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Targeted delivery of pentagalloyl glucose 
inhibits matrix metalloproteinase activity 
and preserves elastin in emphysematous lungs
Vaideesh Parasaram, Xiaoying Wang, Pantrika Krisanarungson and Narendra Vyavahare*   

Abstract 

Background:  Elastin degradation has been established as one of the driving factors of emphysema. Elastin-derived 
peptides (EDPs) are shown to act as a chemoattractant for monocytes. Effectively shielding elastin from elastolytic 
damage and regenerating lost elastin are two important steps in improving the mechanical function of damaged 
lungs. Pentagalloyl glucose (PGG) has been shown to preserve elastin in vascular tissues from elastolytic damage 
in vivo and aid in elastin deposition in vitro.

Methods:  We created emphysema by elastase inhalation challenge in mice. Albumin nanoparticles loaded with PGG, 
conjugated with elastin antibody, were delivered to target degraded elastin in lungs. We investigated matrix metallo-
proteinase-12 activity and lung damage by measuring dynamic compliance and tidal volume changes.

Results:  Ex-vivo experiments demonstrated elastin preservation in PGG treated samples compared to controls. 
Inhaled nanoparticles conjugated with elastin antibody retained for extended periods in lungs. Further, mice treated 
with PGG nanoparticles showed a significant suppression of MMP-12 activity measured in the lungs. We observed 
suppression of emphysema in terms of dynamic lung compliance and tidal volume change compared to the control 
group. The histological examination further confirmed elastin preservation in the lungs.

Conclusion:  These results demonstrate successful targeted delivery of nanoparticles loaded with PGG to inhibit 
MMP-12 activity and preserve elastin in the lungs. Such targeted PGG therapy has potential therapeutic use in the 
management of emphysema.
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Background
Emphysema is a condition marked by chronic inflam-
mation, oxidative stress, elastin damage and progressive 
alveolar destruction [1]. Cigarette smoke insult triggers 
the progressive inflammatory response in the lungs, 
causing excessive release of pro-inflammatory media-
tors leading to a disruption of extracellular matrix in the 
lungs. Cigarette smoke also causes cell apoptosis and 

inhibits alveolar repair, making the condition irrevers-
ible [2–4]. Some improvement in lung function has been 
seen after smoking cessation, but the damage is irrevers-
ible [5]. Despite the significance of elastin degradation as 
a primary cause of loss of lung elasticity and function, it 
has received little attention as a potential target for the 
treatment of emphysema [6]. The inability of adults to 
regenerate elastin has been attributed to the lack of per-
fect interplay between all the molecules participating in 
the process of elastin deposition [7]. Moreover, elastin 
degradation products (EDPs) act as chemoattractants 
for monocytes and further increase the inflammatory 
burden on the lungs [8]. Thus, protecting elastin from 
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elastolytic damage and regenerating lost elastin would 
improve the mechanical function of damaged lungs. 
Matrix metalloproteinases (MMPs) are the key enzymes 
involved in extracellular matrix (ECM) degradation. Spe-
cifically, MMP-12 and MMP-9 are more pronounced in 
emphysema and participate in the degradation of elastin 
and collagen in lung connective tissue [9–12].

Pentagalloyl glucose (PGG), a derivative of tannic acid 
(TA), has been shown to preserve elastin in vascular tis-
sues from elastolytic damage and aid in elastin deposi-
tion by vascular smooth muscle cells and pulmonary 
fibroblasts [13]. We have previously shown that PGG can 
inhibit MMP-9 activity in rat pulmonary fibroblasts [14].

Here we show MMP activity inhibition and preserva-
tion of lung functional parameters using nanoparticle-
mediated targeted delivery of PGG using the elastase 
model of emphysema in mice [15].

Methods
Elastase inhibition by PGG
To investigate PGG’s ability to inhibit elastase activity, 
an enzymatic assay was performed using N-Succinyl-
Ala-Ala-Ala-p-nitroanilide (AAAPVN or SucAla3-pNA) 
(Sigma-Aldrich, St. Louis, MO) as a substrate [16]. Por-
cine pancreatic elastase (PPE, 2U) was added to 120-µl of 
the substrate (2 mg/mL) with or without PGG. Absorb-
ance was measured at 410 nm, and the percentage inhi-
bition was calculated as the difference compared to the 
absorbance of the uninhibited sample.

Ex vivo PGG treatment

Frozen mouse lung tissue samples were cut, washed, 
and lyophilized to record initial dry weights. One group 
of samples were incubated in 0.05% PGG in MES buffer 
24  h, while other control group was incubated in MES 
buffer alone. Following this, both control and PGG fixed 

SucAla3 − pNA + H2O
Elastase
−→ SucAla3 + pNA

samples were subjected to elastase challenge in 5U/mL 
PPE solution (supplemented with 100  mM Tris, 1  mM 
calcium chloride and 0.02% sodium azide; pH 7.8)  for 
24h. They were then lyophilized to measure final dry 
weight. Percentage weight loss was calculated in both 
groups (n = 5 per group). A separate set of samples 
treated in the same way, without lyophilizing, were used 
for histological examination (n = 3) and elastin quantifi-
cation using FASTIN assay (n = 3) (Biocolor, USA).

Preparation of nanoparticles (ELN‑DiR NPs and ELN‑PGG 
NPs)
DiR dye (PromoCell GmbH, Heidelberg, Germany) 
loaded bovine serum albumin (BSA, Seracare, Milford, 
MA) nanoparticles (DiR NPs) and PGG loaded BSA 
nanoparticles were prepared using desolvation method 
and conjugated to anti-elastin antibody (US Biological, 
MA, USA) for targeting purposes as described previously 
[13, 17–20] to obtain ELN-DiR NPs and ELN-PGG-NPs. 
Detailed methods are provided in the Additional file  1: 
Appendix.

Animal studies
All procedures were performed according to the pro-
tocols approved by Institutional Animal Care and Use 
Committee (IACUC) at Clemson University, SC. A time-
line graph of all animal studies is shown (Fig. 1).

Targeting lungs using ELN‑DiR‑NPs
Six-week-old male C57BL/6 mice were used for experi-
ments. We used the inhalation of elastase emphysema 
model for these studies where mice were allowed to 
inhale 25 U/mL of PPE once, at the starting of the study. 
For inhalations, a pie cage and a nebulizer were used with 
custom modifications (Braintree Scientific, Braintree, 
MA). Mice were kept in the pie cage, and freshly pre-
pared PPE solution was aerosolized using the nebulizer 
for 15  min of inhalation (the set-up is shown in Addi-
tional file  1: Fig. S1). All animals were then allowed to 
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Fig. 1  Experimental design for the animal studies
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recover and were monitored regularly. To study the effec-
tiveness of aerosol delivery of nanoparticles and their 
retention in the lungs, we divided mice into two groups. 
One dose of either elastin antibody conjugated DiR NPs 
(ELN-DiR-NPs) (n = 4) or particles without elastin anti-
body (DiR-NPs) (n = 2) were delivered via inhalation 
3 days post elastase challenge. These animals were euth-
anized after 6  weeks to observe targeting and retention 
of particles in the lungs. Lungs and other organs were 
imaged with IVIS® Lumina XR Imaging system (Caliper 
Life Sciences, Waltham, MA) set to excitation/emission 
of 745  nm/790  nm. The background signal was sub-
tracted before analyzing the signal intensities from the 
organs.

Targeted delivery of PGG‑BSA NPs
Six-week-old male C57BL/c mice were divided into three 
groups, i.e., Healthy (n = 6), Untreated (n = 7), ELN-
PGG-NPs (n = 6). As described above, healthy animals 
received saline inhalations while the others received one-
time elastase inhalation of 25U/mL PPE solution (Elastin 
Products Co., Owensville, MO), dissolved in phosphate-
buffered saline (PBS), and aerosolized using a nebulizer 
system. A week after the elastase challenge, animals 
received two biweekly inhalations of either ELN-PGG-
BSA-NPs or saline. A solution of 1 mg/mL of freshly pre-
pared particles that were nebulized for 15 min using the 
same equipment described above for DiR nanoparticles.

Measurement of dynamic compliance and tidal volume
At the end of the study, mice were anesthetized using 
xylazene and ketamine (5  mg/kg (diluted 1:10) and 
80  mg/kg respectively) to perform a tracheotomy. The 
animals were allowed to go into deep anesthesia to reduce 
the breathing rate. An incision was made on the throat 
and the fascia was separated using forceps to visualize 
the trachea. A hole was made in the trachea, and a con-
nector tube was inserted into it. After tightly connect-
ing the tube to the trachea by a double knot suture, the 
animals were connected to the FinePointe resistance and 
compliance system (DSI, St. Paul, MN) for lung param-
eter measurements. The instrument had a ventilator that 
pumped known amounts of air and simultaneously meas-
ured lung dynamic compliance, resistance, and tidal vol-
ume. Using pressure–time curves, static compliance was 
calculated as the ratio of tidal volume and the difference 
of plateau and positive end-expiratory pressures. Follow-
ing lung analyses, animals were sacrificed under 4% iso-
flurane. Following the chest cavity opening, a whole-body 
flush was performed by injecting heparinized saline in 
the right ventricle and cutting open the right atrium to 
allow both pulmonary and systemic circulatory vessels 
to be flushed. After the organs were perfused, one-half 

of the lungs were frozen using liquid nitrogen for protein 
analysis while the other half was fixed in neutral buffered 
formalin, along with other organs.

Measurement of MMP activity in lungs
Frozen lung pieces from mice were homogenized in RIPA 
buffer (10 mM Tris–Cl, 1 mM EDTA, 1% Triton X-100, 
0.1% sodium deoxycholate, 0.1% SDS, 140  mM NaCl, 
1  mM PMSF; pH 8.0). After disrupting the tissue with 
a hand-held homogenizer for 5  min, the samples were 
sonicated on ice for 5 more minutes to ensure complete 
homogenization. They were then spun at 10,000 RPM for 
5  min, and the supernatant was collected. MMP activ-
ity in the tissue homogenate samples was measured 
using internally quenched peptide substrates for MMP-
12 (Ex/Em = 325/393  nm, 390 MMP FRET Substrate V, 
Anaspec, CA). One milligram of the substrate was dis-
solved in 50 µL of DMSO, and the solution was diluted 
in 10 mL of development buffer (50 mM Tris Base, 5 mM 
CaCl2·2H2O, 200  mM NaCl, 0.02% brij 35). 2 µL of the 
substrate stock solution and 2 µL of the extracted protein 
were mixed with 96  µL of the development buffer and 
incubated for 1 h at 37 °C. A fluorescent plate reader was 
used to read endpoint fluorescence intensity.

Histology
Sections from formalin-fixed lung pieces were used to 
study elastin damage in the lungs. Processed tissue sam-
ples were embedded in paraffin, and sections of 5  μm 
thick were made from the sagittal face. Immunohisto-
chemistry using an anti-elastin antibody (US Biological, 
Salem, MA) was performed according to the manufactur-
er’s protocol to look at the elastin damage in the alveolar 
walls of the tissue. Luna stain (Polysciences Inc., War-
rington, PA) was also performed according to the man-
ufacturer’s protocol to visualize elastin fibers along the 
alveolar wall in lung sections. For ex-vivo experimental 
sections, we stained the control and PGG fixed lung tis-
sues with phenol stain using ferric chloride [20].

Statistical analysis
Results obtained from experiments were analyzed using 
Graph Pad Prism®. Measurements were tested using 
one-way ANOVA to identify the difference between 
group means, followed by Tukey–Kramer post hoc test 
was used to identify which groups had significantly dif-
ferent means. For samples where only two groups were 
compared, a two-tailed T-test was used to distinguish the 
mean values. A p-value less than 0.05 was considered sta-
tistically significant for all the comparisons mentioned. 
Unless stated otherwise, values were reported as scatter 
plots with mean ± standard deviation (SD).



Page 4 of 9Parasaram et al. Respir Res          (2021) 22:249 

Results
Elastase enzyme inhibition by PGG
Using N-Succinyl-Ala-Ala-Ala-p-nitroanilide (AAAPVN) 
substrate, we investigated the inhibition of PPE activity 
by PGG. PGG inhibited elastase activity in a concentra-
tion-dependent manner. Even at concentrations of 1 µg/
mL PGG concentration, elastase activity was inhibited 
by ~ 35% compared to control samples in 20 min. There 
was an increase in inhibition with a higher concentration 
of PGG, where 20 µg/mL accounted for about 50% inhi-
bition (Fig. 2A).

Ex‑vivo lung elastin stability
PGG treated samples showed significantly less weight 
loss after elastase challenge than untreated controls 
(Fig. 2B). Elastin stability was further confirmed with the 
quantification of elastin by FASTIN assay. PGG treated 
samples showed strikingly more elastin than control 
counterparts after the elastase challenge (Fig.  2C). This 
finding was also confirmed using Verhoff van Gieson’s 
staining of sections. Confirmation of PGG in PGG fixed 
lung tissue can be seen with black staining from phe-
nol stain, whereas control tissue shows no such staining 
(Fig. 2D–E).

Nanoparticle targeting lungs
We investigated if elastin antibody conjugated nano-
particles that target degraded elastin remain in the 
lungs for a longer time compared to unconjugated NPs 
after inhalation; DiR dye loading allowed us to track 
particle retention up to 6  weeks after administering 
nanoparticles. We observed that even after 6  weeks, 
elastin antibody conjugated DiR nanoparticles (ELN-
DiR NPs) were found in the elastase challenged lungs, 
while unconjugated particles (DiR NPs) were cleared 
(Fig.  3A). A bio-distribution of particles radiant effi-
ciency per mg of the average dry weight of various 
organs is shown in Fig.  3B. To further confirm that 
elastin-antibody conjugated nanoparticles target only 
degraded elastin, we intratracheally instilled elastase in 
mice lungs and waited for 4 weeks for elastin degrada-
tion. After 4 weeks, DiR dye-loaded particles (ELN-DiR 
NPs) were delivered with i.v. route (tail vein injection), 
and after 24  h of NP circulation, animals were sacri-
ficed to test the targeting. As shown in the Additional 
file 1: Fig. S2, only elastase treated animals showed NPs 
in lungs while untreated animals did not. Furthermore, 
a healthy aorta with a high amount of non-degraded 
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elastin in both groups showed no DiR signal suggesting 
that NPs only go to the area of degraded elastin.

Measurement of MMP activity in lungs
We checked for MMP-12 activity in the lungs of all 
groups of mice to investigate inhibition by PGG NPs 
treatment. The untreated group of mice had the high-
est amount of MMP-12 activity per mg protein in their 
lungs. This activity was significantly down in the groups 
treated with ELN-PGG-NPs to the level of the healthy 
group of mice (without elastase inhalation) (Fig.  4A). 
This data showed that PGG nanoparticles delivered PGG 
to lungs in a sustained manner and inhibited MMP-12 
activity in vivo.

Measurement of dynamic compliance and tidal volume 
of lungs after treatment
Healthy mice showed dynamic compliance of 0.025 mL/
cm H2O while there was a small but significant rise in this 
value for untreated group (Fig. 4B). ELN-PGG-NPs group 
of mice that received two biweekly inhalation treatments 
of PGG nanoparticles showed no increase in compliance. 
The tidal volume of the healthy group was the smallest, 
with the untreated group showing a significant increase 
(138.5 vs 165.9 mm3). ELN-PGG-NPs group, on the other 
hand, showed a trend of normalcy with a tidal volume 
closer to that of the healthy group (145.9 mm3) (Fig. 4C). 
Static lung compliance also showed a similar trend, 
with healthy mice and ELN-PGG-NPs group mice hav-
ing a compliance of 0.024 and 0.023  mL/cm H2O while 
untreated mice had average compliance of 0.028 mL/cm 
H2O. Static compliance of untreated mice was signifi-
cantly higher than ELN-PGG-NPs treated mice (Fig. 4D).

Histology
To visually confirm the protection of elastin by PGG 
delivered by nanoparticles, we looked at various stains 
for elastin in the lungs. IHC showed that healthy mice 
had intact elastin around the alveoli. At the same time, 
it was depleted after elastase treatment (control group), 
whereas in ELN-PGG-NPs group showed elastin preser-
vation in the alveoli (Fig. 5A–C). Luna stain also showed 
elastin fibers along the alveolar walls of healthy and ELN-
PGG-NPs group of mice while untreated control group 
lungs showed less elastin in the sections (Fig. 5D–F).

Discussion
This paper investigated the targeted delivery of PGG 
loaded albumin nanoparticles in a mouse model of 
emphysema. Elastase-induced emphysema facilitates 
faster induction of disease, especially for evaluating the 
effect of an inhibitor [21]. Hamsters are the most suscep-
tible to lung damage due to their low alpha-1 antitrypsin 
levels [22]. Still, rats and mice offer a more convenient 
option to study this damage using the elastase model. 
Between rats and mice, rat lungs are less susceptible to 
elastase injury [22]. Additionally, mice offer the possibil-
ity of a transgenic approach while testing the mechanisms 
of a potential therapeutic. Hence, we chose to go forward 
with a mouse model of emphysema. Previous research-
ers have used intratracheal instillation of elastase to cre-
ate aneurysms; however, such delivery may not cause 
uniform distribution of elastase throughout every lobe of 
the lung. To test if inhalation of elastase would provide 
uniform lung damage, we have compared PPE inhalation 
(PPEInh) (n = 3) versus intra-tracheal instillation (PPEIT) 
(n = 3) for creating emphysema. PPEIT group of mice 
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received 0.5 U of PPE via intra-tracheal instillation, and 
PPEinh group mice were allowed to inhale 25 U/mL of 
PPE once at the starting of the study. The compliance of 
PPEInh group was comparable to that of PPEIT group mice 
and both were higher than healthy mice (n = 3) (which 
received no PPE). Comparison of H&E images of PPEIT 
and PPEInh group mice lungs showed that a comparable 
amount of damage is achieved using elastase inhalation 
(Additional file 1: Fig. S3). Thus, we chose the inhalation 
approach as it is easier on mice.

Before moving on to in vivo delivery of ELN-PGG-NPs 
we have investigated if PGG can protect elastin from 
elastase challenge in vitro. Using SucAla3-pNA we could 
show that PGG can effectively inhibit elastase activ-
ity even at very low concentrations. Thring et  al., have 
also reported such elastase inhibition in various plant 
derivatives, including green tea [23]. We could dem-
onstrate elastin preservation in lung tissue treated with 
PGG followed by elastase challenge ex  vivo. Tam et  al., 
have shown similar results on the preservation of native 

Fig. 4  A MMP-12 activity quantified in lung samples. ELN-PGG-NPs group shows a marked decrease in MMP-12 activity, B Dynamic lung 
compliance (Cdyn) and C Tidal volume (mm3) values show untreated mice with increased compliance. ELN-PGG-NPs group shows compliance 
close to that of healthy group (p = 0.07). D Static compliance of mice lungs calculated using pressure–time curves. Untreated mice show mild 
increase in static compliance. Static compliance of ELN-PGG-NPs treated mice is comparable to that of healthy mice and significantly lower than 
untreated mice. * p < 0.05 **p < 0.01 ***p < 0.001
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elastin in porcine aortic valve leaflets treated with a novel 
fixative containing PGG as one of its components [24]. 
Isenburg et al. have previously shown that periadventitial 
application of PGG on the aorta hindered the develop-
ment of abdominal aortic aneurysm in rats [25]. Nosoudi 
et al., have not only observed elastin preservation but also 
reported elastin regeneration in a rat model of abdominal 
aortic aneurysm [26]. Our observation of PGG inhibiting 
PPE activity shows that it might also function by render-
ing the enzyme inactive. We have previously shown that 
elastin antibody conjugated DiR nanoparticles target 
emphysematous lungs in rats while sparing the tissues 
with healthy elastin-rich aorta [26]. Our current observa-
tion of persistent signal for ELN-DiR NPs in lungs after 
6  weeks after one-time nanoparticle inhalation shows 
that elastin antibody conjugation makes them bind to 
damaged elastin and reduces their clearance from lungs. 
Thus, such NP delivery can be used for delivering drugs 
to the lungs in a sustained manner.

We used elastin antibody conjugated NPs to deliver 
sustained release of PGG to preserve elastin in the 
elastase challenged mice lungs. The effect of this is seen 

in significant increases of dynamic compliance, and tidal 
volume of lungs of elastase treated control mice, whereas 
PGG NPs treated mice lungs showed functional param-
eters as that of healthy mice (Fig. 5). Lung compliance is 
a parameter that depends on the elasticity of the tissue. 
It could be thought that loss of elastin post elastase chal-
lenge caused a slight but significant increase in the lung 
compliance in the untreated control group compared to 
the healthy group (no elastase treatment) and PGG treat-
ment protected it.

Change in compliance post elastase challenge has not 
been shown to follow a definite trend in mice. Inoue et al. 
show dose-dependent damage of mice lungs by elastase 
ranging from 0.5U to 2U PPE administered intratrache-
ally [27] and Luthje et  al. also have observed enlarged 
air spaces using a PPE dose of 3.3U and 5U per 100  g 
of mouse [28]. Hamakawa et  al., used 0.25  IU of PPE 
via intra-tracheal instillation and observed a change in 
compliance between control and PPE treated mice at 
21  days [29]. Szabari et  al. used 6I U of PPE and have 
observed only similar damage to that of Hamakawa et al. 
after 21 days [30]. On the other hand, Takano et al. used 
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0.25 IU, 1 IU and 2 IU of PPE and did not observe any sig-
nificant deviation in compliance from the control group 
of animals [27]. Barrutia et al. have also used 6U of PPE 
to achieve significant damage to the lung parenchyma 
[31]. Cruz et  al. observed a decrease in the amount of 
elastic fibers in untreated but damaged mice lungs com-
pared to undamaged mice (9.5% vs 10.4%) [32]. Follow-
ing a more invasive approach, Vidal et al. intubated mice 
for injecting 2U/100  g body weight and observed very 
significant damage to the lungs. Others have shown a 
50% increase in static compliance; however, we saw only 
a slight change in both dynamic and static compliance. 
Dynamic compliance, which is combined metric for com-
pliance of lungs and chest wall is measured in live mice 
while static compliance is measure in explanted lungs.

We have also shown that PGG NPs treated mice show 
a significant reduction in the MMP-12 activity in their 
lungs. This is important in the sense that MMPs have 
now been known to drive the disease forward by degrad-
ing extracellular matrix components. Concerning emphy-
sema, polyphenols like curcumin and xanthohumol have 
also been investigated for matrix metalloproteinase activ-
ity inhibition and for anti-inflammatory effects [33, 34]. 
Stabilization of alveolar elastin and elastase inhibition by 
PGG can be seen as a combinatorial effect to preserve 
lungs from further damage in emphysema. While we 
acknowledge the need to conduct further studies along 
this line to gain more insight into PGG’s involvement in 
MMP inhibition and elastin stabilization, this study gives 
us some preliminary positive outcomes for investigating 
PGG as a potential therapeutic for emphysema.

Conclusion
We demonstrate targeted delivery PGG with inhaled 
elastin-targeted nanoparticles in mice can arrest the 
effects of elastase-induced emphysema. We show that 
elastin antibody conjugation allowed these nanoparticles 
to remain in the lungs rather than being cleared swiftly. 
PGG was shown to effectively preserve elastin ex  vivo, 
coupled with elastase inhibition property. Finally, deliv-
ery of PGG NPs to mice lungs protected elastin from 
damage and could keep lung functional parameters on 
the same levels as that of healthy mice. With a double 
role of protecting elastin and inhibiting elastases that 
degrade elastin in the lungs, PGG can be seen as a poten-
tial therapeutic molecule to restrict damage in emphyse-
matous lungs.

Limitation of this study
This is our first attempt to show that local targeted 
delivery of pentagalloyl glucose (PGG) from nanopar-
ticles that target degraded elastin can protect elastin 
damage in mild emphysema. The elastase model we 
used caused very mild emphysema with elastin breaks 
in the alveoli. We used PGG in early stage to prevent 
alveoli damage. These studies only show protection 
and prevention of damage. These studies need to be 
repeated with animals with already developed emphy-
sema and significant alveoli damage to see the effective-
ness. Furthermore, we also need to test such a therapy 
in more physiological models such as smoke-induced 
emphysema to see its effectiveness.
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