and Pro-apoptotic Effects in
the Tumor

We then wanted to examine the effect of L. casei administration in the tumor microenvironment,
and the immune mechanisms that promoted tumor growth inhibition. The production of the cytokines
IFN-γ, IL-12p40 and granzyme B was analyzed by ELISA in homogenized excised tumors from L.
casei-fed as compared to PBS-fed mice. Increased IFN-γ production (p < 0.05), raising from undetectable
levels in control animals to 319.8 ± 81.6 pg/mL in treated animals, was detected. Levels of IL-12p40
were slightly (from 1.3 ± 0.42 pg/mL to 5 ± 0.46 pg/mL) but significantly (p < 0.05) increased in
tumors of mice that received the microorganism. A two-fold increase in Granzyme B accumulation
was observed; Granzyme B production in the tumor microenvironment was increased (from 109.4
± 54.7 pg/mL to 210.1 ± 67.3 pg/mL) in mice receiving lactobacilli (Figure 4a). Moreover, targeted
migration and infiltration of immune cells in the tumor was evaluated by flow cytometry. Freshly
isolated tumors were mechanically homogenized and then enzymatically digested to obtain single cell
suspension. Subsequently, tumor cells were stained with appropriate antibodies. Analysis of tumor
immunophenotype revealed a significant increase in tumor-infiltrating lymphocytes (TILs) (Figure 4b,c).
The effect was more prominent in the case of CD3+CD8+ cytotoxic T cells that demonstrated an almost
four-fold (p < 0.05) increase in treated probiotic-fed animals. CD3+CD8+ cytotoxic T cell infiltration
ranged from 3.12 ± 0.97% in control animals to 11.17 ± 4.09% in lactobacilli-administered mice.
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CD3+CD4+ helper T cells did also accumulate in the tumors of treated animals although this difference
was not statistically significant. There was no significant infiltration of NK cells in the tumor tissue in
control or treated mice.
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Figure 3. Effect of Lactobacillus casei administration on the percentage of effector immune cells in
the spleen. BALB/c mice received daily 109 CFU of live L. casei per os for 13 days (n = 4/5). Control
group received PBS (n = 4/5). On day ten (10) of oral administration, 5 × 106 CT26 cells were injected
subcutaneously. Spleen cells were isolated from mice three (d13 from start) or seven (d17 from start)
days post CT26 injection. Cells isolated at d17 were analyzed with flow cytometry. Isolated cells from
both time points were co-cultured ex vivo with 108 CFU/mL of L. casei for 48 h. (a) Representative
dot plots for each subtype of immune cells (CD8+ T cells, CD4+ T cells, NK cells) in the spleen;
(b) Frequencies of immune cell subtypes present in the spleen; (c) Cytokine production of spleen cells
isolated from probiotic-fed mice at d13 or d17. *, p < 0.05, groups were repeated two times.

Cancer cell apoptosis was evaluated in the tumor by detection of characteristic apoptotic markers
by Western blot analysis and immunohistochemistry. Tumor lysate was prepared as mentioned above
for cytokine analysis and levels of cleaved caspase 3 were evaluated by Western blot. Caspase 3 was
significantly active in the tumor of mice that were fed with probiotic bacteria, as levels of the cleaved,
active fragment of caspase 3 were approximately 2.5 times higher than those observed in animals from
the control group (Figure 4d, Supplementary Figure S1). Immunohistochemical analysis of tumor
sections corroborated this observation, as there was an approximately 20% increase in the number of
cells positive for cleaved caspase 3 in the tumors of treated animals (Figure 4e). Successful induction
of apoptosis in tumor cells was estimated with Western blot for PARP1, a typical apoptotic marker.
The cleavage of PARP1 with a corresponding fragment of 89 kDa, by activated caspase 3 among other
molecules, is a hallmark of the apoptotic pathway execution. As shown in Figure 4d, cleavage of
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PARP1 was more prominent in tumor extracts of mice receiving L. casei compared to control mice,
as evidenced by a decrease in the levels of the full-length protein at 116kDa and subsequent increase in
the intensity of the cleaved fragment at 89 kDa.Cancers 2020, 12, 368 7 of 16 
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Figure 4. Dietary oral administration of probiotic Lactobacillus casei (LC) resulted in distinct
immunoadjuvant and pro-apoptotic activities in tumor-bearing mice. Excised tumors from
tumor-bearing LC-treated or control (PBS-treated) mice (n = 6) were either fixed in formalin, cut
in sections, stained and observed under a microscope or mechanically homogenized. Homogenized
tumors were further treated for protein isolation and analysis with ELISA and western blot, or
enzymatically digested for cell isolation and flow cytometry analysis. (a) Cytokine production (IFN-γ,
IL-12p40, Granzyme B) in the tumor tissue excised from treated animals as compared to tumor tissue
from control mice; (b) Representative dot plots showing the percentage of each subtype in TILs;
(c) Diagram of the frequency of TILs as percentage of mean infiltration; (d) Western blot analysis
for the cleavage of caspase 3 and PARP1. Please note the increase in cleaved caspase 3 and cleaved
PARP1 in LC-treated mice as compared to PBS-treated mice; (e) Representative images of tumor
sections from control and LC-treated mice, stained for cleaved caspase 3. Please note the increase in the
percentage of positive cells for caspase 3 activation in sections originating from animals that received
oral administration of live L. casei. *, p < 0.05, groups were repeated three times.
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2.5. Probiotic Administration Resulted in Altered Interleukin and Chemokine Production in the Tumor

As immunomodulation in response to L. casei administration was strongly suggested by the
aforementioned results, we decided to further investigate cytokine accumulation and chemokine
production in the tumor. Tumor lysate was further analyzed for the production of 40 different cytokines
with a proteome profiler array. As shown in Figure 5, this analysis verified the aforementioned results
for IFN-γ, and also revealed increased production of various other pro-inflammatory interleukins,
such as IL-1b and its corresponding receptor, and IL-16. Interestingly, a more prominent effect was
revealed concerning various chemotactic agents. Of note is the accumulation of ligands for the C-C
chemokine receptor 5 (CCR5) and C-X-C chemokine receptor 3 (CXCR3) receptors such as chemokine
(C-C motif) ligand 3 (CCL3), CCL4, CCL5 and C-X-C motif chemokine ligand 9 (CXCL9), CXCL10,
CXCL11, respectively, that act as signals for the migration of CD8+ T cells and NK cells and are
associated with IFN-γ and anti-tumor effects. These data show that L. casei administration induces
potent Th1 immune responses.
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against positive controls provided by the manufacturer, was determined. Note the elevated levels of 
IFN-γ that was previously detected, and the accumulation of interleukins, like IL-1b and IL-16 and 
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and functional foods [32–35]. We have previously demonstrated that it exhibits anti-proliferative and 

Figure 5. Administration of probiotic Lactobacillus casei (LC) resulted in increased production of various
interleukins and chemotactic factors in the tumor. Tumors were homogenized, three tumors per group
were pooled, and then analyzed for protein expression with a commercially available proteome profiler
array. (a) Images of dot plots. Duplicate dots represent a protein expressed in tumor tissues of LC-fed
or PBS-fed mice; (b) Both plots were scanned and signal intensity, normalized against positive controls
provided by the manufacturer, was determined. Note the elevated levels of IFN-γ that was previously
detected, and the accumulation of interleukins, like IL-1b and IL-16 and chemotactic agents such as
CXCL9, CXCL10 and CXCL11 as well as CCL3, CCL4 and CCL5.

3. Discussion

Lactobacillus casei ATCC393 is an established probiotic strain used in fermented dairy products
and functional foods [32–35]. We have previously demonstrated that it exhibits anti-proliferative
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and pro-apoptotic effects against colon carcinoma [11]. Here, we investigated its immunomodulatory
activity as a potential mechanism mediating those effects.

Various probiotic lactic acid bacteria have been attributed with anti-tumor activity [36,37],
although primarily in pre-clinical animal models. In our experiments, we observed that prophylactic
administration of live Lactobacillus casei reduced CT26 tumor volume by approximately 63%,
in a syngeneic mouse tumor model. As accumulation of probiotic microorganisms and interactions
with the underlying immune cells in PP is one of the routes by which probiotics are processed [38],
we examined cytokine production in this region. Levels of IFN-γ and IL-12 were significantly elevated
in L. casei-fed mice at the endpoint of the probiotic administration (d13 from start) 3 days post CT26
inoculation in accordance with a study by Chiba et al [18], and increased IFN-γ production in PP was
persistent at the end of the experimental procedure, 7 days after tumor establishment. In order to clarify
whether this modulation was systemic, cytokine secretion was also quantified in in vitro cultures of
spleen cells, stimulated with L. casei. Higher levels of secreted IFN-γ were observed when spleen cells,
isolated from mice three (d13 from start) or seven (d17 from start) days post tumor cell inoculation,
were cultured in vitro in the presence of 108 CFU/mL of L. casei for 48 h. The immunosuppressive
regulatory cytokine IL-10 was not significantly affected by the consumption of the probiotic as levels of
this interleukin were neither altered in PP nor spleen cell culture at any time point examined.

Both IFN-γ and IL-12 are associated with enhanced anti-tumor activity [39,40]. IL-12 in particular
induces proliferation of NK and T cells, as well as production of cytokines involved in cytotoxicity,
including IFN-γ. It is also an essential cytokine for Th1 differentiation, which is required for the
generation of T-cell mediated immunity to cancer [41]. IFN-γ is an effector molecule with a variety of
pleiotropic effects. It acts through a positive feedback loop to stabilize and promote Th1 lineage of
helper cells and innate immunity populations, and simultaneously inhibits Th2 differentiation and IL-4
production. Moreover, it induces elevated expression of major histocompatibility complex (MHC) class
I and II molecules and transcription factors, and the majority of antigen processing and presentation
mechanisms. Apart from interacting with immune cells, IFN-γ also targets tumor cells. Results of this
interaction include upregulated expression of caspases, CD95 (Fas) and secretion of CD95 ligand (Fas
ligand), and TNF-related apoptosis-inducing ligand (TRAIL), and enhanced detection of tumor cells
by CD8+ and CD4+ T cells. By acting on both ends of the antigen presentation process, it ensures an
effective tumor eliminating response [42].

As evidenced above, a critical step in cancer cell cytotoxicity is the accumulation of the signaling
molecules and effector cells in the tumor. In the current study, the observed increased production of
IFN-γ and IL-12 was persistent in the tumor microenvironment, following live L. casei administration.
Moreover, examination of cytokine/chemokine production in the tumor microenvironment revealed
an increase in the levels of chemoattractive cytokines such as CCL3, CCL4, CCL5, CXCL9, CXCL10 and
CXCL11. These are ligands for the receptors CCR5 and CXCR3, respectively, that have been shown to
be over-expressed in response to IFN-γ [43] and IL-12, and facilitate migration of activated cytotoxic
T cells (CTLs) and NK cells in the tumor microenvironment [44]. Ligands of the CXCR3 receptor
and especially CXCL10 are exceptionally important in tumor eradication, as they are not only highly
effective in attracting cytotoxic populations in the tumor [45], but have also been linked with prevention
of angiogenesis, a significant milestone of tumor establishment, by inhibiting the proliferation of
endothelial cells [46]. Tumor infiltration by CD8+ T cells is associated with a better prognosis in most
tumor types including colorectal cancer [47,48]. As shown above, L. casei administration led to a slight
enrichment of the CD8+ T cell population in the spleen and more importantly in increased tumor
infiltration of the aforementioned CD8+ T cells. While both populations were increased in probiotic
fed-mice, the effect was more prominent in tumor infiltrated CTLs, where the number of CD8+ T cells
was 3.5 times higher in mice receiving probiotics, compared to a much more subtle increase in the
spleen. This observation corresponds with the secretion of chemoattractants in the tumor. As shown
by Allen et al. [49], CCL3 secretion in the tumor results in higher IFN-γ production and as mentioned
before, IFN-γ further enhances accumulation of molecules contributing to targeted migration and
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tumor specific cytotoxicity, such as CXCL9, CXCL10 and CXCL11 [50], especially in combination with
CCL5 [51], which was also potently increased in our experiments. The combination of IL-12, IFN-γ,
CXCL9 and CXCL10 has been shown to be strongly correlated with recruitment of CD8+ T cells in
the tumor, in colorectal [52] and lung cancers [53]. A prominent mechanism of CTLs involved in
cancer cell destruction is the direct exocytosis of perforin and granzyme B containing granules into the
target cell [54,55]. Perforin forms pores in the plasma membrane of the target cell that act as ways of
delivery of granzyme B to it [56]. Therefore, we quantified granzyme B production in the tumor as
a means of examining the successful cytotoxic activity of CTLs and we observed a notable increase
in tumors of probiotic-fed mice, where levels of granzyme B approximately doubled. Secretion of
CXCL10 and CCL5 in the tumor has been associated with accumulation of granzyme producing CD8+

and IFN-γ producing CD4+ T cells in colorectal carcinomas, and early TNM staging [43]. The desired
final outcome of the accumulation of cytotoxic CD8+ T cells, IFN-γ and granzyme B in the tumor is the
destruction of cancer cells, most commonly by the induction of the apoptotic mechanism in the tumor
cells [56]. To verify if this was indeed the case in our experiments, we investigated the activation of the
most prominent effector caspase 3, which is the endpoint of all apoptotic pathways. We observed an
increase in the number of cancer cells positive for the presence of active cleaved caspase 3 in tumor
sections, as well as elevated levels of the cleaved fragment in tumor lysates of mice that consumed
lactic acid bacteria. We also examined the characteristic apoptotic marker PARP1, since cleavage and
inactivation of the full-length protein is a common indicator of apoptosis. As expected, levels of the
full-length protein were higher in tumor extracts of control animals receiving PBS, while increased
cleavage of PARP1 was observed in tumors of treated mice.

Secretion of IFN-γ and cytotoxic granules are two distinct tasks performed by effector CTLs,
specific for tumor-associated antigens that directly interact with malignant cells, during tumor cell
eradication [57]. In conclusion, our results suggest an immunomodulatory effect of preemptive
oral administration of L. casei in an in vivo syngeneic colon cancer model. These results should
be carefully considered for transfer to humans as there are limitations in mouse models regarding
translation of the findings from preclinical studies to clinical application. Consumption of the probiotic
was shown to impair CT26 tumor growth, an effect that could be attributed to the production of
immunostimulatory cytokines in lymphatic organs and the secretion of chemoattractant molecules,
associated with migration of CTLs in the tumor. The end point of the aforementioned modulation in
the cytokine production profile is enhanced tumor infiltration by T cells, and especially CD8+ CTLs, an
event that is essential and plays a crucial role in cancer immunotherapy [58].

4. Materials and Methods

4.1. Animals and Ethics Statement

Female BALB/c mice were raised in the Animal House unit (Laboratory of Experimental Surgery
and Surgical Research at Democritus University of Thrace, Alexandroupolis, Greece). Two groups
of 10 mice (6-8 weeks old, weight 20–25 g) were used in each experiment. Animals were housed in
polycarbonated cages at room temperature and were provided with commercial food and tap water
ad libitum.

Animal experiments were approved by the Animal Care and Use Committee of the Veterinary
Department of Evros Prefecture (license number 4766/28-3-2013) since it complied with the requirements
set by Directive 86/609/EEC and PD 160/91. All animal experiments were conducted in accordance
with the 3 R’s (replacement, refinement, reduction).

4.2. Cell Lines and Bacterial Culture Conditions

CT26 colon cancer cells were routinely cultured under sterile conditions in standard Dulbecco’s
Modified Eagle Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) supplemented with 10% heat
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inactivated fetal bovine serum, 2 mM glutamine, 100 µg/mL penicillin and 100 ug/mL streptomycin
(Life Technologies, Carlsbad, CA, USA) at 37 ◦C in a humidified incubator (5% CO2).

Lactobacillus casei ATCC 393 (DSMZ, Braunschweig, Germany) was grown at 37 ◦C in De Man,
Rogosa and Sharpe (MRS) Broth without agitation and harvested in late log phase (109 CFU/Ml).
Bacteria were collected by centrifugation at 1700× g for 15 min at 4 ◦C, washed in PBS and resuspended
in PBS to the desired final concentration of 109 CFU/150 µL for in vivo experiments. For the in vitro
co-incubation experiments, L. casei was resuspended in RPMI (Life Technologies, Carlsbad, CA, USA)
medium supplemented with 10% heat inactivated fetal bovine serum, 2 mM glutamine and 100 U/mL
penicillin, 100 µg/mL streptomycin and 50 µg/mL gentamycin (Life Technologies, Carlsbad, CA, USA).

4.3. CT26 Syngeneic Tumor Model and Lactobacillus casei Administration

The experimental protocol was approved by the Animal Care and Use Committee of the local
Veterinary Service and was in compliance with Directive 86/609/EEC. Female BALB/c mice (6–8 weeks
old, weight 20–25 g) were separated into two independent groups. The group of L. casei (LC)-treated
mice received per os for 13 days a daily dose of 109 CFU/mL live L. casei suspended in 150 µL PBS.
The group of control mice received an equal volume of PBS. At day 10, 5 × 106 CT26 cells per mouse
were injected subcutaneously. Mice were euthanized by cervical dislocation at two time points; three
days post CT26 inoculation, corresponding with discontinuation of probiotic administration, and seven
days post CT26 inoculation at full tumor development. Tumors, PP and spleens were isolated. Tumor
incidence and tumor volume were determined. Tumor volume was calculated using the modified
ellipsoid formula: (width2

× length)/2. During the course of the experiments, mice were monitored for
signs of disease or discomfort.

4.4. Cytokine Analysis

Cytokine production (IL-10, IL-12p70 and IFN-γ) from PP and spleen cells as well as the secretion
of Granzyme B, IFN-γ and IL-12p40 in the tumor were detected by ELISA (eBioscience, San Diego, CA,
USA). Directly after euthanasia of mice, PP were isolated from small intestine as well as tumors. Both
were mechanically homogenized in PBS supplemented with protease inhibitors (10 ug/mL Aprotinin,
10 ug/mL Leupeptin and 10 ug/mL Pepstatin). After homogenization, Triton X-100 (Applichem,
Darmstadt, Germany) was added to a final concentration of 1%. Samples were frozen at −80 ◦C,
thawed and centrifuged for 5 min at 10,000× g to remove cellular debris. Spleens were collected
from mice, homogenized in PBS containing 50 ug/mL gentamycin, centrifuged at 500× g for 5 min
and washed once with PBS. Erythrocytes were depleted using 10× red blood cell (RBC) Lysis Buffer
(eBioscience, San Diego, CA, USA). Briefly, cell pellet was suspended in 5 mL RBC Lysis Buffer and
incubated for 5 min at room temperature. Subsequently, suspensions were centrifuged for 5 min at
500× g and washed once with PBS. Cells were then suspended in RPMI medium and splenocytes were
treated with 108 CFU/mL live L. casei for 48 h. PP, the supernatant of the tumor homogenate and the
culture supernatant of spleen cells were examined for cytokine production by ELISA, according to
the manufacturer’s instructions. Tumor lysate was further analyzed for the presence of 40 different
cytokines using the Mouse Cytokine Array Panel A (ARY006, RnD Systems, Minneapolis, MN, USA),
according to the manufacturer’s instructions. Homogenates from three tumors per group were pooled
for this analysis. Signal intensity was calculated using ImageJ.

4.5. Flow Cytometry

Spleen cell suspension was prepared as mentioned above for cytokine analysis. TILs were isolated
from freshly dissected tumors. Briefly, tumors were washed with PBS, minced using a razor blade
and incubated with collagenase IV (Sigma Aldrich, St Louis, MI, USA, 0.5 mg/mL in RPMI) for 1 h at
37 ◦C. Digested tissues were then filtered through a 100 µm pore size strainer to obtain a single-cell
suspension and cells were washed once before staining. Approximately 106 cells were suspended
in PBS and incubated with CD16/CD32 Fc block antibody (Cat553141, BD Biosciences, San Jose, CA,
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USA) for 20 min at 4 ◦C. Cells were washed with PBS and incubated with 1 µL of the appropriate
fluorochrome-conjugated antibody for 40 min at 4 ◦C. Cells were washed with PBS and incubation with
conjugated antibodies was performed. Antibodies used in these analyses were from BD Biosciences
(San Jose, CA, USA): FITC-CD45 (Cat 553772), FITC-CD8a (Cat 553031), PE-CD8a (Cat 553033), PE-CD4
(Cat 553730), PE-CD3e (Cat 553063), APC-CD4 (Cat 353051) and APC-CD49b (Cat 560628). Finally,
cells were washed twice with PBS before flow cytometry analysis (Calibur, BD Biosciences, San Jose,
CA, USA).

4.6. Immunohistochemistry

Extracted tumors were fixed in 10% formalin and then dehydrated in graded concentrations
of ethanol, xylole and finally embedded in paraffin. Serial sections, 3 µm thick, from the formalin
fixed, paraffin embedded tissue blocks were prepared and floated onto glass slides. A hemotoxylin
and eosin stained section was obtained from each tissue block. All sections were deparaffinized and
hydrated using graded concentrations of ethanol to deionized water. Tissue sections were subjected
to quenching of endogenous peroxidase and antigen retrieval using microwaving in high pH citrate
buffer. The primary antibody, cleaved caspase 3 (Cell Signaling, Danvers, MA, USA), was then applied
to the tissues at a dilution of 1:1000 and left overnight. Bound antibody was then visualized with
DAB chromogen, followed by counterstaining with hematoxylin. Negative controls were incubated
and consisted of the same immunohistochemical method with omission of the primary antibody.
An image analysis system composed of the Olympus BX43 upright microscope, digital camera Olympus
Cam-SC30 (Olympus Europa, Hamburg, Germany) and soft analysis (analySISH) was used in the
tumor sections (stained with antibodies and counterstained with hematoxylin). A continuous score
system was adopted by using the ×40 objective lens and counting at least 10 fields selected on the basis
that they contained immunopositive tumor cells. The number of immunopositive cells was divided by
the total number of the counted cells, and the expression was defined as the percentage of positive
cells in the total number of the counted cells. The score was performed by evaluation of the staining by
two independent observers using the light microscope.

4.7. Western Blot Analysis

Apoptosis induction in the tumor was evaluated by detection of cleaved fragments of the effector
caspase 3 and the characteristic apoptotic marker PARP1 by Western immunoblot. Tumor lysate was
prepared as described above for cytokine analysis. Protein concentration of samples was determined
by the bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, Waltham, MA, USA). Standard
Western blot analysis was performed for the detection of cleaved caspase 3 as well as whole and
cleaved PARP1. Equal amounts of protein extracts were loaded onto sodium dodecyl sulfate (SDS)
polyacrylamide gels. A 12% polyacrylamide gel with subsequent blotting onto 0.2 µm polyvinylidene
difluoride (PVDF) membrane (Immobilon, Darmstadt, Germany) was used for caspase 3, while 10%
polyacrylamide gel and 0.45 µm PVDF membrane (Amersham, Little Chalfont, United Kingdom) were
used for PARP1. Blocking of non-specific sites was done in 5% non-fat milk and the membrane was
incubated overnight with primary antibodies from Cell Signalling (Danvers, MA, USA; cleaved caspase
3-9664, 1:500; PARP1-9532, 1:1000) in blocking buffer at 4 ◦C, and with the horseradish peroxidase (HRP)
conjugated anti-rabbit secondary antibody (1:5000) in blocking buffer for 1 hour at room temperature.
The protein band was visualized by autoradiography using ECL HRP chemiluminescent substrate
(Life Technologies, Carlsbad, CA, USA) and exposing to Kodak film. An anti-beta-tubulin antibody
(1:20,000, Sigma Aldrich, St Louis, MI, USA), accompanied by HRP-conjugated anti-mouse secondary
antibody (1:5000) was used as a loading control. Intact PARP1, cleaved PARP1, cleaved caspase 3 and
beta-tubulin were detected at 116 kDa, 89 kDa, 19 kDa and 55 kDa, respectively, as determined by
monitoring the molecular weight with a pre-stained protein marker (Nippon Genetics, Tokyo, Japan).
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4.8. Statistical Evaluation

Data were analyzed with the IBM SPSS Statistics 22 software (IBM, Armonk, NY, USA). Statistical
differences for independent samples were analyzed by performing Student’s t-test for parametric
and Mann-Whitney test for non-parametric variables. Differences were considered significant when
p < 0.05. A minimum power of 0.80 was used when calculating sample size.

5. Conclusions

The present study investigated the role of dietary probiotic bacteria and host anti-cancer immune
responses raised against experimental colon carcinoma in mice. The aim was to understand how oral
administration of a single probiotic bacterium affects local and systemic immune responses towards
syngeneic tumors. Our results suggest an immunomodulatory effect of preemptive oral administration
of L. casei in the in vivo syngeneic CT26 cancer model. Daily consumption of the probiotic Lactobacillus
casei strain was shown to impair tumor growth, an effect that could be attributed to the production
of Th1 immunostimulatory cytokines and secretion of chemoattractant molecules in tumor tissue,
accompanied by a migration of cytotoxic T cells in the tumor. The end point of the aforementioned
modulation in the cytokine production profile was enhanced tumor infiltration by T cells, and especially
CD8+ CTLs, an important event with crucial role in cancer immunotherapy. Our results suggest that
cocktails of beneficial bacteria may be used as novel anticancer immunoadjuvant agents in future
therapeutic regimens. However, due to limitations of pre-clinical mouse models, caution should
be taken when interpreting these findings for clinical application; further work in that direction is
needed. Ongoing research in this field will ultimately lead to a better understanding of the role of diet
and probiotics in immune function and diseases, facilitating thereby the use of beneficial probiotic
supplements to improve human health.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2072-6694/12/2/368/s1.
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