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Effect of bentonite as a soil 
amendment on field water‑holding 
capacity, and millet photosynthesis 
and grain quality
Junzhen Mi1,2, Edward G. Gregorich2, Shengtao Xu3, Neil B. McLaughlin2 & Jinghui Liu1*

A field experiment was conducted in a semi‑arid region in northern China to evaluate the effects 
of bentonite soil amendment on field water‑holding capacity, plant available water, and crop 
photosynthesis and grain quality parameters for millet [Setaria italic (L.) Beauv.] production over 
a 5‑year period. Treatments included six rates of bentonite amendments (0, 6, 12, 18, 24 and 
30 Mg ha−1) applied only once in 2011. The application of bentonite significantly (P < 0.05) increased 
field water‑holding capacity and plant available water in the 0–40 cm layer. Bentonite also significantly 
(P < 0.05) increased the emergence rate, above‑ground dry matter accumulation (AGDM), net 
photosynthesis rate (Pr), transpiration rate (Tr), soil and plant analysis development (SPAD) and leaf 
water use efficiency (WUE). It also increased grain quality parameters including grain protein, fat 
and fiber content. Averaged over all the years, the optimum rate of bentonite was 24 Mg ha−1 for all 
plant growth and photosynthesis parameters except for grain quality where 18 Mg ha−1 bentonite had 
the greatest effect. This study suggests that bentonite application in semi‑arid regions would have 
beneficial effects on crop growth and soil water‑holding properties.

Arable land is limited and loss of productivity by soil degradation poses a threat to food security in many areas. 
Environmental factors including moisture, temperature, soil quality and frost-free growing period, affect plant 
growing systems and crop yield, and play an important role in agriculture  production1,2. Natural rainfall often 
cannot meet the crop requirements for water in arid and semi-arid  regions3. Drought is one of the most critical 
factors affecting agricultural production in semi-arid rain-fed regions under a changing  climate4. It is one of 
major factors influencing crop loss worldwide, reducing crop yields by up to 50% each  year5,6. By 2050 climate 
change is estimated to lead to a global decline of crop production by 9%7. In addition, drought events are pre-
dicted to become more frequent in the future with global  warming8. Therefore, adopting appropriate approaches 
to reduce the adverse effects of climate change on agriculture production is a priority.

Dryland farming accounts for more than 70% of the total arable land in northern China; low rainfall and 
poor soil quality are major constraints to agriculture production in this  region9. The region along the Great Wall 
in Inner Mongolia in northern China is a semi-arid area and is characterized by low soil water-holding capacity 
which leads to low water use efficiency for crops. Therefore, water saving innovations are required to alleviate 
drought stress for sustainable development of agriculture in the arid and semi-arid regions where water is the 
primary limiting factor for agriculture production.

Millet is one of the main cultivated crops in China and is distributed in the arid and semi-arid regions of 
all provinces of northern  China10 with a planted area of 8.61 × 105 ha in  201711. Virtually all millet produc-
tion is rainfed and therefore drought is one of the most limiting factors. To cope with drought stress, different 
strategies including deficit irrigation, breeding new drought resistant plant varieties, and mulching are being 
 practised12–14. More effective strategies are needed for dealing with water shortages in arid and semi-arid regions 
because current water management strategies are not able to ensure sustainability of agriculture production in 
these regions. Application of soil amendments which increase soil water-holding capacity is one strategy that is 
receiving considerable attention in agriculture research.
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Photosynthesis characteristics play a fundamental role in physiological processes that affect plant carbon 
metabolism in cells and growth under harsh environmental conditions such as drought and  heat15,16. Leaf struc-
ture and soil properties both affect photosynthesis, and drought decreases plant photosynthesis activity in leaves, 
and consequently, decreases crop growth and  quality17. Addition of a superabsorbent polymer to soil has been 
shown to retain water and nutrients that are released slowly as required by crop growth, thereby improving 
soil physical, chemical and biological properties, and increasing soil  productivity18,19. Studies have shown that 
application of these types of soil amendments can improve the available soil water-holding capacity, reduce the 
evapotranspiration, increase the water and fertilizer use efficiency in crops and increase crop emergence, growth 
and  yield20,21. They also have been shown to have potential for improving crop photosynthesis characteristics in 
the  field22. This is attributed to improvement in leaf stomatal conductance and  CO2 assimilation rate by increased 
transpiration  rate23–25.

Bentonite is a natural soil amendment which is very abundant in China, with over 8.0 Pg of proven  reserves26. 
At present bentonite is widely used for adsorbing metal ions and dye, disposing radioactive wastes and purifying 
viral RNA and waste water due to its strong adsorption  properties27–30. Furthermore, its use as a soil amendment 
may be an effective approach for solving some of the agronomic/environmental problems related to drought 
stress and soil degradation in agricultural systems. In our previous paper, results showed that bentonite increased 
soil moisture and soil water storage, increased millet yield and improved water use  efficiency31. Other research 
reported that clay as a soil amendment added to sandy soil can improve soil available water, soil organic carbon 
and soil potassium, and increase crop emergence and  yield32. This was attributed to increase in soil aggregation 
which results in an improvement in soil porosity soil water-holding capacity, soil fertility and crop  growth33. 
There are some studies on clay and polymer superabsorbent soil amendments used in agriculture, but little 
information is available about effects of bentonite as a soil amendment on crop photosynthesis characteristics 
and grain quality in agriculture production.

The objective of this study was to evaluate the effect of bentonite amendments on field water-holding capacity 
and plant available water in the 0–60 cm layer, emergence rate, above-ground dry matter accumulation, photo-
synthesis and grain quality parameters for millet production over five years in a semi-arid region. Preliminary 
data on a subset of the field measurements, emergence rate and above-ground dry matter accumulation were 
published for the first three years in the same field experiment in a Chinese journal and a non-peer reviewed 
conference  proceedings34,35. The present paper covers a wider range of measurements including field water-
holding capacity, plant available water, photosynthesis parameters and grain quality attributes to provide a 
more complete assessment of the research over five years. Meanwhile preliminary published data were cited to 
determine the changes in emergence rate and above-ground dry matter accumulation in the fourth and fifth 
year after application of bentonite.

Materials and methods
Experimental site and design. The field experiment was conducted from 2011 to 2015 in Yijianfang 
village (111°39′E, 39°57′N) of Qingshuihe County, Hohhot, Inner Mongolia, China. Mean annual rainfall is 
365 mm and mean annual potential evaporation is 2577 mm. The experimental site is in the hilly gully region of 
the loess plateau in northeastern China, the soil genesis is loess, and the soil texture of the field is sandy loam. 
The initial soil chemical properties (Table 1) and climate data in the experimental site were provided in our 
previous  paper31.

The experimental design was a randomized complete block with three replicates and included six treatments. 
Each plot was 6 m × 5 m. The treatments consisted of six rates of bentonite: 0, 6, 12, 18, 24 and 30 Mg ha−1. The 
bentonite was applied only one time in 2011 and was broadcast with fertilizer prior to seeding and mixed into 
the soil to depth of about 30 cm by cultivating. Tillage management included mouldboard plow followed by 
cultivating in the spring. Diammonium phosphate (DAP, 18-46-0) and urea (46-0-0) as starter fertilizer were 
applied each year at 225 and 75 kg ha−1 respectively; additional urea was applied at 150 kg ha−1 at approximately 
60 d after sowing.

Table 1.  Soil property data in the experimental site (data from Mi et al.31).

Property Value

Texture Sandy loam

Sand content (%) 72.8

Silt content (%) 13.4

Clay content (%) 13.8

Soil pH 8.0

Soil cation exchange capacity (cmol kg−1) 8.3

Soil bulk density (g cm−3) 1.42

Soil organic matter (g kg−1) 10.96

Total N (mg kg−1) 0.49

Total P (mg kg−1) 0.43
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Bentonite composition and cost are given in Table 2.  K2O was the only major plant nutrient in the bentonite. 
The soil was slightly alkaline, and the addition of CaO and MgO in the bentonite had only a small effect on the 
soil pH which ranged from 8.00–7.87.

Millet (variety: No. 5 Zhang) was planted at the beginning of May and harvested in the middle of September 
in each year. The seeding depth was 3–5 cm, row spacing was 25 cm, and planting density was 180,000–225,000 
plants  ha−1. On the same day as millet planting in the spring, an additional 300 millet seeds were planted by 
hand between two rows in each plot for measurement of emergence rate (ER) after 30 days; the plants were later 
removed after emergence counts. At maturity, a 1  m2 area (four rows of 1 m length) from each plot was randomly 
selected and harvested by hand to measure millet yield.

Field and laboratory measurements. Duplicate undisturbed soil samples for field water-holding capac-
ity were taken at depths of 0–10, 10–20, 20–40 and 40–60 cm at 90 d after sowing by the cutting ring  method36 
from 2013 to 2015. Undisturbed soil samples in the cutting rings were placed in 4.0–4.8 cm of water until they 
were saturated. The second set of soil samples was air-dried, passed through 1-mm mesh screen and placed in 
rings of the same size. The rings with undisturbed saturated soil were covered and placed on top of the rings with 
air-dry soil for 8 h. The rings with undisturbed soil were then taken to be at field capacity which was determined 
by oven drying a sub-sample.

Plant available water (PAW) from 2013 to 2015 was determined by field water-holding capacity (FC) and wilt-
ing point (WP) (− 1500 kPa soil water tension). Plant available water was calculated by equation: PAW = FC-WP37.

Percent germination was determined in the laboratory by placing 100 millet seeds on a damp filter paper for 
15 days at room temperature.

Above-ground dry matter accumulation (AGDM) of the millet plants was measured by gravimetric method 
at 50, 70, 90, 110 and 130 d after sowing to monitor the bentonite effect on plant growth over the growing season. 
Ten plants were retrieved from each plot and oven-dried at 105 °C for 30 min, and then at 75 ºC for 24 h until 
constant weight. The equivalent field area for the ten plants was 0.5  m2.

Net photosynthesis rate (Pn) and transpiration rate (Tr) from 2013 to 2015 were measured at 90 d after 
planting with a Li 6400 portable photosynthesis system equipped with a 18  cm3 prismatic leaf chamber (Li 6400, 
Licor, Lincoln, NE, USA) as described in Arbona et al.22. Ten randomly selected flag leaves in each plot were 
measured. All the determinations were performed under the constant air flow rate (500 μmol s−1), and conducted 
between 9:00–11:00 am when the temperature was 24 ± 2 °C on a sunny day. Leaf water use efficiency (WUE) 
was calculated by equation: WUE = Pn/Tr.

SPAD was measured at 90 days after planting (around heading stage) from 2013 to 2015 with a Soil and Plant 
Analysis Development meter (SPAD-502, Konica Minolta, Tokyo, Japan). It was also performed on ten (different) 
flag leaves per plot similar to those for the net photosynthesis rate measurements. Three positions selected per 
flag leaf were measured and then the average was calculated.

Mature millet seeds were ground into flour for measurement of total protein, fat and fiber from 2011 to 2015.
Total grain protein content was measured using the Kjeldahl  method38,39. A 1.0 g sample was digested with 

20 ml  H2SO4 at 300 °C until the digestate was clear. After cooling, 20 ml distilled water was added, agitated, and 
then further diluted to 100 ml with distilled water. Then a sample of 10 ml of the solution was distilled with 10 ml 
of 12%  H3BO3 and 10 ml of 40% NaOH solution for 7 min, and titrated with 0.5 N HCl.

Total fat content in the grain was measured with a fat analyser using the Soxhlet extractor  method40,41. A 3 g 
sample wrapped with filter paper was alternately steeped in the diethyl ether, and washed with water at 70–80 °C 
until no oil was visible in the wash water. After the diethyl ether was volatilized, the samples were dried under 
vacuum.

Total fiber content in the grain was measured with a gravimetric  method42. After extracting total fat, a 1.0 g 
dried sample was extracted with 200 ml of 1.25%  H2SO4 and 1.25% NaOH solution at 100 °C for 1.5 h. Samples 
were then steeped in acetone for 10 min, oven-dried at 105 °C until constant weight and then fired at 550 ºC 
until constant weight.

The field water-holding capacity, plant available water, photosynthesis parameters were measured from 2013 
to 2015 to determine their changes three to five years after the application of bentonite amendment. In this 
paper the last two-years of data on AGDM and ER are shown in Figs. 4 and 3; the data for the first three years 
were previously  published34,35. We combined published preliminary data from the same experiment with the 
present data to determine the changes in AGDM and ER over the five years following the single application of 
bentonite amendment in 2011.

Data analysis. The FWC, PAW, ER, AGDM, SPAD, photosynthesis parameters (Tr, Pn, SPAD and WUE) 
and grain quality for each treatment were calculated by averaging three replicates for each plot, i.e. averaging 
subplot measurements. The normality and homogeneity of variances were checked using Shapiro–Wilk and Bar-
tlett test before performing an analysis of variance (ANOVA). A two-way linear models ANOVA was performed 

Table 2.  Bentonite composition and cos.

Bentonite composition (on a weight basis) and cost

SiO2 Al2O3 Na2O CaO MgO K2O Fe2O3 Cost

73.20% 11.40% 0.31% 2.67% 1.05% 2.58% 0.29% 63 USD  mg−1
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to analyze the differences in Pn, Tr, SPAD, WUE, protein, fat, fiber, ER and AGDM among bentonite amend-
ments. Statistical analyses were performed with SAS Ver. 9.3 software package for Windows (SAS Institute Inc., 
Cary, NC, USA). Differences among bentonite amendment means were determined using the linear model with 
Tukey’s multiple comparisons at 5% level. Pearson’s correlations were performed to determine the relationships 
among all the parameters. Data were plotted using Sigmaplot 10.0 (Systat Software, Inc. San Jose, CA,USA).

Results
ANOVA of measured parameters. The ANOVA for different measurements (Tables 3 and 4) showed that 
bentonite treatment (T), day (D) and year (Y) had a highly significant (P < 0.01) effect on emergence, AGDM, 
Pn, Tr, SPAD, WUE, protein, fat and fiber. The interaction of T*Y had a significant (P < 0.05) effect on all of the 
measured parameters except Tr, WUE and protein. The interaction of T*D, D*Y, T*Y and T*D*Y had a highly 
significant (P < 0.01) effect on AGDM.

Field water holding capacity (FC). All bentonite amendments significantly (P < 0.05) increased the FC 
compared with control without bentonite at 0–40 soil layers except for 6 mg ha−1 at 0–10 and 20–40 cm layers in 
2013. None of the bentonite amendments had an effect at the 40–60 cm layer (Fig. 1). In 2013, 2014 and 2015, FC 
for bentonite treatments was significantly increased by up to 9%, 11% and 12%, respectively. Improvements in 
FC for all bentonite treatments ranged from 1 to 9% for the 0–10 cm layer, from 1 to 12% for the 10–20 cm layer, 
and from 0 to 11% for the 20–40 cm layer. The effect of bentonite amendment addition to soil showed a trend 
of increased FC over time at deeper layers. The trend was similar for all soil layers for three years except for the 
40–60 cm layer: averaged over three years, 24 Mg ha−1 treatment had the greatest effect.

Plant available water (PAW). All bentonite amendments significantly (P < 0.05) increased PAW com-
pared with control in 0–40 cm layers (Fig. 2). Bentonite amendments had no effect in 40–60 cm layer. In 2013, 
2014 and 2015, observed increases in PAW were up to 6%, 10% and 10%, respectively. Improvement in PAW 
ranged from 1–9% for the 0–10 cm layer, from 4–10% for 10–20 cm, from 1–9% for 20–40 cm and from 1–9% 
for the 40–60 cm layers. The amendment effect showed a trend for increasing effect over time. The trend for all 
layers was similar to FC from 2013–2014: averaged over three years, the treatment with 24 mg ha−1 bentonite 
had the largest effect.

Emergence rate (ER). The effect of bentonite on ER in 2014 and 2015 is presented in Fig. 3; emergence data 
from the first three years of the same experiment were presented in our previous  paper31. The present additional 
data combined with our earlier data now show that bentonite and interaction of bentonite treatment and time 
had a significant (P < 0.05) effect for ER over five years and more importantly, that there was greater effect in later 
years. The increase in ER for all bentonite treatments over the control with no bentonite ranged from 2–16% and 
2–18% in 2014 and 2015, respectively.

Table 3.  ANOVA of effect of bentonite treatments (T) and year (Y) on photosynthetic parameters. *and 
***Significant at 0.05 and 0.001 level respectively; NS means not significant. Pn: net photosynthetic rate; Tr: 
transpiration rate; SPAD: leaf soil plant analysis development; WUE: leaf water use efficiency. Pn, Tr, SPAD, 
and WUE were measured at 90 d after sowing over the last three years, 2013 to 2015.

Factors DF

Pn Tr SPAD WUE

F value P F value P F value P F value P

T 5 135.97  < 0.001*** 11.19  < 0.001*** 78.9  < 0.001*** 10.08  < 0.001***

Y 2 50.35  < 0.001*** 87.66  < 0.001*** 95.09  < 0.001*** 73.64  < 0.001***

T*Y 10 7.65  < 0.001*** 1.73 NS 2.38 0.014* 0.47 NS

Table 4.  ANOVA of effect of bentonite treatments (T), day (D) and year (Y) on emergence rate, AGDM and 
grain quality parameters, protein, fat and fiber. *** Significant at 0.001 levels; NS means not significant. Protein, 
Fat, Fiber, Emergence and AGDM were measured over five years, 2011 to 2015.

Factors DF

Protein Fat Fiber Emergence AGDM

F value P F value P F value P F value P F value P

T 5 21.22  < 0.001*** 134.22  < 0.001*** 428.83  < 0.001*** 114.34  < 0.001*** 758.47  < 0.001***

D 4 45,034.1  < 0.001***

T*D 20 64.62  < 0.001***

Y 4 7.66  < 0.001*** 109.83  < 0.001*** 294.75  < 0.001*** 24.08  < 0.001*** 3786.67  < 0.001***

T*Y 20 0.41 NS 13.34  < 0.001*** 43.95  < 0.001*** 3.75  < 0.001*** 22.15  < 0.001***

Y*D 16 611.36  < 0.001***

T*Y*D 80 8.7  < 0.001***
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Figure 1.  Field water-holding capacity for different rates of bentonite measured at 90 d after sowing in the 
0–60 cm soil layer from 2013 to 2015. Left panel: mean of 2013 to 2015 by soil layer; right panel: mean of 
0–60 cm soil layer by year. Bars within the same year or the same layer and with the same letters are not 
significantly different at the 0.05 level of probability. Error bars are standard deviations.

Figure 2.  Plant available water with different rates of bentonite amendment at 90 d after sowing in the 0–60 cm 
soil layer from 2013–2015. Left panel: mean of 2013 to 2015 by soil layer; right panel: mean of 0–60 cm soil layer 
by year. Bars within the same year or the same layer and with the same letters are not significantly different at 
the 0.05 level of probability. Error bars are standard deviations.
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Aboveground dry matter (AGDM). AGDM data at different days after planting from the first three years 
of the same experiment were presented in our previous  paper32. For all bentonite treatments, AGDM was sig-
nificantly increased by up to 187% and 111% in 2014 and 2015, respectively compared with the control without 
bentonite (Fig. 4). The greatest percentage differences among all treatments occurred at 70 d after sowing in the 
first four years; in 2015 the difference was greatest at 50 d after sowing, likely due to the very low rainfall over the 
growing season. In the first four years, 18 and 24 mg ha−1 treatment had significantly (P < 0.05) higher AGDM 
than the other treatments while, in 2015, the AGDM over growing season was the largest for 30 mg ha−1 treat-
ment.

Photosynthesis characteristics (Pn, Tr, SPAD, and WUE). Bentonite significantly (P < 0.05) increased 
Pn, Tr, SPAD and WUE compared to control without bentonite from 2013 to 2015 (Fig. 5). Increases in Pn, Tr, 
SPAD and WUE were 3–32%, 2–21%, 1–15% and 0–13% compared with control without bentonite in all three 
years. All of the photosynthesis parameters showed a similar trend: in the third year (2013), 18 mg ha−1 bentonite 
had the greatest effect; and averaged over three years, 24 mg ha−1 bentonite had the greatest effect.

Grain quality. Grain protein, fat and fiber all increased with increasing bentonite rates in all five years 
(Fig. 6). Exceptions were in 2014 when the effect on grain protein was not significant and in the last three years, 
when there were no significant (P > 0.05) differences in grain fiber between 0 and 6 mg ha−1 bentonite. In the 
first three years, 18 and 24 mg ha−1 bentonite had the highest grain protein, fat and fiber content while in last the 
two years, 24 and 30 mg ha−1 bentonite had the highest grain protein, fat and fiber content. The grain protein, 
fat and fiber content increased by up to 28%, 10% and 20% respectively over the control without bentonite from 
2011 to 2015.

Correlations among soil and crop parameters. There were highly significantly positive correlations 
among emergence rate, soil available water, field water capacity, photosynthesis parameters and grain quality 
parameters. Correlation coefficients ranged from 0.91 to 0.99 (Table 5).

Discussion
Field water holding capacity (FC) and plant available water (PAW). Millet heading stage appeared 
around 90 d after sowing, and large quantities of soil water and nutrients were required to meet vigorous growth 
demands of millet at this stage. When mixed into soil by tillage, polymer superabsorbent soil amendments can 
quickly absorb a large amount of water under sufficient water conditions, and then slowly release water for plant 
uptake under drought  conditions43,44. Our study showed that the effect of bentonite extended deeper into the 
0–40 cm layer with increasing time since initial application, likely due to more uniform mixing with annual 
tillage. Our results indicated that addition of bentonite increased retention of soil water and soil available water 
up to 12% and 10% respectively in the surface soil layers (Figs.1 and 2), which would be available for crop use. 
This can improve crop production in semi-arid regions with limited rainfall, and alleviate the need for irrigation. 
The bentonite can absorb a large amount of water and hold it within the bentonite crystal  structure45. In addi-
tion, the bentonite (75 μm particle size) was mixed intimately with sandy soil and created smaller pores which 
can retain more water. Suzuki and Noble also reported that the application of bentonite amendment to a sandy 
soil over two years increased the available water for crop growth which was attributed to an increase in porosity 
and altered pore size  distribution46. Our result agreed with a report that when clay with different aggregate sizes 
was added to a sandy soil simulating clay delving from a clay rich subsoil, plant available water and water reten-
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tion capacity increased in proportion to the amount of clay added, and in particular, application of smaller clay 
aggregates (≤ 6 mm) had a greater  effect47. Another study also reported that available water content increased by 
6.7–13.3% in calcareous sandy soils after bentonite  application48. In contrast, another study observed that water 
absorbing soil amendments had a negative effect on crop performance for maize, possibly because they held 
the water too tightly, limiting water uptake by crops under limited water  conditions49. The disagreement among 
studies may due to differences in amendment type and application rate. The mechanism by which water is held 
by bentonite, a natural clay material, and synthetic superabsorbent polymers is very different which results in 
different optimum application rates, and different water release characteristics. A previous seven-year study 
reported that a single application of bentonite-humic acid (20 mg ha−1) to sandy soil increased soil water storage 
and maize yield in a semi-arid region, and it had the greatest effect in the first five years following  application50. 
Another study reported that large amount of superabsorbent resin quickly absorbed water, but the water was 
tightly held by the molecular structure and could not be released fast enough for plant  use51. Other reasons may 
be due to differences in soil and external environmental factors such as potential evapo-transpiration.
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Millet growth and photosynthesis. The water stored in the soil before sowing and during the growing 
season plays an important role in crop production under limited water  supply52. Insufficient stand establish-
ment of crop is a major problem in the region along the Great Wall in Inner Mongolia in northern China which 
is a semi-arid area, and is a critical factor affecting crop  yield53. Our data showed that bentonite amendment 
improved millet emergence rate (ER), AGDM at different days after sowing from 2011 to 2015 and photo-
synthesis parameters at 90 d after sowing (Pn, Tr, SPAD and WUE) (Figs.  3–5) from 2013 to 2015. This is 
comparable to other research that showed application of superabsorbent polymer significantly improved pho-
tosynthesis  characteristics54, maize yield and total dry matter under drought stress  conditions55. We attributed 
this to improved soil water storage and availability of nutrients for crop growth by retaining limited rainfall and 
reducing loss of water from the  soil56, thereby alleviating the drought stress in the crop. In addition, the applica-
tion of bentonite with calcium, magnesium and potassium (5, 10, 20, 40 mg ha−1) could increase plant biomass 
by increasing cation exchange capacity (CEC) and making more exchange sites available to hold plant nutrients 
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Table 5.  Correlation among all the parameters. **Significant at 0.01 level. Pn: net photosynthetic rate; Tr: 
transpiration rate; SPAD: leaf soil plant analysis development; WUE: leaf water use efficiency.

Index Emergence rate
Above-ground dry 
matter SPAD Pn Tr WUE Soil available water Field water capacity Fat Protein Fiber

Emergence rate 1

Above-ground dry 
matter 0.956** 1

SPAD 0.993** 0.977** 1

Pn 0.993** 0.948** 0.991** 1

Tr 0.987** 0.947** 0.981** 0.993** 1

WUE 0.990** 0.948** 0.992** 0.995** 0.976** 1

Soil available water 0.986** 0.967** 0.985** 0.978** 0.966** 0.982** 1

Field water capacity 0.984** 0.958** 0.985** 0.993** 0.989** 0.986** 0.986** 1

Fat 0.956** 0.993** 0.971** 0.935** 0.933** 0.938** 0.965** 0.940** 1

Protein 0.934** 0.995** 0.958** 0.920** 0.914** 0.926** 0.960** 0.937** 0.991** 1

Fiber 0.969** 0.992** 0.990** 0.967** 0.959** 0.969** 0.964** 0.963** 0.982** 0.977** 1
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for plant  growth57. Nutrient retention by bentonite might also contribute to improvements in crop performance, 
but our experiment did not address this aspect. In our research, K, mg and Fe contained in the bentonite could 
contribute to increased crop growth, and improve photosynthesis, and thus enhance AGDM accumulation. 
Magnesium is major element in chlorophyll and some of the observed photosynthesis response to bentonite 
might be a result of additional magnesium in the bentonite. The effects of bentonite water absorbing proper-
ties, and potassium and micronutrients on crop growth parameters are confounded in this experiment; further 
research is needed to separate the soil water holding aspects of bentonite from the chemical effects of potassium 
and other micronutrients contained within the bentonite. Previous studies showed that drought conditions have 
a negative effect on photosynthesis processes which affected carbon assimilation and growth by closure of plant 
leaf stomates and reduced permeability of mesophyll  cells15,58.

Combining our published results on ER and AGDM from the first three  years34,35 and the present results from 
the latter two years for the same experiment, it was evident that the amendment effect on millet emergence rate 
increased with time, and the photosynthesis characteristics and emergence rate had similar trends. These may 
be due to improvement in soil structure by bentonite with time as bentonite is stable in soil whereas some other 
synthetic superabsorbent polymer soil amendments break down over time. Also this may be due to the capacity 
of bentonite to intercalate fixed soil carbon and volatile groups over time by metal oxides, establishing a microbial 
and nutrient  reservoir59. The improvement in AGDM by the amendments was greatest during the early growing 
season when millet was growing rapidly, the demand for water was high and rainfall was low.

Grain quality. Millet is a tropical cereal grain used for forage and food, and is very diverse in terms of grain 
structure and chemical composition. It has been cultivated to produce traditional products such as porridges, 
flatbreads and  beers60. In this study, the bentonite increased grain protein, fat and fiber content in all five years 
(Fig. 6) which would improve the grain quality for the above food products. This is similar to the results of 
another study that bentonite amendments can improve sugar beet quality and increase sugar beet  yield61. The 
amended soil retained larger amounts of water and nutrients than soil without amendment. This allows the 
absorbed water and nutrients to be held for a longer time and used by the crop when drought occurs thereby 
improving crop  performance62,63. Grain protein for all rates of bentonite was significantly (P < 0.05) higher than 
the control without bentonite in all five years except for 2014. This might be explained by more even rainfall 
throughout the 2014 growing season: the positive effect of the amendments is derived from their ability to hold 
water during periods of intermittent rainfall, but under even and sufficient rainfall, this benefit is not realized.

The combined effect of improved yield and bentonite cost was reported in our previous  publication31. Com-
pared with control without bentonite, 6, 12, 18, 24 and 30 mg ha−1 bentonite increased total grain yield over five 
years by 614, 1795, 3528, 3613 and 3041 kg ha−1 respectively, and based on a bentonite cost in China of 63 US $ 
 Mg−1, improved respective total net return over five years by 64, 536, 1406, 1089 and 300 US $  ha−1.

In semi-arid and arid areas, soil is characterized by low water-holding capacity, low fertility and low produc-
tion. Some studies found that water absorbing soil amendments reduced soil erosion, improved soil nutrients 
and water-holding capacity and available water and nutrients for crop uptake, and thereby reduced the environ-
mental pollution and enhanced soil  productivity64,65. Our results suggest that bentonite soil amendments can 
also improve crop performance attributes and contribute to sustainable agricultural development in arid and 
semi-arid regions.

Conclusions
Bentonite amendments increased field water holding capacity and plant available water at 90 d after sowing in 
all three years (2013–2015). Bentonite significantly (P < 0.05) increased millet emergence rate, aboveground dry 
matter accumulation, photosynthesis parameters (Pn, Tr, SPAD and WUE) and grain quality parameters (protein, 
fat and fiber). The 24 mg ha−1 bentonite amendment had the greatest effect on crop performance parameters aver-
aged over five years, and on photosynthesis parameters averaged over the three years (2013–2015) that they were 
measured; the 18 mg ha−1 bentonite amendment rate had the greatest effect on grain quality. Bentonite, which is 
plentiful in China, is a stable mineral requiring only one application and therefore has a distinct advantage over 
synthetic water absorbing polymers which break down over several years and must be periodically reapplied to 
maintain their effect. Thus, application of bentonite may be a practical and effective strategy for improving millet 
production in semi-arid regions in northern China or the regions with a similar environment.
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