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A B S T R A C T   

The gene expression networks of a single cell can be used to reveal cell type- and condition- 
specific patterns that account for cell states, cell identity, and its responses to environmental 
changes. We applied single cell sequencing datasets to define mRNA patterns and visualized 
potential cellular capacities among hepatocellular cancer cells. The expressing numbers and 
levels of genes were highly heterogenous among the cancer cells. The cellular characteristics were 
dependent strongly on the expressing numbers and levels of genes, especially oncogenes and anti- 
oncogenes, in an individual cancer cell. The transcriptional activations of oncogenes and anti- 
oncogenes were strongly linked to inherent multiple cellular programs, some of which oppose 
and contend against other processes, in a cancer cell. The gene expression networks of multiple 
cellular programs proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal 
transition, ATP production, and neurogenesis coexisted in an individual cancer cell. The find-
ings give rise a hypothesis that a cancer cell expresses balanced combinations of genes and un-
dergoes a given biological process by rapidly transmuting gene expressing networks.   

1. Introduction 

Cancer is a heterogeneous disease and displays differing histologic appearances defined as distinct subtypes of cancers from the 
same primary site of origin among patients [1]. Accumulated molecular and genetic data have modified the histology-based definitions 
of cancer subtypes and have revealed the tumor cell heterogeneity [2]. Human cancer has been documented comprehensively 
involving genomic and epigenetic alterations, including single-nucleotide variants (SNVs), small insertions or deletions, somatic 
mutations, gene copy number alterations, chromatin structural variants, chromatin regulator mutations, DNA methylation changes, 
and altered compositions of enhancers and repressors [3,4]. In addition, many cancer cells carry mutations in protein that modulate 
chromatin structures and activity of enhancers or repressors crossing genomes. For instance, in 38 types of human cancers, early 
oncogenesis is characterized by mutations in a constrained set of driver genes. A nearly fourfold diversification of driver genes and 
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increased genomic instability are features of later stages [5,6]. The tumor cell heterogeneity has been revealed across whole-genome 
sequences of 2,658 cancer samples spanning 38 cancer types. The sequencing data have revealed positive selection for subclonal driver 
gene mutations and copy number alterations as well as dynamic changes in gene mutational processes [7]. Furthermore, data derived 
from DNA methylation, bulk gene expression profiling, spatial gene expression profiling, and single-cell sequencing in many kinds of 
human tumors have also revealed multiple clones and subclones of cancer cells with distinct genomic and epigenetic mutations and 
alterations in samples of patients and animal models [8]. 

Genomic and epigenetic mutations and alterations result in gene transcriptional changes, especially in the transcription trans-
mutations of oncogenes and anti-oncogenes [9]. Transcription of the eukaryotic genome is carried out by nuclear RNA polymerase I 
(Pol I), Pol II, and Pol III. Pol I transcribes the rRNA precursor, Pol III transcribes small non-coding RNAs, and Pol II transcribes 
protein-coding genes to produce mRNAs and some non-coding RNA. Pol II transcriptions involve tight control of multiple steps in the 
transcription cycle to produce cell type- and condition-specific patterns of mRNAs that account for cell differentiation, the mainte-
nance of cell identity and the responses of cells to environmental changes [10,11]. Intensive bulk expression profiles reveal tumor cell 
heterogeneity based on Pol II transcriptional subtypes of cancer cells [12,13]. Gene expression-based cancer cell subtypes are nicely 
enriched for selected genetic events in cancer tissues in human patients. Within the same cancer specimen, the expressing subtypes of 
mRNA are also varied as multi-regions in a tumor. Multiple subtypes of cancer cells can be visualized in different regions of the same 
tumor. Temporal analyses have demonstrated that gene expression-based subtypes of cancer cells are altered over time and through 
therapies in patients [14,15]. Based on transcriptional patterns of protein-coding genes, single-cell RNA-sequencing (scRNA-seq) 
shows that distinct cells recount regimens of distinct subtypes and provides an approach to explore genetic and functional hetero-
geneity at a level of an individual cell in a tumor [16,17]. The gene expressing patterns of single cells typically reveal cell types with 
highly distinct clusters and cell states further heterogeneity within each cancer cell cluster in the same cancer tissue. Cell types and 
states are then distinguished based on the identity of preferentially expressed genes that can be used to resolve malignant from 
non-malignant cells, provide new insights into tumor composition, cancer stem cells and impact on crucial aspects of tumor pro-
gression, including drug resistance, metastasis, and self-renewal in human cancers [18,19]. Hepatocellular carcinoma (HCC) has high 
molecular heterogeneity documented in rich publications and has been identified to have different molecular subclasses that broadly 
categorize inter-patients, among tumor nodules within the same patient, and intra-tumor, between different regions of the same tumor 
[20–22]. Furthermore, the single-cell resolution has provided tremendous advances in characterizing the genetic groundwork of HCC 
heterogeneity [17]. Thus, HCC is a nice model for further portraying a detailed inter-patients and intra-tumor map of cell identities and 
states based on the singularity of preferentially gene expressed patterns in a cancer cell. 

2. Results 

2.1. The heterogeneous gene expression patterns in cancer cells of hepatocellular carcinoma 

To depict the intrinsic characteristics of cancer cells, we collected 6 samples of human hepatocellular carcinoma from 5 patients 
and dissociated each sample into single cells. The acquired single cell suspensions were then sorted by fluorescence-activated cell 
sorting (FACS) to enrich CD45− cell populations to generate single-cell labeled cDNA libraries with Singleron GEXSCOPE for 
sequencing. The procedures eliminated the immune cells, which consisted of considerably large cell populations in cancer tissues, to 
increase the ratio of the cancer cell population. We obtained single-cell transcriptomes of 38,077 cells after quality controls defined by 
gene expressing patterns and mitochondrial gene expressing patterns detected in each cell. Cells with more than 20% mitochondrial 
gene expression were excluded from the dataset. Principle-component analysis (PCA) and t-distributed stochastic neighbor embedding 
(tSNE) analysis were conducted to construct the panoramic view of hepatocellular carcinoma tissues. We identified multiple cell types 
including hepatocellular carcinoma cells, hepatic stellate cells (HSCs), endothelial cells (ECs), plasma cells, natural killer cells (NKs), 
and macrophages (MPs) (Figs. S1A and B) in the cancer tissues. After excluding other cell types, 30,429 cancer cells of the 6 human 
hepatocellular carcinoma samples were further analyzed. The heterogeneity of cancer cells derived from each sample was quite 
recognizable via differentially expressed genes (DEGs) among cancer cells in the cancer tissues (Fig. S1C). Comprehensive analysis of 
copy number variations (CNV) showed that the gene expressing regions of chromatins in cancer cells of an individual sample manifest a 
unique pattern. A distinctive CNV pattern was visualized in each cancer cell in a sample of cancer tissues (Fig. S1D). Detection of highly 
variable genes (HVG) showed exclusive patterns of gene expression in cancer cells with distinctive signaling pathways in each cancer 
tissue (Figs. S1E, S1F, S2A and data not shown). The cancer cells of each sample displayed high heterogeneity and were grouped into a 
distinctive population (Fig. S2A). All the assays show that human hepatocellular carcinoma (HCC) has high molecular heterogeneity of 
inter-samples and intra-sample, consistent with previous observations [23,24]. 

2.2. Random distribution of oncogenes and anti-oncogenes in cancer cells of HCC 

We analyzed in detail the expressions of a panel of genes, which have previously been shown to be the most common molecular 
anomalies to drive cancer development and progresses in human hepatocellular carcinoma. The expression of such a gene showed 
random distribution among cancer cells in a sample (Figs. S2A and B). The ratio of cells expressing a given gene was highly varied inter- 
samples and intra-sample of human hepatocellular carcinoma. For instance, KRAS had relatively high levels of expression in three 
samples, but a small fraction of cells were still negative. Notably, there were no clear patterns in the distribution of positive and 
negative cells in cell populations and in the sections of cancer tissues from a given sample. TP53, KEAP1, and ARID1A were expressed 
only in a small fraction of cancer cells in all samples detected. CCND1, CTNNB1, PTEN, and CDKN2A were also expressed in all samples 
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but carried different ratios of positive cells in cancer tissues. We then extracted cancer cells from one of the patients for verification. 
The scatter plots of gene expression showed the anti-oncogene KLF6, ELF3, and the oncogene JUN exhibit scattered random distri-
butions. Furthermore, immunofluorescent staining showed that the cancer cells with protein expression of these genes also exhibited 
scattered random distributions in cancer tissue sections from a given sample (Fig. S2C, data not shown). We compared more samples by 

Fig. 1. The protein expression level of anti-oncogene KLF6 and oncogene JUN among different cancer tissues of hepatocellular carcinoma. 
A. The top and bottom rows show the immunofluorescence staining results of anti-oncogene KLF6 (red) among different cancer tissues of hepa-
tocellular carcinoma. Nuclei are blue (DAPI). Scale bar indicates 100 μm. B. The top and bottom rows show the immunofluorescence staining results 
of oncogene JUN (red) among different cancer tissues of hepatocellular carcinoma. Nuclei are blue (DAPI). Scale bar indicates 100 μm. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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detecting the cancer cells with the expression of anti-oncogene KLF6 (a nuclear-localized protein) (Fig. 1A) and the oncogene JUN (a 
cytoplasmic-localized protein) (Fig. 1B). The results clearly revealed the random distribution features of positive cells in cancer tissues 
that were examined. No clear distribution patterns of positive and negative cells were detected in cancer tissues of HCC. Taken 
together, the examination of the expression of recognized driver genes as well as additional oncogenes and anti-oncogenes in human 
hepatocellular carcinoma revealed that the cancer cells with the expression of a given gene were randomized distributed in cancer 
tissues. The assays indicate that cancer cells do not constantly carry the expression of a specific driven gene detected anomalies and 
suggest that anomalous genes might substitutively express to drive or maintain the malignant identity in a cancer cell in human 
hepatocellular carcinoma. 

2.3. The potentialities of oncogene and anti-oncogene expression in cancer cells of HCC 

In order to thoroughly explore all oncogenes and anti-oncogenes expressed in individual cancer cells, we started a new definition 
and classification based on the gene expressing number and expressing level in a cancer cell. First, the expressing levels and expressing 
numbers of oncogenes, anti-oncogenes, and overall genes expressed in each single cancer cell were measured and counted separately 
within each sample, and the expression level (EL) and number level (NL) were classified into four classes according to their respective 
quartiles (Fig. 2A). EL or NL1 to 4 indicated increasing expressing level or number of genes, respectively. We identified similar ten-
dencies in the distribution of oncogenes, anti-oncogenes, and overall genes in terms of gene number rather than gene expression. The 
expressing number of overall genes showed a strong correlation with the expressing numbers of oncogenes and anti-oncogenes. The 
results indicate that the number of oncogenes and anti-oncogenes expressed in cells was affected to an intense extent by the total 
number of expressed genes. Combining the EL and NL labels of oncogenes or anti-oncogenes respectively in an individual cell, the 
cancer cells of human HCC were clustered into 16 groups (Fig. 2B). After counting the number of cancer cells in the 16 clusters, cancer 
cells with the lowest expressing level and the lowest expressing number of oncogenes (defined as oncoEL1NL1) consisted of the largest 
population (14.35%). Cancer cells with the highest expressing level and the highest expressing number of oncogenes (defined as 
oncoEL4NL4) accounted for the second largest population (9.33%). It was also true for the cancer cells with anti-oncogenes expression. 
Cancer cells with the lowest expressing level and the lowest expressing number of anti-oncogenes (defined as anti-oncoEL1NL1) 
accounted for the biggest population (15.99%). The cancer cells with the highest expressing level and the highest expressing num-
ber of anti-oncogenes (defined as anti-oncoEL4NL4) accounted for 9.41%, the second biggest population of cancer cells (Fig. 2C and 
D). The results suggest that cancer cells tend to group into two cellular states: either high activations in gene expression or high silences 
in gene expression in the cancer cells of human HCC. Cancer cells in other cellular states are more likely transiting states in cancer 
tissues. 

Based on the number of genes expressed in an individual cell, the expressing number of anti-oncogenes was strongly correlated to 
the expressing number of oncogenes in a cancer cell (Fig. 2E). At the expressing level of genes, the expressing levels of anti-oncogenes 
also showed a nice correlation with the expressing levels of oncogenes (Fig. 2E). The results indicate that cancer cells that are easier to 
express oncogenes had a higher possibility to express anti-oncogenes. The measurements suggest that the expressing numbers and 
levels of oncogenes and anti-oncogenes are the consequence of gene transcription activation in a cancer cell. 

2.4. The potentialities of proliferation and hepatocytic differentiation in cancer cells of HCC 

Next, we detected the proliferation status of cancer cells via gene expression patterns. The results showed that the proliferating 
potentialities of cancer cells were heterogeneous among samples (Fig. 3A). We also measured the hepatocytic signatures of a cancer 
cell to ascertain the differentiation properties of cancer cells in HCC. Based on the averaged expression of genes, the hepatocytic 
signatures were scored in each cancer cell (Fig. 3A). In contrast to the proliferative potential, the distribution of the hepatocytic 
signatures, i.e., differentiation, showed a clear tendency in tSNE projection. The results suggest that a significant number of hep-
atocytic signature-related genes are involved in the formation of the dimension reduction results. Additionally, correlation analysis 
showed a clear negative correlation between differentiation and proliferation of cancer cells (Fig. 3B). The cancer cells with differ-
entially hepatocytic signatures were able to divide into four subtypes according to the quartiles of scores. A subtype of cancer cells with 
very low hepatocytic signatures (hepaEL1), a subtype of cancer cells with low hepatocytic signatures (hepaEL2), a subtype of cancer 
cells with high hepatocytic signatures (hepaEL3), and a subtype of cancer cells with very high hepatocytic signatures (hepaEL4). In the 
meantime, we divided the cells with different proliferative capacities into four levels using the quartiles of gene expression networks of 
proliferation in each cell. Cells at levels from level1 to level4 displayed increasing capabilities to grow. The results confirmed that 
hepaEL1 did exhibit higher proliferative potential while the cancer cells with the highest hepatocytic signatures exhibited the lowest 
abilities to grow. (Fig. 3C). To be more convincing, we scored the potentialities of fatty acid metabolism and cellular response to the 

Fig. 2. The potentialities of oncogene and anti-oncogene expression in cancer cells of HCC. A. The tSNE projections show all cancer cells 
derived from 6 HCC samples, and we mapped the expression levels (ELs) and number levels (NLs) of oncogene, anti-oncogene or overall gene in it. B. 
The tSNE projections show 16 categories of oncogene or anti-oncogene obtained by combining 4 gene expression levels and 4 number levels. C. The 
bar plots show the count of cells of 16 classifications of oncogene or anti-oncogene. D. The pie charts show the percentage of cells of 16 classifi-
cations of oncogene or anti-oncogene. E. The first two scatter plots show the correlations between the expression level or expression number of 
oncogenes or anti-oncogenes, respectively. The last two scatter plots show the correlations between the expression number of overall genes and the 
expression number of oncogenes or anti-oncogenes, respectively. All plots with Pearson correlation coefficient (r-value) and p-value labeled at 
the top. 
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toxic substances, which represent the physiological functions of hepatocytes, in cancer cells and classified all cells into 4 categories 
based on the quartiles of the scores. The results showed the active metabolism of fatty acid and toxic response were highly correlated 
with hepatocytic signatures in a cancer cell (Fig. 3D and E). 

The effects of the expression level and gene number of oncogenes and anti-oncogenes on the proliferation and differentiation of 
cancer cells were assessed. The result charts indicated that the expression level and gene number of both oncogenes and anti-oncogenes 

Fig. 3. The potentialities of proliferation and hepatocytic differentiation in cancer cells of HCC. A. The tSNE projections show 4 levels of cell 
proliferation and hepatocytic differentiation, respectively. B. The scatter plot shows the correlation of differentiation. score and proliferation. score 
with Pearson correlation coefficient (r-value) and p-value labeled at the top. C.D.E. The stacked bar charts show the percentage of 4 levels of 
proliferation, fatty acid metabolism, and toxic response among cells with different expression level of hepatic signatures (hepaEL1 to hepaEL4 
represent increased cell maturity). F. The stacked box plots show the differences in proliferation. score or differentiation. score among cells defined 
with different NLs or ELs of oncogenes or anti-oncogenes. 
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influenced the proliferation ability of a cancer cell. An increase in the expression level and gene number of both oncogenes and anti- 
oncogenes was associated with increased proliferation abilities of cancer cells. The expressing number of oncogenes or anti-oncogenes 
also significantly and profoundly influenced the degree of cell differentiation. An increase in the expressing gene number of both 
oncogenes and anti-oncogenes was associated with increased differentiation abilities of cancer cells. When ignoring the expressing 
number differences in oncogenes or anti-oncogenes, the higher expression levels of oncogenes or anti-oncogenes were always asso-
ciated with the lower differentiation index in cancer cells (Fig. 3F, Fig. S3A). 

In addition, we monitored cell cycle phases of all cancer cells (Fig. S3B). When measuring the expressing levels of oncogenes, a 
cancer cell with higher expressing level of oncogenes was more probable to undergo mitotic phases. When determining the expressing 
numbers of oncogenes, a cancer cell with more expressing oncogenes had less probability to undergo into G2/M phase. The cells had 
almost equal probability to undergo into S phase, regardless of the expressing numbers of oncogenes. The expressing levels of on-
cogenes increased the probability of a cancer cell going into the G2/M phase. In contrast, when measuring the expressing level of anti- 
oncogenes and expressing number of anti-oncogenes, a cancer cell with higher expressing anti-oncogenes had a larger probability to go 
into the G2/M phase, and a cell with less expressing anti-oncogenes was more likely to undergo mitotic phases. Taken together, the 
assays indicate that a cancer cell carrying fewer expressing oncogenes/anti-oncogenes with higher expressing levels had a larger 
probability to undergo mitotic cell cycle in cancer tissues of HCC. 

2.5. The potentialities of fatty acid metabolism and toxic response in cancer cells of HCC 

As mentioned above, we scored the potentialities of fatty acid metabolism and toxic response using corresponding gene sets. 
Subsequently, we classified the cancer cells into 4 levels based on their respective quartiles of the scores (Fig. 4A). From level1 to level4 
indicates an increasing capacity of fatty acid metabolism or cellular response to toxic. The analysis showed that a cancer cell with lower 
expression level of oncogenes/anti-oncogenes manifested stronger fatty acid metabolism and toxic response, but the expressing gene 
number of oncogenes/anti-oncogenes did not show an influence on the cellular fatty acid metabolism in cancer cells (Fig. 4B and C). In 
contrast, the potentiality of cellular response to toxic could be facilitated with increased expressing numbers of oncogene/anti- 
oncogene (Fig. 4B and C). 

2.6. The potentialities of apoptosis and autophagy in cancer cells of HCC 

Previous observations show that programmed cell death by apoptosis serves as a natural barrier to cancer development [25]. The 
cancer cells need to overcome the barrier of cell death to expand cancer tissues. Thus, we evaluated gene expressing patterns of both 
upstream regulators and downstream effector components in apoptotic machinery and weighed the probability of apoptosis in a cancer 
cell (Fig. 5A). We also measured the gene expressing patterns of regulatory and effector components in autophagy machinery and 
showed that autophagic phenotypes manifested similar appearances of apoptosis in cancer cells of hepatocellular carcinoma (Fig. 5A). 
Autophagy was highly correlated to apoptosis in a cancer cell (Fig. 5B). The expressing levels of oncogenes and anti-oncogenes were 
correlated with apoptotic signatures and autophagic signatures in a cancer cell (Fig. 5C). A cancer cell with higher expressing levels of 
oncogenes or anti-oncogenes had an increased probability to be subjected to apoptosis or autophagy. The increasing number of 
expressing oncogenes or anti-oncogenes in a cancer cell was also related to apoptosis or autophagy (Fig. 5C). When examining the 
tendency of apoptosis or autophagy in cells labeled by 16 classifications of oncogenes or anti-oncogenes, we identified that both the 
expressing level and the expressing number of oncogenes or anti-oncogenes played influential roles on the apoptosis or autophagy in 
cells (Fig. 5D). Enhancing oncogene/anti-oncogene expressing levels along with increasing expressing numbers of 
oncogene/anti-oncogene in a cancer cell were highly related to cellular apoptosis and autophagy. A cancer cell with the highest 
expressing level of oncogene/anti-oncogene plus the most expressing number of oncogene/anti-oncogene had the most probability to 
undergo apoptosis or autophagy. 

2.7. The potentialities of energy metabolism in cancer cells of HCC 

Cancer cells have been shown to alter energy metabolism to support their growth and division in cancer tissues [26]. In this way, we 
evaluated the gene expressing networks involved in the processes of glycolysis, tricarboxylic acid (TCA) cycle, ATP production, and 
oxidative phosphorylation, key programs of energy metabolism in a cell (Fig. 6A). When comparing changes in energy metabolism in 
cells with 16 classifications of the expression of oncogenes or anti-oncogenes, we found strikingly uniform tendencies in four types of 
energy metabolisms. When the oncogenes or anti-oncogenes were expressed at a given level, the more oncogenes or anti-oncogenes 
expressed in a cancer cell, the cancer cell carried a higher energy metabolism level. While the lower expression level of oncogenes 
or anti-oncogenes represented higher potentialities of energy metabolisms (Fig. 6B, Fig. S4). Thus, the cells labeled with EL1NL4 
manifested the highest activations of energy metabolisms. 

Fig. 4. The potentialities of fatty acid metabolism and toxic response in cancer cells of HCC. A. The tSNE projections show 4 levels of fatty 
acid metabolism and toxic response potentialities, respectively. B. The box plots show the differences in fatty acid metabolism. score or toxic 
response. score among cells defined with different NLs or ELs of oncogenes or anti-oncogenes. Statistical differences are indicated by asterisks. p- 
values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. C. The stacked bar charts show the 
percentage of 4 levels of fatty acid metabolism or toxic response among cells with 16 classifications of oncogenes or anti-oncogenes, respectively. 
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2.8. The potentialities of epithelial-mesenchymal transition and neurogenesis in cancer cells of HCC 

Epithelial-mesenchymal transition (EMT) is crucial for malignant progression [27]. During EMT, a new transcriptional program is 
activated to promote the mesenchymal fate in epithelial cells. In the cancer context, EMT confers on cancer cells increased 
tumor-initiating and metastatic potential and greater resistance to elimination by several therapeutic approaches. Recent evidence has 
shown that cancer cells express neurotrophic markers such as nerve growth factors, brain-derived neurotrophic factor, glial 
cell-derived neurotrophic factor, and axon guidance molecules to promote neurogenesis in cancer tissues [28,29]. Thus, we examined 
the gene expressing networks involved in EMT and neurogenesis in a hepatocellular cancer cell (Fig. 7A). First, the correlation analysis 
indicated a strong correlation between neurogenesis and EMT in a cancer cell (Fig. 7B). Next, we examined whether the expressing 
levels and the expressing numbers of oncogenes or anti-oncogenes played roles in the potentialities of EMT and neurogenesis in cancer 
cells. The box plots showed that the expressing levels of oncogenes/anti-oncogenes mainly influenced the potentiality of EMT in a 
cancer cell (Fig. 7C). Increasing expressing levels and expressing numbers of oncogenes/anti-oncogenes significantly enhanced the 
neurogenesis in a cancer cell (Fig. 7C). From the perspective of 16 classifications, higher expressing level and less expressing number of 
oncogenes/anti-oncogenes gave a cell carrying higher potential of EMT and neurogenesis (Fig. 7D). 

2.9. Similarities of cellular potential patterns between two samples derived from one patient 

We also explored additional cellular programs including ROS pathway, redox homeostasis, peroxisome, stemness, senescence, 
inflammatory response, and angiogenesis to verify cell states and cell identities in cancer cells of HCC (data not shown). Because of the 
heterogeneity of these cellular programs or responses among samples, the combined results of all data of samples did not show clear 
tendencies. Thus, we analyzed the data of each sample and identified the same potentials of cellular characters including ROS pathway, 
redox homeostasis, peroxisome, stemness, senescence, inflammatory response, and angiogenesis in a cancer cell (data not shown, 
Fig. 8, S5). For instance, the results of the primary and recurrent samples of patient P5 (primary: P5-1; recurrent: P5-2) showed high 
similarities in cellular potential patterns (Fig. 8, S5). The correlation heatmaps showed that, in good agreement with the previous 
combined results, the total gene expressing numbers of cancer cells in both samples were highly correlated with the expressing 
numbers of oncogenes and anti-oncogenes. Besides, in both samples, the hepatocytic signatures, such as differentiation, fatty acid 
metabolism, and toxic response, showed a significant negative correlation with the expression levels of oncogenes and anti-oncogenes. 
While cellular programs such as apoptosis, autophagy, stemness, EMT, senescence, inflammatory response, and neurogenesis showed a 
positive correlation with the expressing levels of oncogenes/anti-oncogenes. In contrast, angiogenesis was not significantly correlated 
with the expression levels of oncogenes/anti-oncogenes but had a clear positive correlation with EMT. We also identified that the 
recurrent sample showed higher correlations (higher r-values) between the cellular potentials and gene expression in almost all as-
pects. For example, the r-values of the correlation between three hepatocytic signatures (differentiation, fatty acid metabolism, and 
toxic response) and oncogene expression levels in sample P5-1 were − 0.78, − 0.32, and − 0.68, respectively. While, in cancer cells of 
P5-2, these r-values increased to − 0.88, − 0.65, and − 0.86. This tendency was also true for aspects with a positive correlation. For 
instance, the r-values of the correlation between apoptosis and autophagy with oncogene expression levels in sample P5-1 were 0.55 
and 0.46. But in P5-2, the r-values increased to 0.62 and 0.69. 

In summary, to show the potential of the classifications of cells more succinctly based on the expressing level and expressing 
number of overall genes, oncogenes, or anti-oncogenes in all aspects, we generated three radar plots summarizing the mean values of 
the scores of the 16 classifications of cells in terms of each cellular program (Fig. S6). We also verified our findings in published datasets 
and obtained the same tendencies of cellular programs in a cancer cell (Figs. S7 and S8) [23,24,30]. The results showed that the cellular 
behaviors were dependent strongly on the expressing numbers and levels of genes, especially oncogenes and anti-oncogenes, in a 
hepatocellular cancer cell. 

Trajectory analysis was also performed to determine the relationship between neighboring similarities among all cancer cells with 
different classification labels of gene expression networks (Fig. S9). The monocle trajectories manifested explicit distribution ten-
dencies of the cancer cells labeled by different classifications of gene expression networks, especially the classifications associated with 
the expression patterns of total genes, oncogenes, and anti-oncogenes. The cellular programs like proliferation and differentiation also 
manifested clear distribution tendencies in cancer cells. More importantly, the distribution tendencies of trajectories showed perfect 
coincidence with the tendencies in correlation heatmap. The results of trajectory analysis further confirm our observations. 

3. Discussion 

In this study, to explore the potentials of cellular programs in cancer cells with gene expression patterns, we have performed 
analysis to count the expression levels and numbers of genes, especially oncogenes and anti-oncogenes, in individual cancer cells of 

Fig. 5. The potentialities of apoptosis and autophagy in cancer cells of HCC. A. The tSNE projections show 4 levels of apoptotic and autophagic 
potentialities, respectively. B. The scatter plot shows the correlation of apoptosis. score and autophagy. score with Pearson correlation coefficient (r- 
value) and p-value labeled at the top. C. The box plots show the differences in apoptosis. score or autophagy. score among cells defined with 
different NLs or ELs of oncogenes or anti-oncogenes. Statistical differences are indicated by asterisks. p-values were calculated by Wilcoxon test. ns: 
not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. D. The stacked bar charts show the percentage of 4 levels of apoptosis or 
autophagy among cells with 16 classifications of oncogenes or anti-oncogenes, respectively. 
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Fig. 6. The potentialities of energy metabolism in cancer cells of HCC. A. The tSNE projections show 4 levels of glycolysis, TCA CYCLE, ATP 
production and oxidative phosphorylation, respectively. B. The stacked box plots show the percentage of 4 levels of glycolysis, TCA CYCLE, ATP 
production and oxidative phosphorylation among cells with 16 classifications of oncogenes or anti-oncogenes, respectively. 
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HCC and have divided all cells into 4 expression levels (ELs) and 4 number levels (NLs) of genes to form a classification pattern of 
cancer cells. The classifications of cancer cells display nicely the cellular potentials underlying cellular programs and cellular states in a 
cancer cell. The ease and efficiency of the data processing methods are possible to be widely used in single-cell RNA sequencing data 
and are very powerful in areas evaluating the cellular potentials of cell identities and states. The conclusions obtained in this article are 
relatively limited because we are unable to visualize the protein networks in a cancer cell to determine its actual cellular identity and 
state. However, the results conveyed in this article provide basic data of potential activations in a cell. The data can be used to develop 
a deeper understanding of how cancer progresses and undergoes evolutionary processes. 

Accumulate data have demonstrated that genetic and epigenetic mutations and alterations that produce oncogenes with dominant 
gain of functions and anti-oncogenes with recessive loss of functions drive cancer initiation and progression. The underlying mech-
anism is that the expressing alterations of oncogenes and anti-oncogenes caused by genetic and epigenetic mutations and alterations 

Fig. 7. The potentialities of epithelial-mesenchymal transition and neurogenesis in cancer cells of HCC. A. The tSNE projections show 4 
levels of epithelial-mesenchymal transition (EMT) and neurogenesis respectively. B. The scatter plot shows the correlation between EMT. score and 
neurogenesis. score with Pearson correlation coefficient (r-value) and p-value labeled at the top. C. The box plots show the differences in EMT. score 
or neurogenesis. score among cells defined with different NLs or ELs of oncogenes or anti-oncogenes. Statistical differences are indicated by as-
terisks. p-values were calculated by Wilcoxon test. ns: not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. D. The stacked bar charts 
show the percentage of 4 levels of EMT or neurogenesis among cells with 16 classifications of oncogenes or anti-oncogenes, respectively. 

Fig. 8. The correlations among all cellular programs in cancer cells of HCC. The heatmap shows the correlations among all the cellular 
programs detected in cancer cells of sample P5-2. All Pearson correlation coefficients (r-values) are shown. 
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transform the inherent characteristics of a cell [31]. From an evolutionary view, DNA mutations or gene expressions that bring growth 
advantage to cells should be retained during population proliferation, while some others are expressed as genetic drift. With this 
traditional thinking, we examined the expression of some classical driver genes of HCC or genes highly associated with HCC. To be 
astonished, the expression levels and positive ratios of these genes were generally not high in cancer cells of HCC. The results urged us 
to look for the underlying genes to drive the formation and development of cancer cells. To this end, we analyzed all oncogenes and 
anti-oncogenes sequenced in individual cancer cells. The results showed strong inter-sample heterogeneity and intra-sample hetero-
geneity. We measure the gene expression in each cancer cell of HCC and identify that the expression of oncogenes and anti-oncogenes is 
always linked to the expression of overall genes in an individual cancer cell. The heterogeneous expression of oncogenes or 
anti-oncogenes in cancer cells represents the heterogeneities of overall activations of gene expression in cancer cell population in 
cancer tissues. Gene transcription occurs on naked DNA despite the complexity of eukaryotic transcription machinery in a cell [32]. 
The basic underlying mechanisms to achieve distinct functions of chromatin are changes in the accessibility of DNA to the transcription 
machinery leading to the activation or repression of target genes. In hepatocellular cancer tissues, transcriptional activation is 
extremely different among cancer cells. The transcription phenotypes reflect the chromatin structures in the cancer cells. It is reasoned 
that the large numbers of genes transcribed mean that a cancer cell carries more euchromatin structures for overall transcriptions 
within chromatins. To agree with the point, we identify if a cancer cell expresses more total genes, it expresses more oncogenes and 
anti-oncogenes. However, we find that the expressing levels of oncogenes and anti-oncogenes are not associated with the expressing 
levels of total genes in a cancer cell. The fact indicates that expression readouts of oncogenes and anti-oncogenes are more tightly 
controlled in a cancer cell. 

Gene expression patterns or gene expression networks (GENs) provide system level explanations of developmental and physio-
logical functions in the terms of the genomic gene expressions [33,34]. During embryonic development, GENs generate and guide the 
system-wide spatial development of specific cellular functions [35]. GENs also determine the main events of postembryonic devel-
opment, including organogenesis and formation of adult parts and cell types. Beyond that, GENs control a vast array of physiological 
capabilities and modes of response to environmental fluctuations and challenges. Thus, gene expression plays a key role in a wide 
variety of cores of biological processes, ranging from organismal development, tissue homeostasis, and cell differentiation to cellular 
stress responses. Basic patterns of gene expression can be used to define these core biological processes and cellular behaviors in a cell. 
A specific cellular state, which is defined by the cell’s phenotypes and functional characteristics, ultimately represents the readout of 
specific gene expression patterns. We identify that the overall expressing numbers of genes including oncogenes and anti-oncogenes 
highly associate with many major cellular processes, including proliferation, differentiation, apoptosis, autophagy, energy meta-
bolism, EMT, and neurogenesis in individual cancer cells. The facts indicate that the overall transcriptional activations also transform 
the activation of genes involved in these cellular processes. However, we find that the overall expressing levels of genes are weakly 
linked to these major cellular processes. The facts suggest that the expression levels of genes that control a specific cellular process are 
tightly controlled in a cancer cell. 

Phenotypically, the modified characteristics convert the cellular behaviors that drive a cell to become a cancer cell for cancer 
initiation or a cancer cell to gain more forces for cancer progression, expansion, invasion, and distant metastasis. The converted 
cellular behaviors of a cell include increasing abilities of proliferation, resisting cell death, altered autophagy, reassessing senescence, 
activating invasion and metastasis, conducting EMT, gaining self-renewal and stemness, promoting inflammation, reprogramming 
energy metabolism, and inducing angiogenesis and neurogenesis [36,37]. In this study, we apply the single-cell sequencing datasets of 
hepatocellular cancer cells to define mRNA expressing networks. Using the mRNA patterns, we have visualized the inherent biological 
capacities of a hepatocellular cancer cell and provide hallmarks to grade the potential behaviors of a cancer cell in cancer cell pop-
ulation of human hepatocellular carcinoma. Our results show that gene expression networks to conduct several phenotypic behaviors 
are coexisted in an individual cancer cell in human hepatocellular carcinoma. When counting the cells with different gene expression 
labels, we identify that cancer cells with the gene expression of oncogenes and anti-oncogenes at EL1NL1 and EL4NL4 consistent of the 
highest percentage of cell populations. It is reasonable to speculate that, there always exists a fraction of cells with the lowest 
expressing level and the least expressing number of oncogenes and anti-oncogenes, and another fraction of cells with the highest 
expressing level and the most expressing number of oncogenes and anti-oncogenes. Based on the gene expressing networks, EL1NL1 
may exhibit higher hepatocytic signatures, energy metabolism characteristics, and redox potential, which makes it closer to 
non-malignant cells, while the EL4NL4 labeled cell population may have higher potential for almost all cellular programs. Although 
the number of rest classifications based on the expression of oncogenes and anti-oncogenes is relatively small, they also account for a 
significant proportion of cancer cells. We speculate that the identities and states of cells in those classified populations are more 
phenotypically variable compared to cells labeled with EL1NL1 or EL4NL4. It seems that those cells are more likely in transition states 
to undergo a specific cellular program. 

In our data, as expected, the hepatocellular differentiation programs are oppositely associated with most major cellular processes 
including proliferation, apoptosis, autophagy, stemness, EMT, and neurogenesis in a cancer cell, further confirming the credibility of 
our data. Based on the gene expressing networks, many cellular processes are identified in a cancer cell. During the last few decades, 
evidence shows that altering the stoichiometry of lineage specifying transcription factors coexisting in a cell can induce cell fate 
changes in stem cells [38–40]. Now we show that gene expressing patterns control many cellular processes co-existing in a cancer cell. 
The discoveries have profoundly influenced mechanisms of how cancer cells undergo their processes. It might give rise to a conception 
that a cancer cell expresses balanced combinations of synergistic, agonistic, and antagonistic genes and undergoes a given biological 
process by a quick transmutation in gene expression networks resulting from the simultaneous activation of a new gene expression 
program and the extinction of the old one. Rapid transmutations in the expressions of these genes could be produced by random 
instabilities in a cancer cell or by surrounding cells including cancer cells, endothelial cells, neural cells, fibroblasts, inflammatory 
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cells, and other elements in the external microenvironment of a cancer cell. The finally outcoming gene expressing networks control a 
cancer cell to perform a specific cellular process in cancer tissues. Further experiments using single-cell mass cytometry and absolute 
quantification to capture the temporal dynamics of protein networks in an individual cancer cell might reveal which biological 
progress a cancer cell undergoes and provide evidence to solve the mechanisms of how a cell becomes a cancer cell or how a cancer cell 
is progressing in cancer tissues. 

4. Materials and methods 

4.1. Human sample collection 

We enrolled 5 male patients who were pathologically diagnosed with hepatocellular carcinoma (HCC) and underwent curative 
resection at West China Hospital of Sichuan University. The study was approved by the Ethics Committee on Biomedical Research of 
West China Hospital, and all patients provided written informed consent. Their ages ranged from 55 to 69. For patient No.5 (P5), his 
two surgical samples were collected in less than a year (primary sample: P5-1; recurrent sample: P5-2). All patients were HBV-positive 
based on the HBsAg test. All 6 samples were diagnosed as moderate differentiation of hepatocellular carcinoma. 

4.2. Single-cell isolation and sorting 

All cancer tissues were collected and stored in an ice-cold RPMI 1640 medium and then immediately transferred for dissociation. 
On arrival, samples were placed in a sterile Petri dish on ice. With necrotic areas being removed, the rest tumor samples were cut into 
approximately 1 mm3 pieces and added the premixed cell dissociation solution including 1 mg/mL collagenase I, 1 mg/mL collagenase 
II, 1 mg/mL collagenase IV, 0.25 U/mL dispase, 1 U/mL DNase I dissolved in 1640 medium. The digestive samples were incubated in a 
37 ◦C water bath for 30–40 min to obtain a single cell suspension. The digestion reaction was terminated when most of the cells were 
single cells detected under the microscope. Finally, the single-cell suspensions were centrifuged at 500 g and 4 ◦C for 5 min. 

After washing with the 1640 medium, the cell pellet was resuspended for FACS sorting. FITC anti-human CD45 antibody (555482, 
BD Biosciences) was used to exclude CD45+ immune cells. After being stained for 20 min at room temperature, DAPI was added to 
exclude dead cells. The stained cells were washed with 1640 medium once and then sorted using BD Melody. 2 × 105 cells were used 
for further library construction. Once sorting is complete, the cells should be kept on ice. 

4.3. Single-cell library construction and sequencing 

According to the Singleron GEXCOPE protocols, the single cell suspension with a concentration of 2 × 105 cells/mL was loaded into 
a microfluidic chip. Cells randomly fell into the microwell. Subsequently, the prepared magnetic beads were loaded into the micro-
fluidic chip in the same way. Once the lysis buffer was added to the chip, the released RNA from each cell was connected to a poly(T) 
sequence on beads which fell into the same microwell. To be noted, every bead has a unique cell barcode, and each poly(T) has its 
unique molecular identifier (UMI). After collecting the magnetic beads, GEXSCOPE Single-Cell RNA Library Kit was applied for reverse 
transcription. Using PCR to amplify the cDNA, products were purified and fragmented. After being measured by Qubit and Agilent 
Fragment Analyzer, the library was sequenced on an Illumina NovaSeq platform with 150 bp paired end reads. 

4.4. Single-cell RNA-seq data processing and quality control 

Raw reads from scRNA-seq were processed to generate gene expression matrixes using an internal pipeline. Briefly, raw reads were 
first processed with fastQC v0.11.4 and fastp to remove low-quality reads, and then were processed with cutadapt to trim the poly-A 
tail and adapter sequences. Cell barcode and UMI were extracted. After that, STAR v2.5.3a [41] was used to map reads to the reference 
genome GRCh38 (ensembl version 92 annotation). UMI counts and gene counts of each cell were acquired with featureCounts v1.6.2 
software and used to generate expression matrix files for subsequent analysis. 

All the downstream analyses were performed with the gene expression matrix using R v4.0.2. Before analyses, cells with <200 
genes or >20% mitochondrial genes were filtered out. 

4.5. Dimension reduction, clustering, and annotation 

After filtering, the Seurat R package v4.1.1 was used for dimension reduction and clustering. The NormalizeData and ScaleData 
functions of Seurat were applied to normalize and scale all gene expressions. Then 3000 highly variable genes (HVGs) of each cell were 
generated with the FindVariableFeatures function for PCA analysis. After PCA, graph-based clustering at a resolution of 0.6 was 
performed with the top 30 principal components (PCs) and visualized using t-distributed Stochastic Neighbor Embedding (tSNE). 
Differentially expressed genes (DEGs) between different clusters were identified with the FindMarkers function of Seurat (Wilcoxon 
rank-sum test, avg_log2FC > 0.5). The classic marker genes were used to annotate the cell types of each cluster. The expressions of 
classic marker genes among all cell types were visualized using the VlnPlot function of Seurat. 
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4.6. Single-cell copy number variation (CNV) analysis 

The copy number variation for each cell in HCC cancer cells was estimated with the inferCNV package v1.2.1 [42]. We took a set of 
immune cells from one sample as a reference and predicted the copy number changes of the cancer cells in the same sample based on 
the gene expression level. A sliding window including 100 genes was used to average the expression of these genes. By matching the 
genes with the human chromosomes, we obtained the overall inferred copy number variations of each cell. Every horizontal line in the 
heatmap represents one cancer cell. The red regions in the heatmap represent higher copy numbers compared to the reference and the 
blue regions represent lower copy numbers. 

4.7. Identification of heterogeneities among cancer cells 

To identify the heterogeneous expression patterns and signaling pathways in cancer cells derived from different samples, all the 
cancer cells were extracted to form a new object. After DEGs were identified among cancer cells from different samples (avg_log2FC >
0.5), the DotPlot function of Seurat was applied to exhibit the top 3 marker genes of each sample’s cancer cells. Besides, all the DEGs 
belonging to each sample’s cancer cells were shown in the heatmap by the DoHeatmap function. The UCell R package v2.1.0 and the 
irGSEA R package v1.1.2 were applied to further analyze the heterogeneities of cellular characters and signaling pathways using the 
whole MSigDB gene sets. The irGSEA.score function was used to calculate the enrichment score of all gene sets. The irGSEA.heatmap 
function was performed to visualize the gene sets with significant differences among cancer cells derived from different samples. 

4.8. Classification defining of cancer cells based on expressed oncogenes, anti-oncogenes, and overall genes 

First, the oncogenes and anti-oncogenes were collected from 3 databases: OncoKB [43], ONGene [44], and TSGene [45]. (https:// 
www.oncokb.org/cancerGenes, http://www.ongene.bioinfo-minzhao.org/, https://bioinfo.uth.edu/TSGene/). Subsequently, the 
genes sequenced within each sample (nFeatures of all cells from this sample) were intersected with established oncogene sets and the 
anti-oncogene sets, respectively. The obtained oncogenes and anti-oncogenes were used for subsequent scoring. The oncogene. score 
and anti-oncogene. score of each cancer cell were calculated using the AddModuleScore function of the Seurat R package v4.1.1 to 
present the expression level of oncogenes or anti-oncogenes in a cell. Based on the quartiles of oncogene. scores or anti-oncogene. 
scores of all cells within one sample, four classifications of expression levels (EL) were defined. Then, the number of oncogenes or 
anti-oncogenes that had an expression higher than 1 was counted in every cancer cell (gene expression smaller than this threshold were 
ignored). Based on the quartiles of oncogenes. number and anti-oncogenes. number, four classifications of number levels (NL) were 
defined. The final 16 classification ids of oncogenes or anti-oncogenes were obtained by combining the EL and NL labels of each cell. As 
for the overall genes, the “nFeature_RNA” (represents the measured total number of genes) and “nCount_RNA” (represents the 
measured total number of mRNA molecules) information of each cell was used. Based on the quartiles of “nFeature_RNA” of all cells 
within one sample, we divided the cancer cells into 4 classifications with different NL labels. NL1 means cells with expressing gene 
numbers lower than Q1 (the lower quartile value of all numbers). NL2 means cells with the expressing gene numbers between Q1 and 
Q2 (the median value). NL3 means cells with the expressing gene numbers between Q2 and Q3 (the upper quartile value). NL4 means 
cells with expressing gene numbers higher than Q3. Based on the quartiles of “nCount_RNA” of all cells within one sample, 4 clas-
sifications of EL were defined. The definition way of ELs was the same as the definition way of NLs. The final classification ids of overall 
genes were obtained by combining EL and NL labels of each cell. After defining all the classifications of the cells within every sample, 
we merged the cells and conducted further analysis. 

4.9. Evaluation of multiple cellular potentialities 

To evaluate the potentialities associated with cell states and cell identities in every single cancer cell, the scores of many cellular 
programs and cellular behaviors were calculated using the AddModuleScore function of the Seurat R package. The explored poten-
tialities include cell proliferation, differentiation, apoptosis, autophagy, energy metabolism, ROS pathway, redox homeostasis, 
peroxisome, stemness, senescence, EMT, inflammatory response, angiogenesis, and neurogenesis. The corresponding gene sets were 
downloaded from the MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/), and all the involved gene sets were listed in the sup-
plementary material. All analyzed genes were binned based on averaged expression, and the control genes were randomly selected 
from each bin [46]. The score of each cell was determined based on the average expression level of all genes in a given gene set. Then, 
based on the quartiles of the scores, 4 levels of each cellular program were defined. Cells with scores below the Q1 (the lower quartile 
value) were defined as level1. Cells with scores between Q1 and Q2 (the median value) were defined as level2. Cells with scores 
between Q2 and Q3 (the upper quartile value) were defined as level3. Cells with scores higher than Q3 were defined as level4. To 
exclude background interference between samples, we scored and defined 4 levels within each sample separately according to their 
respective quartiles. After defining all the cancer cells from each sample in terms of all aspects of cellular programs, we merged the 
cancer cells and performed further analysis. 

4.10. Pearson correlation analysis 

The Pearson correlation analysis was conducted to study the pairwise correlation of all variables. First, the metadata from every 
cancer cell including the nFeature_RNA, nCount_RNA, and all the scores calculated above was extracted to form a matrix. Then, with 
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the cor function of the ggcorrplot R package v0.1.4, a matrix of correlation coefficient (r-value, which measures the strength and 
direction of linear relationships between pairs of continuous variables) between every two cellular programs was generated. The 
matrix of p-values of correlation between every two cellular programs was generated with the cor_pmat function. The matrixes of r- 
values were used to generate the correlation heatmaps using the ggcorrplot function. All the matrixes of correlation coefficient (r- 
values) and p-values were shown in the supplementary material. 

4.11. Trajectory analysis 

Pseudotime analysis was performed using the Monocle R package v2.20.0. First, the newCellDataSet function was used to create a 
monocle object based on the established Seurat object. To be more detail, the RNA expression matrix and the metadata (which contains 
all scores and all classification labels of each cell) were transferred from the primary Seurat object to the monocle object. By calculating 
the average expression of all genes in all cancer cells within one sample and ranking them, we obtained the top 3000 genes in terms of 
average expression. The setOrderingFilter function was performed by setting the top 3000 genes as ordering_genes (a parameter of the 
setOrderingFilter function). Then, standard processes of monocle were performed. Trajectory plots of all cancer cells were generated 
with the plot_cell_trajectory function. By changing the color_by parameter, all the classification labels were projected on the trajec-
tories respectively. 

4.12. Immunofluorescence staining 

Human hepatocellular carcinoma tissues were fixed in formalin for 1 h and then dehydrated with 30% sucrose overnight. When the 
dehydration was completed, the tissues should be embedded in O.C.T Compound and stored at − 80 ◦C before slicing. Using a freezing 
microtome, the embedded tissues were cut into 8 μm slides for staining. The sections were first rinsed with 1 × PBST buffer 2 times for 
5 min to remove the O.C.T around the tissues. After that, 0.5% Triton X-100 in PBS was used for permeabilization. The per-
meabilization was performed for 15 min at room temperature. Then the sections were blocked with 4% BSA in PBST for 1 h at room 
temperature. After that, sections were incubated with primary antibodies overnight at 4 ◦C: anti-KLF6 (207452-T10, Sino Biological, 
dilute at 1/50), anti-ELF3 (A6371, Abclonal, dilute at 1/100), anti-JUN (24909-1-AP, Proteintech, dilute at 1/100). On the next day, 
the sections were washed with 1 × PBST buffer 3 times for 5 min and then incubated with corresponding fluorescently conjugated 
secondary antibodies for 1 h at room temperature. After rinsing again, DAPI was added to the sections to dye the nuclear. Images were 
acquired using a ZEISS Scope A1 microscope. 

4.13. Statistical analysis 

All statistical analyses were implemented in R software. For the comparisons between two subpopulations of cancer cells, the 
ggpubr package v0.4.0 was used (Wilcoxon test). ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Significance 

Gene expressing networks of multiple biological processes coexist and are strongly related to the expressing number and levels of 
genes, especially oncogenes and anti-oncogenes, in an individual hepatocellular cancer cell. 
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