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Precancerous lesions typically precede gastric cancer (GC), but
the molecular mechanisms underlying the transition from
these lesions to GC remain unclear. Therefore, it is urgent to
understand this transition from precancerous lesions to GC,
which is crucial for the early diagnosis and treatment of GC.
In this study, we merged multiple single-cell RNA sequencing
datasets to investigate the molecular changes in distinct cell
types associated with the progression of GC. First, we observed
an increasing abundance of immune cells and a decrease in
non-immune cells from non-atrophic gastritis to GC. Five im-
mune cell types were significantly enriched in GC compared to
precancerous lesions. Moreover, we found that the interleukin
(IL)-17 signaling pathway and Th17 cell differentiation were
significantly up-regulated in immune cell subsets during GC
progression. Some genes in these processes were predominantly
expressed at the GC stage, highlighting their potential as diag-
nostic markers. Furthermore, we validated our findings using
bulk RNA sequencing data from The Cancer Genome Atlas
and confirmed consistent immune cell changes during GC
progression. Our study provides insights into the immune
infiltration and signaling pathways involved in the develop-
ment of GC, contributing to the development of early diagnosis
and targeted treatment strategies for this malignancy.

INTRODUCTION
Nowadays, cancer is one of the serious threats to public health. The
number of new cancer cases and deaths is increasing year by year.1

There are many hypotheses about the cause of cancer, including
smoking, radiation, viruses, cancer-causing chemicals (carcinogens),
and chronic inflammation.2,3 As early as 1863, Balkwill et al. discov-
ered that tumor tissue contains a large amount of inflammatory cell
infiltration and put forward the hypothesis that tumors are originated
from chronic inflammation.4 Inflammation is thought to be the
body’s local protective response to injury or infection.5 In recent
years, studies have found that chronic or excessive inflammation
Published by Elsevie
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can lead to cancer. More than 20% of cancers are caused by inflam-
mation, such as gastritis for gastric cancer (GC),6 pneumonia for
lung cancer,7 and colitis for colorectal cancer.8 It is crucial to analyze
the molecular mechanisms under this transformation to systemati-
cally study the transformation process from chronic inflammation
into cancer and discover the important factors involved in this malig-
nant transformation. Breakthroughs in this field will contribute to
cancer prevention as well as early diagnosis and treatment.

GC is one of themost common cancers in clinical practice, with a high
incidence and mortality worldwide, especially in Asia.9 According to
the World Health Organization Global Cancer Statistics Report 2020,
it is estimated that the number of new patients with GC worldwide
exceeds 1 million every year, and the main age of onset is between
60 and 84 years old.10,11 The link between intestinal metaplasia
(IM) and GC was revealed in 1938.12 In 1955, Morson reported
that GC occurred in IM.13 Intestinal GC is preceded by precancerous
lesions, including non-atrophic gastritis (NAG), chronic atrophic
gastritis (CAG), and IM.14 Patients with these precancerous lesions
have an increased risk of developing GC.14

Identifying the genes and pathways that drive cancer formation has
been the focus of large-scale genomics research. However, most
research has focused on the overall characteristics of advanced gastric
tumors, largely ignoring related studies on precancerous lesions.8 Our
understanding of the phenotypic changes and molecular drivers of
the transition from precancerous lesions to GC remains inadequate.8
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The identification of the biomarkers in this transformation process
could help in the early diagnosis of GC so that most patients with
GC can get a radical cure to improve their health.

In this study, we collected multiple single-cell RNA sequencing
(scRNA-seq) datasets from the Gene Expression Omnibus (GEO).
These include NAG, CAG, IM, GC tumor samples, and adjacent
normal tissues (ANTs). By comparing the samples from gastritis to
IM and then to GC, we found that the abundances of the five immune
cell types vary identically. Meanwhile, all of them are significantly en-
riched in the GC. From IM to GC, interleukin (IL)-17 signaling
pathway is up-regulated in the tumor, and its related genes are signif-
icantly differentially expressed in the tumor, such as TNF, IL17RA,
IKBKG, TAB2, IL1B, and CASP8. These differentially expressed genes
(DEGs) can be used as clinical diagnostic markers for the early diag-
nosis and treatment of GC. We have identified a set of genes that
demonstrate up-regulation in immune cell subsets, suggesting their
potential involvement in the disease process. While these genes
show promise as biomarkers for the early diagnosis and treatment
of GC, we acknowledge that the up-regulation of these genes is not
exclusive to GC but is also observed in various immune-dependent
disorders such as infections, allergies, and autoimmune diseases.
This overlap in gene expression profiles complicates the specificity
of these markers for GC andmay lead to potential misdiagnosis in pa-
tients with concurrent diseases.

RESULTS
Immune modifications during gastric carcinogenesis

To identify markers of dynamic changes in the tumor immune micro-
environment that are associated with the development and progression
of GC from precancerous lesions, we obtained high-quality single-cell
expression profiles of 211,056 high-quality cells from 58 samples (Fig-
ure S1A; materials and methods). These included 3 NAG samples, 3
CAG samples, 7 IM samples, 35 primary tumor samples, and 10 adja-
cent normal samples (Figure 1A). The tumor samples included one
early GC sample, and the tumor samples ranged from stage I to stage
IV (Figure S1B). In order to identify different cell populations based on
the expression of marker genes, we performed dimension reduction
and unsupervised cell clustering using the method implemented in
the Scanpy software suite15–17 and ultimately identified a total of 12
major cell clusters (Figure 1B; materials and methods). Based on the
expression of known marker genes (Figure 1C), all cell types in the
gastric samples including immune cells, epithelial cells, fibroblasts,
Figure 1. Single-cell atlas of expression and changes in cellular composition d

(A) Uniform manifold approximation and projection (UMAP) representations of all scRN

(B) UMAP representations and annotations of all cells.

(C) Dot plot showing the expression of the marker genes of each cell type.

(D) Boxplots of the cellular proportions of immune cells and non-immune cells in differ

statistics are derived from 3 NAG samples, 3 CAG samples, 7 IM samples, 10 ANT sam

percentile of the data, whiskers represent the highest and lowest values within 1.5 time

(E) Boxplots of immune cell type as in (D). t tests were performed for the proportion of adja

are shown in the plot.

(F) Milo analysis of differential abundance changes between IM and GC samples. Neighb

and neighborhoods that are differentially abundant in GC samples are colored in blue.
endothelial cells, enteroendocrine cells, and smooth muscle cells
were revealed. Among them, immune cells consist of T cells, B cells,
natural killer (NK) cells, mast cells, and myeloid cells. Epithelial cells
have three subpopulations, S100P+ epithelial cells, MZB1+ epithelial
cells, and CXCL17+ epithelial cells (materials and methods).

By tracking the changes in the proportion of these cell types in each
sample, we found that the proportions of immune cell subsets
gradually increase and the proportions of non-immune cell subsets
gradually decrease from NAG to GC (Figure 1D). Immune cells are
significantly enriched at GC and ANT stages (t test, p < 0.05). Next,
we captured the changes in the relative abundances of the five im-
mune cell types separately. Their relative abundances show basically
the same upward trend along the development of GC. We then tested
whether the abundance of every immune cell type is significantly
different between adjacent stages and found that the abundances of
all five immune cell types were significantly different between IM
and GC stages (Figure 1E, t test, p < 0.05). We used another general-
ized linear model-based method (Milo) to test the difference in the
abundances of cell types.18 Milo’s results show that, relative to IM,
all five immune cell types we identified were enriched at the GC stage,
which is consistent with the previous observations (Figure 1F). Taken
together, these data suggest that the turning point in the trajectory of
immune evasion of GC is at the IM stage.

Activated signaling pathways during GC progression

Since the turning point in the trajectory of immune evasion is at the
IM stage, we next explored the altered biological processes during this
turning point. The NEBULA algorithm19 was used to obtain the
DEGswithin five immune cell subsets between IM andGC (Figure 2A;
materials and methods). We then performed enrichment analysis on
these DEGs within each immune cell subset separately and found that
Th17 cell differentiation is significantly up-regulated at the GC stage
compared with IM for all five immune cell subsets (Figures S2–S4;
materials and methods). Th17 cells are a subset of effector T helper
cells that produce IL-17 pro-inflammatory factors.20 Besides, the
IL-17 signaling pathway is significantly up-regulated in subsets of
T cells, B cells, mast cells, and myeloid cells at the GC stage compared
with IM (Figures S2–S4). IL-17 is an effective pro-inflammatory cyto-
kine, which has been confirmed to be closely related to the formation,
growth, and metastasis of tumors in a variety of cancer types.21 IL-17
binds to its receptor, IL-17R, to form a heterodimeric receptor com-
plex, which activates downstream pathways such as nuclear factor kB
uring the development of GC

A-seq cells colored by the original tissue types.

ent samples. Each box represents data for a single tissue type. The boxplots and

ples, and 35 GC samples. Boxes represent the median, 25th percentile, and 75th

s the interquartile range of the boxplot, and all points are plotted.

cent tissue types and the proportion between IM and GC. p values smaller than 0.05

orhoods that are significantly differentially abundant in IM samples are colored in red,
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(NF-kB), Microtubule Affinity-Regulating Kinase (MAPKs), and
CCAAT/Enhancer Binding Protein (C/EBPs) and induces the expres-
sion of antimicrobial peptides, cytokines, and chemokines.21 This is
consistent with our observation that the NF-kB signaling pathway
and MAPK signaling pathway are significantly up-regulated in all
subsets of immune cells during GC (Figures S2–S4).

Since Th17 cell-associated activities are the common event in altered
immune cells in GC, we further examined the expression of specific
genes involved in the IL-17 signaling pathway and Th17 differentia-
tion. In the IL-17 signaling pathway, some genes were only expressed
at the GC stage or up-regulated at the GC stage, such as TNF, IL17RA,
IKBKG, TAB2, IL1B, and CASP8, among others (Figure 2B). As
shown in Figure 2C, IL1B is mainly expressed by myeloid cells,
CASP8 is mainly expressed by T and NK cells, and TNF is mainly ex-
pressed by myeloid cells, but TNF is also expressed by other immune
cells. These results suggest that the IL-17 signaling pathways in GC
require coordination between diverse immune cell types. Genes that
contribute to Th17 cell differentiation are IL1B, IL2RB, ZAP70,
HLA-DQA1, LAT, and IL4R. We found that many genes related to
Th17 cell differentiation were expressed only at the GC stage or up-
regulated at the GC stage, whereas none of these genes were found
to be expressed in precancerous lesion samples (Figure 2D). Mean-
while, we found that IL1B is mainly expressed by myeloid cells. Addi-
tionally, some genes are mainly expressed by two or three immune
cells, such as ZAP70, IL2RB, LCK, and CD247 are mainly expressed
by T and NK cells, HLA-DQA1 is mainly expressed by myeloid cells
and B cells, and LAT is mainly expressed by T, NK, and mast cells. In
addition, some genes are expressed in all immune cells, for instance,
IL4R and RARA (Figure 2E). These results further confirm that the IL-
17 signaling pathway and Th17 cell differentiation in GC require the
coordination between diverse immune cell types.

Immune infiltration of GC samples in TCGA

To track the changes in immune cell states along GC progression, we
obtained the bulk RNA-seq data of GC from The Cancer Genome
Atlas (TCGA)22 and used the CIBERSORTx23 platform to deconvo-
lute these GC bulk RNA-seq data to infer the cellular proportion of
each sample of the TCGA GC data. Due to the limited storage space
on the CIBERSORTx platform (1,000 megabytes), we used the
Metacell-2 algorithm to reduce the number of cells in the merged
scRNA-seq dataset.24 Finally, the derived metacell dataset contains
11,337 metacells (materials and methods). We identified 10 major
cell clusters based onmarker gene expression (Figures 3A and 3B; ma-
terials and methods). Although the granularity of metacell clusters is
slightly different from those of single-cell clusters identified by single-
cell expression profile, the major cell types in gastric tissues are all re-
vealed, and the five immune cell types that we focus on in this study
Figure 2. Gene expression in GC development

(A) Volcano plots of the results of differential expression analysis in immune cells between

(log FC R 1 and p < 0.05) in GC, and blue dots represent genes down-regulated (log

(B and C) Dot plots of representative genes in the IL-17 signaling pathway mapped on

(D and E) Dot plots of representative genes in Th17 cell differentiation mapped onto tis
are consistent. Since the metacell dataset is still bigger than 1,000
megabytes, we downsampled approximately 75% of the metacells
multiple times to ensure that the deconvolution results are stable.

Using metacells as the reference gene expression profiles, we decon-
volved the GC TCGA data and obtained the inferred proportion of
each cell type in each sample (materials and methods). According
to the clinical information, we grouped the samples by the stage of
GC. As shown in Figure 3C, the proportions of five immune cells
show an overall upward trend with the progression of GC, and the
proportions of T cells, B cells, and myeloid cells showed significant
differences in different stages. Next, we compared the changes in
the proportion of each immune cell in the four tumor stages of GC
in the single-cell data and TCGA data. We found that the proportion
of immune cells in the two data showed a similar trend during tumor
progression (Figure 3D). These data validate the changes in the abun-
dance of immune cell subsets found in our single-cell data.

Signaling pathway analysis of subsets of T cells and myeloid

cells

Next, we further subdivided T cells and myeloid cells into subtypes
and examined changes in the abundance of these two immune cell
subtypes as well as their differential gene expression. We used the
Scanpy software suite to perform dimension reduction and unsuper-
vised cell clustering for both T cells and myeloid cells.15–17 We then
annotated the subtypes based on the expression of known marker
genes (materials and methods). Ultimately, three T cell subtypes
were identified, including regulatory T cells, cytotoxic T cells, and
naive T cells (Figure 4A). Meanwhile, five subtypes of myeloid cells
were identified, including intermediate monocytes, monocytes/mac-
rophages, non-classical monocytes, conventional dendritic cells
(DCs), and plasmacytoid DCs (pDCs) (Figure 4B).

Next, we examined the changes in abundance of the eight immune
cell subtypes obtained above and used the t test to determine the sig-
nificance of differences in abundance between the adjacent stages. We
found the abundance of T cell and myeloid cell subtypes gradually
increased from NAG to GC (Figures 4C and 4D). The common
feature among the changes in the abundance of the eight subtypes
is that the difference in abundance between IM and GC was signifi-
cant, and all eight subtypes were relatively significantly enriched in
the GC and ANT stages (t test, p < 0.05). This is consistent with
our previous conclusion that the turning point in the trajectory of
immune evasion of GC is at the IM stage.

From IM to GC, we used the NEBULA algorithm to obtain DEGs
within subsets of T cells and myeloid cells. Then, we examined the
DEGs within each subset and performed Kyoto Encyclopedia of
IM and GC by using the NEBULA algorithm. Red dots represent genes up-regulated

FC % �1 and p < 0.05) in GC.

to tissue types and cell types.

sue types and cell types.
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Figure 3. Immune cell composition of GC samples in TCGA

(A) UMAP representations and annotations of metacells.

(B) Dot plot of the expression of the marker genes for each cell type.

(C) Violin plots of the proportion of each immune cell type in different samples from bulk RNA-seq dataset. Each violin represents data for a single GC stage. t test p values

between any two stages less than 0.05 are shown in the plot.

(legend continued on next page)
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Genes and Genomes (KEGG) pathway enrichment analysis using
these genes. In the up-regulated gene enrichment analysis, we found
that compared to IM, the IL-17 signaling pathway was significantly
up-regulated only in regulatory T cells, intermediate monocytes,
and monocytes/macrophages during the GC stage. Additionally, we
found that Th17 cell differentiation was significantly up-regulated
only in regulatory T cells, cytotoxic T cells, naive T cells, intermediate
monocytes, and pDCs during the GC stage. At the same time, we
examined the expression of genes involved in the IL-17 signaling
pathway that were up-regulated at the GC stage in regulatory
T cells, intermediate monocytes, and monocytes/macrophages. We
found that genes expressed or up-regulated only at the GC stage
were the same as when T cells and myeloid cells were not divided.
We also examined the expression of genes involved in Th17 cell dif-
ferentiation that were up-regulated at the GC stage in regulatory
T cells, cytotoxic T cells, naive T cells, intermediate monocytes, and
pDCs. We found that genes expressed or up-regulated only at the
GC stage were almost the same as when T cells and myeloid cells
were not divided, and only IL4R was not found. Finally, we examined
the expression of these genes in different cell types and did not
find any genes that were specifically expressed only in a subset
(Figures 4E and 4F).

In summary, these data and results suggest that only some, but not all,
immune subsets are involved in the activities related to the IL-17
signaling pathway and Th17 cell differentiation. This also provides
further evidence that the IL-17 signaling pathways in GC require co-
ordination between diverse immune cell types.

DISCUSSION
Cancer is a growing threat to public health, with increasing incidence
and mortality rates. Chronic inflammation has been recognized as a
contributing factor to cancer development, and it has been observed
that chronic or excessive inflammation can lead to a significant num-
ber of cancer types. In this study, we aimed to investigate the molec-
ular mechanisms involved in the transformation of inflammation into
GC and identify potential biomarkers for early diagnosis and
treatment.

Our study revealed the immune modifications during gastric carcino-
genesis. By analyzing scRNA-seq data frommultiple samples of NAG,
CAG, IM, GC at different stages, and ANTs, we identified distinct im-
mune cell populations and their dynamic changes throughout the
progression of GC. We observed a gradual increase in the proportion
of immune cell subsets and a decrease in non-immune cell subsets
from NAG to GC, indicating a shift toward immune cell enrichment
in the tumor microenvironment. Furthermore, we found that the
abundances of all five immune cell types (T cells, B cells, NK cells,
mast cells, and myeloid cells) were significantly different between
(D) Boxplots of the proportion of each immune cell type in different samples from sc

represents data for a single tissue type or GC stage. The boxplots and statistics are derive

GC samples, 6 stage II GC samples, 17 stage III GC samples, and 7 stage IV GC sampl

stage III GC samples, and 95 stage IV GC samples in the bulk RNA-seq data. T0, early
IM and GC stages, with enrichment in the GC samples. This suggests
that the turning point in the trajectory of immune evasion in GC
occurs at the IM stage. These observations highlight the importance
of understanding the immune cell dynamics and their functional
changes during the progression of GC.

We then focused on the IL-17 signaling pathway, which plays a
crucial role in inflammation and has been implicated in various can-
cers. Our analysis revealed the up-regulation of the IL-17 signaling
pathway in subsets of T cells, B cells, mast cells, and myeloid cells
at the GC stages compared to IM. The IL-17 signaling pathway is
known to activate downstream pathways, such as NF-kB and
MAPKs, and induce the expression of pro-inflammatory cytokines
and chemokines. The significant up-regulation of the NF-kB and
MAPK signaling pathways in immune cells during GC further sup-
ports the involvement of the IL-17 pathway in gastric carcinogenesis.
Moreover, we identified several specific genes involved in the IL-17
signaling pathway and Th17 cell differentiation that were expressed
or up-regulated in GC samples, including TNF, IL17RA, IKBKG,
TAB2, IL1B, and CASP8. These genes may serve as potential clinical
diagnostic markers for early detection and treatment of GC. The co-
ordinated expression of specific genes involved in the IL-17 signaling
pathway and Th17 cell differentiation was observed across diverse im-
mune cell types, emphasizing the interplay and cooperation between
different immune subsets in GC. Meanwhile, in-depth analysis of im-
mune cell subtypes, specifically T cells andmyeloid cells, revealed that
only a portion of immune subsets are involved in the activities related
to the IL-17 signaling pathway and Th17 cell differentiation.

To validate our findings, we analyzed bulk RNA-seq data from TCGA
and confirmed the changes in immune cell proportions observed in
our scRNA-seq data. The similarities in immune cell dynamics be-
tween the two datasets further support the reliability of our findings.

In conclusion, our study provides comprehensive insights into the
immune modifications and signaling pathways involved in gastric
carcinogenesis. The identification of immune cell dynamics and the
up-regulation of the IL-17 signaling pathway during GC progression
highlight potential biomarkers for early diagnosis and treatment.
Some genes involved in the IL-17 pathway and Th17 cell differentia-
tion serve as potential drug targets for clinical applications.
Further research and validation of these findings could contribute
to improved cancer prevention, early detection, and therapeutic stra-
tegies for GC.

MATERIALS AND METHODS
Collection of scRNA-seq and bulk RNA-seq data

scRNA-seq data were obtained from the GEO database under GEO:
GSE1839049 and GSE134520,14 and from the Database of Genotypes
RNA-seq data (the first row) and bulk RNA-seq data (the second row). Each box

d from 3NAG samples, 3 CAG samples, 7 IM samples, 1 early GC samples, 4 stage I

es in the scRNA-seq data and 14 stage I GC samples, 70 stage II GC samples, 157

GC; T1–T4, stage I–IV GC.
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and Phenotypes (dbGaP) under the identifier phs001818.v1.p1.25 In
total, 58 samples from 43 patients were selected for analysis. These
included 3 NAG samples, 3 CAG samples, 7 IM samples, 35 primary
tumor samples, and 10 adjacent normal samples.

Bulk RNA-seq data of patients with GC were downloaded from
TCGA database (https://portal.gdc.cancer.gov/).

Quality control and preprocessing of scRNA-seq data

We performed quality control on each dataset using the method im-
plemented in the Scanpy software suite17 before merging them. Genes
detected in fewer than three cells and cells expressing less than 200
detected genes were filtered out and excluded from downstream
analysis. Next, cells would be labeled as poor-quality ones if they pre-
sented with one of the following conditions: (1) the number of Unique
Molecular Identifier (UMIs) is lower than 600 or larger than 120,000,
(2) the number of expressed genes is lower than 400 or larger than
7,000, or (3) 20% or more of the UMIs were mapped to mitochondrial
genes.14 Then, we continued to utilize the functions in the Scanpy to
normalize the gene expression level to UMIs Per Million (UPM) and
log transform the single-cell gene expression data. Finally, after merg-
ing these datasets, we obtained 211,056 high-quality cells, and 15,569
genes were kept in the merged dataset, which was then used for sub-
sequent analysis.

Dimension reduction, unsupervised clustering, and annotation

of scRNA-seq data

Dimension reduction, unsupervised clustering, and annotation of
scRNA-seq data were done using functions in the Scanpy software
package (v.1.9.1).

We identified a subset of highly variable genes (HVGs) in the prepro-
cessed expressionmatrix and then scaled gene expression values before
performing dimension reduction and clustering on them. The selection
of HVGs in scRNA-seq data was implemented by the “pp.highly_var-
iable_genes” function in the Scanpy package. The valid value of average
expression was set to the range from 0.05 to 5, dispersion was set to no
less than 0.5, and the default values were used for other parameters.
Finally, the 4,000 HVGs were selected for further analysis.

Next, we used the “pp.pca” function to perform the principal-compo-
nent analysis on the single-cell expression matrix with genes
restricted to HVGs and retained the top 50 principal components
for subsequent analysis. Using these data, we performed Harmony
and BBKNN to construct the K-Nearest Neighbors (KNN) graph of
high-quality cells. In the same graph, we used the “tl.umap” function
to project cells to 2D space for visualization. Meanwhile, we utilized
the “tl.leiden” function to conduct an unsupervised graph-based clus-
Figure 4. The composition of subtypes of T cells and myeloid cells

(A and B) UMAP representations and annotations of subtypes in T cells and myeloid ce

(C and D) Boxplots of the proportion of each T cell subtype and each myeloid cell subt

(E) Dot plots of representative genes in the IL-17 signaling pathway mapped onto cell t

(F) Dot plots of representative genes in Th17 cell differentiation mapped onto cell types
tering algorithm called Leiden to cluster cells. Due to the large num-
ber of cells in our study, we set the parameter resolution as 4. In this
way, a total of 12 major cell clusters were identified.

We annotated these cell clusters using the expression of known
marker genes. Marker genes include CD3E and CD3D for T cells;
MS4A1 for B cells; NKG7 and GZMB for NK cells; CPA3 for mast
cells; AIF1 for myeloid cells; S100P and AGR2 for S100P+ epithelial
cells; MZB1 and CD79A for MZB1+ epithelial cells; MUC6 for
CXCL17+ epithelial cells; DCN and MMP2 for fibroblasts; RAMP2
and PLVAP for endothelial cells; CHGA and SCG5 for enteroendo-
crine cells; and RGS5 for smooth muscle cells.

Differential gene expression analysis

Differential gene expression analysis was performed using the tool
NEBULA, which performs differential expression based on a negative
binomial mixed model for two annotated cell groups.19 In R (v.4.2.2),
we performed differential gene expression analysis by using the
NEBULA software package (v.1.2.2) to find DEGs in each immune
cell type between IM and GC states. If the log-transformed fold
change (log FC) is R1 and the p value is <0.05, then the gene was
defined as up-regulated. If the log FC is % �1 and the p is <0.05,
then the corresponding gene was defined as down-regulated.

Gene set enrichment analysis

We performed the gene set enrichment analysis of DEGs by using the
online platform WebGestalt (http://www.webgestalt.org/), with
which the enriched KEGG pathways were derived, and we defined
the pathways with a false discovery rate% 0.05 as the significantly en-
riched pathways.

Metacell-2 for scRNA-seq data

We loaded the Metacells package (v.0.8.0)24 into python (v.3.9.12)
and ran the Metacell-2 algorithm on scRNA-seq data with default pa-
rameters. In the end, we obtained 11,337 metacells for subsequent
analysis.

Annotation of metacells

We applied the same methods for dimension reduction, clustering,
and annotation to metacells. First, we extracted the gene expression
profiles of metacells of the top 4,000 HVGs. Then we ran “pp.pca”
and “tl.umap” functions on this expression matrix in turn to achieve
the purpose of dimension reduction. Finally, we used the “tl.leiden”
function to cluster metacells and set the parameter resolution as
0.05. In this way, a total of 10 metacell clusters were identified.

We annotated these metacell clusters by using the expression of
known marker genes. Marker genes included CD3E and CD3D for
lls.

ype in different samples.

ypes.

.
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T cells; MS4A1 for B cells; TXK for NK cells; CPA3 and TPSAB1 for
mast cells; AIF1 for myeloid cells; MZB1 and CD79A for epithelial
cells; DCN for fibroblasts; ESAM for endothelial cells; CHGA and
SCG5 for enteroendocrine cells; and TSPAN8, SMIM22, and ELF3
for enterocytes.

Bulk RNA-seq data analysis

We used the online platform CIBERSORTx (https://cibersortx.
stanford.edu/) to estimate the composition of various cell populations
in bulk RNA-seq data. Signature gene matrices were created using the
expression profiles of metacells as the reference gene expression pro-
files. We ran the “Impute Cell Fractions”module with default param-
eters and enabled S-mode batch correction. In this way, we obtained
the proportions of each cell type for each bulk RNA-seq sample.

Division of T cells and myeloid cells

First, we extracted the expression matrices of the top 4,000 HVGs of
T cells andmyeloid cells, respectively. Then, we used the “pp.pca” and
“tl.umap” functions to reduce the dimensions of the two expression
matrices. Finally, we used the “tl.leiden” function to re-cluster
T cells and myeloid cells, respectively, and set the parameter resolu-
tion as 0.25 for both. By this means, three subtypes in T cells and
five subtypes myeloid cells were identified.

We annotated these subtypes by using the expression of known
marker genes. Marker genes included GZMK and CD8 for cytotoxic
T cells; CCR7 for naive T cells; FOXP3 for regulatory T cells; FCGR3A
for intermediate monocytes; FCN1 and VCAN for monocytes/macro-
phages; IFITF1 for non-classical monocytes; IDO1 and CLIC2 for
conventional dendritic cells; and PLD4 and IRF8 for pDCs.

DATA AND CODE AVAILABILITY
This study did not generate new unique reagents. Raw data of this
study are available on the GEO with GEO: GSE183904 and
GSE134520 and the dbGaP with the identifier phs001818.v1.p1.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omton.2024.200849.

ACKNOWLEDGMENTS
Ethical approval and consent to participate were waived since we used
only publicly available data and materials in this study. There is no
funding support for this study.

AUTHOR CONTRIBUTIONS
S.G. and C.L. conceived of the study, conducted the statistical anal-
ysis, and drafted the manuscript. R.H., G.T., Y.Z., D.R., F.Z., K.L.,
and J.Y. revised the manuscript and designed the study. All authors
have reviewed and approved the final version of the text.

DECLARATION OF INTERESTS
The authors declare the following financial interests/personal rela-
tionships, which may be considered as potential competing interests:
10 Molecular Therapy: Oncology Vol. 32 September 2024
C.L. and D.R. are employed by Daqing Longnan Hospital, The Fifth
Affiliated Hospital of Qiqihar Medical College; R.H. and J.Y. are em-
ployed by Geneis Beijing Co., Ltd; and G.T. is the chairman of Geneis
Beijing Co., Ltd.

REFERENCES
1. Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2022). Cancer statistics, 2022.

CA. Cancer J. Clin. 72, 7–33.

2. Paduch, R. (2015). Theories of cancer origin. Eur. J. Cancer Prev. 24, 57–67.

3. Afify, S.M., Hassan, G., Seno, A., and Seno, M. (2022). Cancer-inducing niche: the
force of chronic inflammation. Br. J. Cancer 127, 193–201.

4. Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow?
Lancet 357, 539–545.

5. Medzhitov, R. (2021). The spectrum of inflammatory responses. Science 374,
1070–1075.

6. Tan, P., and Yeoh, K.G. (2015). Genetics and Molecular Pathogenesis of Gastric
Adenocarcinoma. Gastroenterology 149, 1153–1162.e3.

7. Liu, Y., Liu, L., Zhou, Y., Zhou, P., Yan, Q., Chen, X., Ding, S., and Zhu, F. (2019).
CKLF1 Enhances Inflammation-Mediated Carcinogenesis and Prevents
Doxorubicin-Induced Apoptosis via IL6/STAT3 Signaling in HCC. Clin. Cancer
Res. 25, 4141–4154.

8. Becker, W.R., Nevins, S.A., Chen, D.C., Chiu, R., Horning, A.M., Guha, T.K.,
Laquindanum, R., Mills, M., Chaib, H., Ladabaum, U., et al. (2022). Single-cell ana-
lyses define a continuum of cell state and composition changes in the malignant
transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995.

9. Kumar, V., Ramnarayanan, K., Sundar, R., Padmanabhan, N., Srivastava, S., Koiwa,
M., Yasuda, T., Koh, V., Huang, K.K., Tay, S.T., et al. (2022). Single-Cell Atlas of
Lineage States, Tumor Microenvironment, and Subtype-Specific Expression
Programs in Gastric Cancer. Cancer Discov. 12, 670–691.

10. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and
Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 71,
209–249.

11. Zou, X., Jia, M., Wang, X., and Zhi, X. (2021). Interpretation of the World Cancer
Report 2020. Chin. J. Clin. Thor. Cardiovasc. Surg. 28, 11–18.

12. Correa, P., and Piazuelo, M.B. (2012). The gastric precancerous cascade. J. Dig. Dis.
13, 2–9.

13. Morson, B.C. (1955). Carcinoma arising from areas of intestinal metaplasia in the
gastric mucosa. Br. J. Cancer 9, 377–385.

14. Zhang, P., Yang, M., Zhang, Y., Xiao, S., Lai, X., Tan, A., Du, S., and Li, S. (2019).
Dissecting the Single-Cell Transcriptome Network Underlying Gastric
Premalignant Lesions and Early Gastric Cancer. Cell Rep. 27, 1934–1947.e5.

15. Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F.,
and Newell, E.W. (2018). Dimensionality reduction for visualizing single-cell data us-
ing UMAP. Nat. Biotechnol. 37, 38–44.

16. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden: guaran-
teeing well-connected communities. Sci. Rep. 9, 5233.

17. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15.

18. Dann, E., Henderson, N.C., Teichmann, S.A., Morgan, M.D., and Marioni, J.C.
(2022). Differential abundance testing on single-cell data using k-nearest neighbor
graphs. Nat. Biotechnol. 40, 245–253.

19. He, L., Davila-Velderrain, J., Sumida, T.S., Hafler, D.A., Kellis, M., and Kulminski,
A.M. (2021). NEBULA is a fast negative binomial mixed model for differential or
co-expression analysis of large-scale multi-subject single-cell data. Commun. Biol.
4, 629.

20. Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., Hood, L.,
Zhu, Z., Tian, Q., and Dong, C. (2005). A distinct lineage of CD4 T cells regulates tis-
sue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141.

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://doi.org/10.1016/j.omton.2024.200849
https://doi.org/10.1016/j.omton.2024.200849
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref1
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref1
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref2
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref3
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref3
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref4
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref4
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref5
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref5
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref6
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref6
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref7
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref7
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref7
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref7
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref8
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref8
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref8
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref8
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref9
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref9
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref9
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref9
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref10
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref10
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref10
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref10
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref11
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref11
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref12
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref12
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref13
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref13
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref14
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref14
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref14
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref15
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref15
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref15
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref16
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref16
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref17
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref17
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref18
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref18
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref18
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref19
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref19
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref19
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref19
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref20
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref20
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref20


www.moleculartherapy.org
21. Zhao, J., Chen, X., Herjan, T., and Li, X. (2020). The role of interleukin-17 in tumor
development and progression. J. Exp. Med. 217, e20190297.

22. Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B.,
Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart,
J.M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet.
45, 1113–1120.

23. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F.,
Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D., et al. (2019).
Determining cell type abundance and expression from bulk tissues with digital cy-
tometry. Nat. Biotechnol. 37, 773–782.

24. Ben-Kiki, O., Bercovich, A., Lifshitz, A., and Tanay, A. (2022). Metacell-2: a divide-
and-conquer metacell algorithm for scalable scRNA-seq analysis. Genome Biol.
23, 100.

25. Sathe, A., Grimes, S.M., Lau, B.T., Chen, J., Suarez, C., Huang, R.J., Poultsides, G., and
Ji, H.P. (2020). Single-Cell Genomic Characterization Reveals the Cellular
Reprogramming of the Gastric Tumor Microenvironment. Clin. Cancer Res. 26,
2640–2653.
Molecular Therapy: Oncology Vol. 32 September 2024 11

http://refhub.elsevier.com/S2950-3299(24)00091-2/sref21
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref21
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref22
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref22
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref22
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref22
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref23
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref23
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref23
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref23
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref24
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref24
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref24
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref25
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref25
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref25
http://refhub.elsevier.com/S2950-3299(24)00091-2/sref25
http://www.moleculartherapy.org

	Dynamic changes of the immune microenvironment in the development of gastric cancer caused by inflammation
	Introduction
	Results
	Immune modifications during gastric carcinogenesis
	Activated signaling pathways during GC progression
	Immune infiltration of GC samples in TCGA
	Signaling pathway analysis of subsets of T cells and myeloid cells

	Discussion
	Materials and methods
	Collection of scRNA-seq and bulk RNA-seq data
	Quality control and preprocessing of scRNA-seq data
	Dimension reduction, unsupervised clustering, and annotation of scRNA-seq data
	Differential gene expression analysis
	Gene set enrichment analysis
	Metacell-2 for scRNA-seq data
	Annotation of metacells
	Bulk RNA-seq data analysis
	Division of T cells and myeloid cells

	Data and code availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


