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Introduction
Cephalometric analysis is essential for diagnosis and 

treatment planning in orthodontic and orthognathic sur-
gery. Traditionally, 2-dimensional (2D) cephalometric 
radiography has been used to evaluate the craniomaxil-
lofacial (CMF) region. However, this imaging modality 
projects a 3-dimensional (3D) CMF structure onto a 2D 
plane, leading to image distortion. This distortion can 
manifest as the overlapping of anatomical structures and 
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ABSTRACT

Purpose: This study was performed to assess the clinical validity and accuracy of a deep learning-based automatic 
landmarking algorithm for cone-beam computed tomography (CBCT). Three-dimensional (3D) CBCT head 
measurements obtained through manual and automatic landmarking were compared. 
Materials and Methods: A total of 80 CBCT scans were divided into 3 groups: non-surgical (39 cases); surgical 
without hardware, namely surgical plates and mini-screws (9 cases); and surgical with hardware (32 cases). Each 
CBCT scan was analyzed to obtain 53 measurements, comprising 27 lengths, 21 angles, and 5 ratios, which were 
determined based on 65 landmarks identified using either a manual or a 3D automatic landmark detection method.
Results: In comparing measurement values derived from manual and artificial intelligence landmarking, 6 items 
displayed significant differences: R U6CP-L U6CP, R L3CP-L L3CP, S-N, Or_R-R U3CP, L1L to Me-GoL, and 
GoR-Gn/S-N (P<0.05). Of the 3 groups, the surgical scans without hardware exhibited the lowest error, reflecting 
the smallest difference in measurements between human- and artificial intelligence-based landmarking. The time 
required to identify 65 landmarks was approximately 40-60 minutes per CBCT volume when done manually, 
compared to 10.9 seconds for the artificial intelligence method (PC specifications: GeForce 2080Ti, 64GB RAM, 
and an Intel i7 CPU at 3.6 GHz).
Conclusion: Measurements obtained with a deep learning-based CBCT automatic landmarking algorithm were 
similar in accuracy to values derived from manually determined points. By decreasing the time required to calculate 
these measurements, the efficiency of diagnosis and treatment may be improved. (Imaging Sci Dent 2024; 54: 240-50)
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the enlargement or reduction of specific areas.1

Several experts have proposed the use of 3D cephalo-
metric analysis with computed tomography or cone-beam 
computed tomography (CBCT) images.2,3 CBCT enables 
clinicians to visualize anatomy in 3 dimensions without 
overlap, providing comprehensive information on ana-
tomical spatial relationships.4

Accurate landmarking is essential for proper diagnosis. 
However, manual landmarking can be repetitive and labo-
rious, often yielding inconsistencies between and within 
practitioners. To alleviate the challenges associated with 
manual landmarking, numerous studies have explored the 
use of automatic landmark detection systems.5,6 

A wealth of information can be obtained from 3D 
cephalometry; however, 3D landmarking is difficult, la-
bor-intensive, time-consuming, and heavily dependent on 
expertise and experience.7,8 The complexity of processing 
3D data contributes to these challenges, as does the sub-
stantial effort required to create a 3D labeled dataset. Fur-
thermore, since no open dataset is available for 3D CMF 
landmarks, many studies have had to rely on small data-
sets and have limited their measurements to landmarks on 
the bone surface. 

As indicated above, research on 2D and 3D automatic 
landmarking is ongoing. However, few studies have exa-
mined the utility and clinical applicability of cephalomet-
ric analysis based on landmarks identified through auto-
matic processes. The clinically acceptable margin of error 
for landmark placement depends on the error value when 
implemented in a clinical setting.9

When conducting cephalometric analyses, it is essential 
to ascertain the impact of errors in linear, angular, and ra-
tio measurements across all 3 dimensions (x, y, and z co-
ordinates).

In a prior study, Jeon and Lee compared 26 measure-
ments obtained from a convolutional neural network 

(CNN)-based 2D automatic head landmarking system 
with those derived from conventional landmarking across 
35 lateral head radiographs.10 Gupta et al. compared 51 
measurements between a knowledge-based 3D automatic 
head landmarking system and manual landmarking for 
30 CBCT scans.11 Both studies concluded that automated 
cephalometric analysis is comparable in accuracy to man-
ual calculations.10,11

In dentistry, metal artifacts are commonly observed on 
CBCT images due to materials used in orthodontics, sur-
gical applications, and dental restorations. The presence 
of metal artifacts along the path of the radiation beam 
causes photon depletion and scattering, resulting in char-

acteristic light and dark banding artifacts on the CBCT 
image.12 These artifacts obscure the adjacent anatomy and 
impede diagnosis; furthermore, they can interfere with the 
image segmentation of maxillary and mandibular teeth 
and bone structures for computer-guided therapy.13 Dent-
bird Studio (Imagoworks Inc, Seoul, Korea) is capable of 
3D landmark detection, automatically identifying a total 
of 65 landmarks. In the present study, these were detected 
near their actual positions despite the presence of various 
devices, such as orthodontic appliances and orthognathic 
surgical hardware. The PC specifications included a Ge-
Force 2080Ti GPU, 64 GB RAM, and an Intel i7 3.6 GHz 
CPU. This study aimed to evaluate the clinical validity 
and accuracy of a deep learning-based CBCT automatic 
landmarking algorithm in 3D automatic cephalometry and 
analysis. The authors posited that the values produced 
by the algorithm would be comparable to those obtained 
by humans and would promote efficiency by reducing 
time. Additionally, the authors hypothesized that no errors 
would be observed in the measured values attributable to 
hardware and screws after surgery.

Materials and Methods
3D manual landmarking 
Dentbird Studio (Imagoworks Inc) trained 2 biomedical 

experts to identify 3D landmarks on 821 CBCT images 
acquired with an i-CAT 17-19 device (Imaging Sciences 
International, Hatfield, PA, USA) and 148 CBCT images 
obtained with various NewTom models (5G, VGi EVO, 
VGi Mark 3, VGi Mark 4; NewTom, Imola, Italy). This 
training was conducted under the supervision of a clini-
cian. The experts also recorded the time required to estab-
lish the 3D landmarks for each CBCT image. Additional-
ly, they used a stopwatch to measure the duration of the 
landmarking process for a subset of 30 CBCT images.

3D automatic landmarking
Imagoworks Incorporated has developed an automat-

ic 3D landmarking algorithm utilizing a 2-stage coarse-
to-fine approach. All CBCT datasets were acquired for 
diagnostic purposes and exported in Digital Imaging and 
Communications in Medicine format. The personal data 
of all patients, including names and registration numbers, 
were anonymized. The dataset was compiled without 
regard to sex, age, or race and included perioperative in-
formation, with a focus on cases of orthognathic surgery. 
Consequently, approximately 40% of the CBCT scans 
contained surgical hardware, such as surgical plates and 
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mini-screws.
Sixty-five 3D landmarks in 12 anatomical groups, in-

cluding the bone, skin, dental crown, tooth root, neural 
canal (center or opening), and sella, were cataloged (Ta-
ble 1). The time required to measure these 65 landmarks 
was 10.9 seconds per volume, with point-to-point errors 
of 1.7±0.1 mm (99% confidence interval. The threshold 
for a clinically acceptable successful detection rate (SDR) 
was set at 3 mm, with SDRs of 88.16% at this level and 
94.35% at 4 mm.14 All 65 landmarks were detected near 
their true positions, even in the presence of various types 
of orthognathic surgical hardware.

3D landmark measurement
A total of 80 CBCT scans from Chung-Ang Universi-

ty Hospital in Seoul, Korea (Institutional Review Board 
number: 1922-007-362), were categorized into a non-sur-

gical group (39 cases) and a surgical group (41 cases). 
The latter was further subdivided into 9 cases without 
hardware and 32 cases with hardware. All CBCT scans 
were anonymized and assigned new serial numbers for 
the study.

Based on the 65 landmarks, 53 measurements (27 leng-
ths, 21 angles, and 5 ratios) were taken. The classification 
and measurement values were based on the methodology 
outlined by Gupta et al.11

The length measurements were categorized into 3 groups: 
1) bilateral, obtained from 2 symmetrical landmarks in 
the parasagittal plane; 2) midsagittal, derived from 2 land-
marks in the midsagittal plane; and 3) midsagittal to bilat-
eral, acquired using 3 landmarks-1 in the central sagittal 
plane and 2 symmetrically located in the parasagittal plane.

The angles were classified into 3 types: midsagittal (cal-
culated using 3 landmarks within the midsagittal plane); 

Table 1. Anatomical groups and included landmarks

                   Group Landmarks

Mid-sagittal Mx. (bone) A (A-point), ANS (anterior nasal spine), PNS (posterior nasal spine), N (nasion)

Mid-sagittal Mn. (bone) B (B-point), Pog (pogonion), Gn (gnathion), Me (menton)

Mid-sagittal Mx. (soft tissue) Sls (soft tissue A-point), Pn (pronasale), Soft N (soft tissue nasion), Sts (stomion superius),  
Soft Gabella (soft tissue gabella), Ala R (right alar base), Ala L (left alar base)

Mid-sagittal Mn. (soft tissue) Soft Pog (soft tissue pogonion), Si (mentolabial sulcus), Sti (stomion inferius)

Skull G (crista galli), Ba (basion), S (sella), Po_R (right porion), Po_L (left porion)

Lateral Mn. Go_R (right gonion), Go_L (left gonion), M_R (right mental foramen), M_L (left mental foramen),  
MF_R (right mandibular foramen), MF_L (left mandibular foramen)

Tooth crown (Mx.) R U1CP (center of right maxillary incisor crown), L U1CP (center of left maxillary incisor crown),  
R U3CP (tip of right maxillary canine crown), L U3CP (tip of left maxillary canine crown),  
R U6CP (tip of mesiobuccal cusp of right maxillary first molar crown),  
L U6CP (tip of mesiobuccal cusp of left maxillary first molar crown)

Tooth roots (Mx.) R U1RP (root of right maxillary incisor), L U1RP (root of left maxillary incisor),  
R U3RP (root of right maxillary canine), L U3RP (root of left maxillary canine),  
R U6RP (mesiobuccal root of right maxillary first molar),  
L U6RP (mesiobuccal root of left maxillary first molar)

Tooth crown (Mn.) R L1CP (center of right mandibular incisor crown), L L1CP (center of left mandibular incisor crown),  
R L3CP (tip of right mandibular canine crown), L L3CP (tip of left mandibular canine crown),  
R L6CP (tip of mesiobuccal cusp of right mandibular first molar crown),  
L L6CP (tip of mesiobuccal cusp of left mandibular first molar crown)

Tooth roots (Mn.) R L1RP (root of right mandibular incisor), L L1RP (root of left mandibular incisor),  
R L3RP (root of right mandibular canine), L L3RP (root of left mandibular canine),  
R L6RP (mesiobuccal root of right mandibular first molar),  
L L6RP (mesiobuccal root of left mandibular first molar)

Bone around orbit ZyFr_R (right zygomaticofrontal suture), ZyFr_L (left zygomaticofrontal suture),  
RO_R (right roof of orbit), Or_R (right orbitale), RO_L (left roof of orbit), Or_L (left orbitale)

Condyle Cl_R (right condylus lateralis), Cm_R (right condylus medialis), Co_R (right condylion),  
Cl_L (left condylus lateralis), Cm_L (left condylus medialis), Co_L (left condylion)

Mx: maxilla, Mn: mandible
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midsagittal to bilateral (determined by 4 landmarks, 2 in 
the midsagittal plane and 2 symmetrically positioned in 
the parasagittal plane); and planar (either four landmarks 
or two landmarks and one horizontal plane).

Measurements were obtained through 3D vector cal-
culation. Length was determined by multiplying the 3D 
voxel index of a landmark by the spacing values along the 
x, y, and z axes, followed by application of the 3D Eu-
clidean distance formula. For angles, the angle between 
the vectors  and , represented by the pair of landmarks, 
was calculated (Table 2). This angle was derived using 
the second law of cosines. When determining the smaller 
of the angles formed by the 2 vectors, the direction of the 
vectors was verified and factored into the calculation. In 
mathematics, the angle between 2 vectors is a value be-
tween 0 and 180 degrees. The angle between 2 vectors  
and  can be calculated using the dot product and inverse 
trigonometric functions.

The following formulas were used to calculate the dis-
tances and angles in P(x1, y1, z1), Q(x2, y2, z2), R(x3, y3, 

z3), and S(x4, y4, z4):

where  Xi = xi × (spacing of x-axis), 
Yi = yi × (spacing of y-axis), and  
Zi = zi × (spacing of z- axis)

where  = (x2-x1)î + (y2-y1)Ĵ+ (z2- z1)k̂ and  
=  (x4-x3)î + (y4-y3)Ĵ+ (z4- z3)k̂

Statistical analysis
The means and standard deviations (SDs) of the mea-

surements, obtained using landmarks identified by humans 
or artificial intelligence (AI), were determined. The means, 
medians, and SDs of the errors between the 2 measured 
values were also calculated. For the 80 CBCT scans, the 
Shapiro-Wilk test was applied to assess the normality of 
the measurements based on human- and AI-identified land-
marks. Subsequently, an unpaired t-test was used to evalu-
ate whether a significant difference existed between the 2 
groups. Additionally, a Bland-Altman plot was employed 
to visually represent the differences between groups.

An unpaired t-test was used to compare the nonsurgical, 
surgical, hardware present, and hardware absent groups. 
Differences between the groups were visually expressed 
using violin plots. Statistical significance was established 
at P<0.05. Shapiro-Wilk and unpaired t-tests were con-
ducted using SPSS GradPacks Statistics 28 (IBM Corp., 
Armonk, NY, USA). Bland-Altman and violin plots 
were created using Microsoft Excel (Version 2208 Build 
16.0.15601.20148, 64-bit; Microsoft, Redmond, WA, 
USA).

Results
Comparison of measurement values obtained by 
human and AI methods
The means and SDs of the measurements, as well as 

the means, medians, and SDs of the differences between 
the 2 methods, were calculated (Tables 3-5). The unpaired 
t-test revealed statistically significant differences for 6 of 
the 53 measured values when comparing landmarks de-
tected by humans and AI (R U6CP-L U6CP, R L3CP-L 
L3CP, S-N, Or_R-R U3CP, L1L to Me-Go, and GoR-Gn/
S-N; P<0.05). The measurements with the highest mean 
error values were CoL-CoR (3.700 mm) for length, U1R 
to L1R (3.587°) and U1L to L1L (3.169°) for angle, and 

Table 2. Components of  and  for angular measurement param-
eters

Angular 
measurement
parameters

Components of Components of 

S-N-A S, N N, A
S-N-B S, N N, B
A-N-B A, N N, B
U1L to ANS-PNS L U1CP, L U1RP ANS, PNS
U1R to ANS-PNS R U1CP, R U1RP ANS, PNS
U1L-SN L U1CP, L U1RP S, N
U1R-SN R U1CP, R U1RP S, N
N-GoL-Me N, Go_L Go_L, Me
N-GoR-Me N, Go_R Go_R, Me
CoL-GoL-Me Co_L, Go_L Go_L, Me
CoR-GoR-Me Co_R, Go_R Go_R, Me
U1L to L1L
(interincisal angle L)

L U1CP, L U1RP L L1CP, L L1RP

U1R to L1R
(interincisal angle R)

R U1CP, R U1RP R L1CP, R L1RP

L1L to Me-GoL L L1CP, L L1RP Me, Go_L
L1R to Me-GoR R L1CP, R L1RP Me, Go_R
A-B X N-Pog A, B N, Pog
S-N X GoL-Gn S, N Go_L, Gn
S-N X GoR-Gn S, N Go_R, Gn
ANS-PNS X S-N ANS, PNS N, S
PoL-OrL X GoL-Me Po_L, Or_L Go_L, Me
PoR-OrR X GoR-Me Po_R, Or_R Go_R, Me
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N-Me/N-ANS (0.043) for ratio.
The limits of agreement and the width obtained in the 

Bland-Altman analysis are presented in Table 6. The mea-
surements with the largest widths were CoR-CoL (17.49 
mm) for length, U1R to L1R (20.06°) for angle, and 
N-Me/N-ANS (0.22) for ratio.

Comparison of measured values by surgical history 
and hardware presence
The 80 CBCT scans included a non-surgical group 

(39 cases) and a surgical group (41 cases), with the latter 
including 9 cases without hardware and 32 cases with 
hardware. For each group, measurements derived from 
human-identified and AI-detected landmarks were com-

pared for the 27 linear parameters using an unpaired t-test 

(Fig. 1). In the linear cephalometric measurements, the 
non-surgical group displayed a mean error of 1.32 mm 
and an SD of 1.30 mm. The surgical group without hard-
ware had a mean of 1.10 mm (SD, 1.08 mm), while the 
group with hardware had a mean of 1.45 mm (SD, 1.49 
mm). The lowest error was observed in the surgical group 
without hardware. No significant difference in measure-
ment agreement was observed between the non-surgical 
and surgical groups (P<0.05). However, a significant 
difference was noted between surgical subgroups based 
on the presence or absence of hardware (P<0.05). These 
findings were graphically represented using a violin plot 

(Fig. 2).

Table 3. Comparison of linear cephalometric measurements between manual and artificial intelligence methods (unit: mm) 

Linear measurement parameters Manual Artificial intelligence Error

Bilateral measurement
ZyFr_R-ZyFr_L 102.09±6.08 101.83±5.15 1.13±1.15
GoL-GoR 92.21±7.73 92.38±7.38 0.94±0.70
CoL-CoR 103.68±6.29 103.24±5.01 3.70±2.50
OrL-OrR 59.63±3.39 59.33±3.12 1.93±1.54
R U3CP-L U3CP 35.09±2.64 34.94±2.08 1.35±1.63
R U6CP-L U6CP 52.66±3.47 52.14±2.79 1.70±1.34*
R L3CP-L L3CP 27.09±1.87 27.78±1.66 1.35±1.01*
R L6CP-L L6CP 47.38±2.99 47.64±2.43 1.63±1.10

Midsagittal measurement
N-Me 123.15±7.69 122.97±7.36 1.25±1.13
N-ANS 54.39±3.29 54.29±3.00 1.33±1.01
ANS-Me 69.73±6.78 69.62±6.52 1.02±0.94
ANS-PNS 46.92±4.18 47.24±3.44 1.38±1.30
S-N 63.98±3.73 63.60±3.68 0.85±0.74*
Me-L L1CP 42.16±3.53 42.25±3.46 0.68±0.88
Me-R L1CP 42.14±3.50 42.18±3.44 0.62±0.71

Midsagittal to bilateral measurement
GoL-Pg 88.07±5.73 87.84±5.37 1.69±1.21
GoR-Pg 87.61±5.86 87.61±5.74 1.79±1.38
GoL-N 119.18±7.59 118.81±7.22 1.29±1.16
GoR-N 119.45±7.43 119.01±7.08 1.49±1.40
CoL-GoL 57.1±6.14 56.97±5.86 1.98±1.57
CoR-GoR 57.58±6.25 57.48±5.46 2.12±1.85
CoL-Pg 125.29±7.32 125.28±7.12 1.01±0.80
CoR-Pg 125.43±7.66 125.49±7.67 1.14±1.03
Or_L-L U3CP 55.93±4.28 55.70±4.05 0.76±0.77
Or_R-R U3CP 55.55±4.35 55.33±4.11 0.73±0.62*
Or_L-L U6CP 51.33±4.24 51.38±4.02 0.72±0.57
Or_R-R U6CP 51.51±4.20 51.52±3.96 0.72±0.60

*P<0.05
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Similarly, for the 21 angle items, the measurements 
derived from human- and AI-identified landmarks were 
compared using an unpaired t-test (Fig. 3). In the angu-
lar cephalometric measurements, the mean error for the 
non-surgical group was 1.81° (SD, 2.05°). The surgical 
group without hardware had a mean error of 1.60° (SD, 
1.46°), while the surgical group with hardware had a mean 
error of 1.83° (SD, 1.94°). The surgical group without 
hardware exhibited the lowest error. No significant dif-

ference was noted between the non-surgical and surgical 
groups (P<0.05), nor was a significant difference present 
between surgical subgroups based on the presence or ab-
sence of hardware (P<0.05). These findings were graphi-
cally represented using a violin plot (Fig. 4).

Finally, measurement values for the 5 ratio items were 
compared in a similar fashion using an unpaired t-test (Fig. 
5). For the non-surgical group, the mean error between hu-
man- and AI-landmarked measurements was 0.0285 (SD, 

Table 4. Comparison of angular cephalometric measurements between manual and artificial intelligence methods (unit: °)

Angular measurement parameters Manual Artificial intelligence Error

Midsagittal measurement
S-N-A 82.16±3.92 82.27±3.33 1.41±1.22
S-N-B 80.18±4.77 80.24±4.39 1.25±1.15
A-N-B 3.74±2.15 3.64±2.15 0.72±0.56
U1L to ANS-PNS 64.65±7.7 65.13±7.1 2.65±2.1
U1R to ANS-PNS 65.19±7.92 65.29±7.02 2.57±2.4
U1L-SN 104.46±8.15 103.89±7.1 2.37±1.91
U1R-SN 103.94±8.21 103.78±7.03 2.57±1.97

Midsagittal to bilateral measurement
N-GoL-Me 71.74±4.5 71.8±4.42 0.64±0.61
N-GoR-Me 71.71±4.5 71.8±4.36 0.64±0.69
CoL-GoL-Me 121.28±6.65 121.38±6.41 1.45±1.06
CoR-GoR-Me 121.46±6.16 121.49±6.05 1.38±1.26
U1L to L1L 130.88±10.37 130.62±8.9 3.17±2.91
U1R to L1R 131.18±10.87 131.16±9.37 3.59±3.63
L1L to Me-GoL 96.44±7.77 95.64±6.96 2.74±2.27*
L1R to Me-GoR 94.8±7.4 95.22±7.22 2.72±2.53

Planar measurement
A-B X N-Pog 5.14±2.77 5.21±3.18 1.16±0.92
S-N X GoL-Gn 47.59±5.23 47.25±5.02 1.55±1.49
S-N X GoR-Gn 46.83±5.25 47.06±4.79 1.5±1.07
ANS-PNS X S-N 168.69±4.57 168.88±4.02 1.61±1.46
PoL-OrLxGoL-Me 30.91±5.78 30.85±5.61 0.94±0.78
PoR-OrRxGoR-Me 30.32±5.35 30.35±5.23 1.12±0.89

*P<0.05

Table 5. Comparison of ratios between manual and artificial intelligence methods

Ratio parameters Manual Artificial intelligence Error

N-Me/N-ANS 2.27±0.13 2.27±0.13 0.04±0.04
S-GoL/N-Me 0.73±0.05 0.72±0.05 0.01±0.01
S-GoR/N-Me 0.73±0.05 0.73±0.05 0.02±0.02
GoL-Gn/S-N 1.38±0.09 1.39±0.08 0.04±0.03
GoR-Gn/S-N 1.38±0.09 1.39±0.08 0.03±0.03*

*P<0.05
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0.0275); for the surgical group without hardware, the mean 
was 0.0188 (SD, 0.0158); and for the surgical group with 
hardware, the mean was 0.0313 (SD, 0.0297). The surgi-
cal group without hardware exhibited the lowest error. No 
significant difference was noted between the non-surgi-
cal and surgical groups (P>0.05). However, a significant 
difference was noted between surgical subgroups based 
on the presence or absence of hardware (P<0.05). These 
findings were graphically represented using a violin plot  

(Fig. 6).

Discussion
Among the 6 items displaying significant differenc-

es, 2 measurements included the left gonion (GoL) or the 
right gonion (GoR): L1L to Me-GoL and GoR-Gn/S-N 

(P<0.05). In a previous study by these authors, the SDRs 
of these landmarks were particularly low. All detection 
methods from the “2014 Automatic Cephalometric X-Ray 
Landmark Detection: a grand challenge”, conducted by the 
Institute of Electrical and Electronics Engineers Interna-
tional Symposium on Biomedical Imaging, misrepresented 

95% limit of agreement
WidthUpper 

limit
Lower 
limit

Linear measurement

Bilateral measurement
ZyFr_R-ZyFr_L 3.38 -2.87 6.24
GoR-GoL 2.11 -2.44 4.55
CoR-CoL 9.19 -8.3 17.49
OrR-OrL 5.12 -4.52 9.64
R U3CP-L U3CP 4.29 -3.99 8.28
R U6CP-L U6CP 4.66 -3.61 8.27
R L3CP-L L3CP 2.33 -3.72 6.05
R L6CP-L L6CP 3.59 -4.1 7.69

Midsagittal measurement
N-Me 3.48 -3.12 6.59
N-ANS 3.38 -3.17 6.55
ANS-Me 2.84 -2.61 5.45
ANS-PNS 3.37 -3.99 7.36
S-N 2.47 -1.71 4.18
Me-L L1CP 2.08 -2.27 4.35
Me-R L1CP 1.8 -1.9 3.7

Midsagittal to bilateral measurement
GoL-Pg 4.29 -3.82 8.11
GoR-Pg 4.45 -4.44 8.9
GoL-N 3.69 -2.96 6.65
GoR-N 4.36 -3.47 7.83
CoL-GoL 5.1 -4.83 9.93
CoR-GoR 5.63 -5.42 11.05
CoL-Me 2.53 -2.52 5.05
CoR-Me 2.96 -3.09 6.05
Or_L-L U3CP 2.31 -1.85 4.16
Or_R-R U3CP 2.05 -1.61 3.66
Or_L-L U6CP 1.76 -1.85 3.61
Or_R-R U6CP 1.81 -1.85 3.66

95% limit of agreement
WidthUpper 

limit
Lower 
limit

Angular measurement

Midsagittal measurement
S-N-A 3.54 -3.77 7.31
S-N-B 3.28 -3.41 6.69
A-N-B 1.88 -1.69 3.57
U1L to ANS-PNS 6.1 -7.06 13.17
U1R to ANS-PNS 6.8 -7.01 13.81
U1L-SN 6.45 -5.31 11.75
U1R-SN 6.53 -6.22 12.74

Midsagittal to bilateral measurement
N-GoL-Me 1.66 -1.8 3.46
N-GoR-Me 1.74 -1.92 3.66
CoL-GoL-Me 3.43 -3.63 7.06
CoR-GoR-Me 3.64 -3.7 7.34
U1L to L1L 8.71 -8.19 16.9
U1R to L1R 10.04 -10.01 20.06
L1L to Me-GoL 7.62 -6.03 13.64
L1R to Me-GoR 6.84 -7.66 14.5

Midsagittal to bilateral measurement
A-B X N-Pog 2.84 -2.98 5.82
S-N X GoL-Gn 4.51 -3.82 8.33
S-N X GoR-Gn 3.37 -3.83 7.2
ANS-PNS X S-N 4.06 -4.43 8.49
PoL-OrLxGoL-Me 2.46 -2.34 4.81
PoR-OrRxGoR-Me 2.78 -2.84 5.62

Ratio parameters
N-Me/N-ANS 0.11 -0.11 0.22
S-GoL/N-Me 0.04 -0.04 0.07
S-GoR/N-Me 0.04 -0.04 0.09
GoL-Gn/S-N 0.08 -0.1 0.18
GoR-Gn/S-N 0.07 -0.09 0.09

Table 6. Bland-Altman analysis of the difference between manual and artificial intelligence-based cephalometric measurements
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the gonion landmark. This resulted in a minimum error 
greater than 4 mm from the ground truth point.15 This dis-
crepancy suggests that either the dataset failed to capture 
the high variability around these landmarks, or errors were 
present during manual annotation.

Furthermore, of the 6 significant items, 2 measurements 
involved the sella: S-N and GoR-Gn/S-N (P<0.05). The 
sella is a fiducial point located at the center of a cavity 
that, by definition, is a cephalometric landmark easily de-
tectable on 2D head radiographs. However, it is difficult 
to identify on 3D CBCT because the skull structure does 
not create 3D contours. Makram et al. proposed a system 
that automatically localizes 20 three-dimensional hard tis-
sue cephalometric landmarks using Reeb graphs. In their 
study, the mean error of the sella was notably high, at 
2.6 mm.16 Given the challenges associated with the sella, 
various methods have been attempted for landmark de-
tection. Montúfar et al. employed a technique involving 
the circle adjustment of the sub-volume slice of the sella 
using Hough transformation to generate an anatomical 
geometric contour of the sella.17

Four of the 6 items - R U6CP-L U6CP, R L3CP-L 
L3CP, Or_R-R U3CP, and L1L to Me-GoL (P<0.05) - 
included landmarks related to the teeth. The identification 
of landmarks associated with teeth can be affected by the 
surrounding anatomical structures, leading to potential 
errors even for clinicians. This is particularly true for the 
mandibular incisors, which are often difficult to discern 
due to their typical overlap with the maxillary incisors.10

In this study, 80 CBCT scans were analyzed. Using 
unpaired t-tests, comparisons were made between mea-
surement values based on manual and AI landmarking. 

Fig. 2. Violin plots representing the difference in linear measure-
ments between the manual and artificial intelligence methods. The 
thick vertical bar in the violin plot represents the interquartile range, 
while the thin vertical line indicates the 95% confidence interval; the 
extremes of this thin line denote the maximum and minimum values. 
The central white dot signifies the median. The width of a violin plot 
reflects the density of the data, with wider sections indicating a high-
er frequency of values and narrower sections representing a lower 
frequency. The difference values are distributed around the median 
for all 3 groups: non-surgical, surgical without hardware, and surgi-
cal with hardware. A. Violin plots of linear measurements for the 3 
groups. B. Violin plots of linear measurements for the non-surgical 
and surgical groups. C. Violin plots of linear measurements for the 
surgical group, comparing cases with and without hardware.

A

B

C

Fig. 1. Comparison of linear ceph-
alometric measurements between 
manual and artificial intelligence 
methods by patient group. Black 
error bars represent the 95% confi-
dence standard deviation range for 
each item value.
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Of 53 measurements, statistically significant differences 
were observed for 4 lengths, 1 angle, and 1 ratio. When 

assessing the errors in assessments of length, angle, and 
ratio based on the designated measurement points on a 
3-dimensional structure, the greatest error was found for 
length. In contrast, even errors at the measurement points 
had minimal impact on angles and ratios. Given that mea-
sured angles and ratios, more so than lengths, are valuable 
in planning orthodontic treatment or orthognathic surgery, 
the findings of this study are promising for clinical appli-
cation.

The 80 CBCT scans were categorized into a non-surgi-
cal group (39 cases) and a surgical group (41 cases), with 
the latter including 9 cases without hardware and 32 cas-
es with hardware. When comparing the manual and AI-
based measurements for the 5 ratio items in each group, 
the cohort in which hardware was removed postoperative-
ly exhibited the lowest measurement error across length, 
angle, and ratio values. No significant differences were 
detected in any of the measurement groups when com-
paring non-surgical and surgical data. In surgical group, 
however, significant differences in measurement errors 
for length and ratio were observed depending on whether 
hardware was present (Figs. 1-6).

Noise in CBCT images, along with metal artifacts from 
dental prostheses and implants, complicates the accurate 
delineation of teeth and bones. Hardware and screws were 
expected to introduce errors; however, the AI method per-
formed well, regardless of hardware and screw presence. 
Consequently, this algorithm may serve as a valuable tool 
for assessing the extent of preoperative to postoperative 
change.

Minnema et al. developed a deep learning algorithm 
based on mixed-scale density CNNs for the segmentation 

Fig. 3. Comparison of angular cepha-
lometric measurements between 
manual and artificial intelligence 
methods by patient group.

A

B

C

Fig. 4. Violin plots representing the difference in angular mea-
surements between the manual and artificial intelligence methods. 
The difference values are distributed around the median for all 
3 groups: non-surgical, surgical without hardware, and surgical 
with hardware. A. Violin plots of angular measurements for the 3 
groups. B. Violin plots of angular measurements for the non-sur-
gical and surgical groups. C. Violin plots of angular measurements 
for the surgical group, comparing cases with and without hard-
ware.
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of teeth and bones on CBCT images containing metal 
structures. The algorithm appeared capable of excluding 
metal artifacts and accurately segmenting teeth and bone 
structures. These findings indicate that CNNs can identify 
voxel-level features in CBCT images that humans cannot 
distinguish.18

The algorithm employed in the present study was based 
on deep learning techniques. Dot et al. compared the re-
sults of 11 studies to assess the accuracy and reliability of 
automatic CBCT cephalometric landmarking; the 2 algo-
rithms that demonstrated the best performance employed 
deep learning methods.19 In this study, the deep learn-
ing-based algorithm reported an average error of less than 
2 mm for all landmarks, comparable to the inter-operator 
variability observed in manual landmarking.

In this study, landmarks were not manually adjusted 
after 3D automatic landmarking. If manual adjustments 
were made to landmarks with a high likelihood of error 

(such as teeth, sellae, and gonions) following automatic 
landmarking, the accuracy of the measured values could 
be further improved. Alternatively, hybrid analysis meth-
ods that determine specific landmarks through various ap-
proaches, such as the Montúfar sella measurement, can be 
employed.17

The time required to manually measure 65 landmarks 
was approximately 40-60 minutes per CBCT volume, 
although this time was impossible to fully capture be-
cause the workers took intermittent breaks. In contrast, 
the AI algorithm completed the task in 10.9 seconds, 
with the following PC specifications: GeForce 2080Ti, 
64 GB RAM, and an Intel i7 CPU at 3.6 GHz. Since the 
landmark-based calculation of measurements is identical 
in the manual and AI methods, the AI method markedly 
reduced the time needed to identify a landmark and deter-

mine the measurement value. 
The accuracy of measurements obtained with the deep 

learning-based CBCT automatic landmarking algorithm 
was comparable to that based on human-identified land-
marks. By decreasing the time needed to calculate these 
measurements, the use of such an algorithm can improve 
the efficiency of diagnosis and treatment. 

In this study, measurements of length demonstrated the 
lowest accuracy. However, as angles and ratios are more 
commonly utilized than length in patient diagnosis, the 
findings confirm that employing measurements derived 
from AI-based landmarks is suitable for diagnostic pur-
poses.

In the comparison between surgical and non-surgical 
groups, no significant differences were found in linear 
measurements, angular measurements, or ratio parame-
ters. Similarly, no significant differences were observed 
between non-surgical and surgical data for any patient 
group. Additionally, the presence of skeletal deformity 
did not impact the accuracy of automatic landmark identi-

Fig. 6. Violin plots representing the difference in ratio measure-
ments between the manual and artificial intelligence methods. Dif-
ference values are distributed around the median for all 3 groups: 
non-surgical, surgical without hardware, and surgical with hard-
ware. A. Violin plots of the difference in ratios for the 3 groups. 
B. Violin plots of the difference in ratios for the non-surgical and 
surgical groups. C. Violin plots of the difference in ratios for the 
surgical group, comparing cases with and without hardware.
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Fig. 5. Comparison of cephalometric measurement ratios between 
manual and artificial intelligence methods by patient group.
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fication. 
The technology discussed in this report is anticipated to 

increase clinician efficiency and minimize diagnostic er-
rors. This will facilitate the use of 3D cephalometric analy-
ses for clinicians of all experience levels. Furthermore, the 
availability of a user-friendly, web-based application for 
3D automatic landmarking will broaden access for clini-
cians. At present, no clear standard exists for 3D cephalo-
metric analysis, largely due to the time and effort involved 
as well as constraints related to its application in corrective 
procedures, surgical diagnosis, and treatment planning. The 
findings of this study may assist clinicians in incorporating 
3D cephalometric analysis into their practice, irrespective 
of their level of experience.

Conflicts of Interest: None
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