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Increased oxidative stress by hyperglycemia is a major cause of vascular complications in
diabetes. Bird’s nest, which is made from the saliva of swiftlets has both medicinal and
nutritional values dated back to ancient China. However, its role in improving endothelial
dysfunction due to diabetes is yet to be elucidated. The present study examined the
protective effect and mechanism of action of the aqueous extract of hydrolyzed edible bird
nest (HBN) on endothelium in models of diabetes, in vitro and in vivo. Male db/m+ and db/
db mice were orally administered with or without HBN and glibenclamide for 28 days,
followed by vascular reactivity studies in mouse aortas. Human umbilical vein endothelial
cells (HUVECs) and isolated mouse aorta from C57BL/6J were treated with high glucose
(HG), HBN, sialic acid (SA), glibenclamide, and apocynin, respectively. The effects of HBN
on reactive oxygen species (ROS) production and nitric oxide (NO) bioavailability were
assessed by Western blot, 2′,7′-dichlorofluorescin-diacetate (DCF-DA), and 4-amino-5-
methylamino-2′,7′ difluorofluorescein (DAF-FM DA) in HUVECs, isolated mouse aorta,
and db/db diabetic mice. HBN significantly reversed the endothelial dysfunction in diabetic
mice and isolated mouse aorta. HBN normalized ROS over-production of NOX2 and
nitrotyrosine, reversed the reduction of anti-oxidant marker, SOD-1 as well as restored NO
bioavailability in both HUVECs challenged with HG and in db/db diabetic mice. Similarly,
HG-induced elevation of oxidative stress in HUVECs were reversed by SA, glibenclamide,
and apocynin. This attests that HBN restores endothelial function and protects endothelial
cells against oxidative damage induced by HG in HUVECs, isolated mouse aorta, and db/
db diabetic mice via modulating ROS mechanism, which subsequently increases NO
bioavailability. This result demonstrates the potential role of HBN in preserving endothelial
function and management of micro- or macrovascular complications in diabetes.
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in.org February 2020 | Volume 10 | Article 16241

https://www.frontiersin.org/article/10.3389/fphar.2019.01624/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01624/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01624/full
https://loop.frontiersin.org/people/737883
https://loop.frontiersin.org/people/830769
https://loop.frontiersin.org/people/728806
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dharmani79@um.edu.my
mailto:rais@um.edu.my
https://doi.org/10.3389/fphar.2019.01624
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.01624
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.01624&domain=pdf&date_stamp=2020-02-04


Murugan et al. Edible Bird’s Nest and Hyperglycemia
INTRODUCTION

The endothelium plays a pivotal role in physiology and
pathophysiology of the vasculature, including modulating the
vascular tone, cellular adhesion, smooth muscle, cell
proliferation, thromboresistance, and inflammation of vessel
wall (Sena et al., 2013). Under normal physiological condition,
the healthy endothelium maintains a fine balance between
vasoconstriction and vasodilatation factors (Sena et al., 2013).
Nitric oxide (NO) is among the endothelium-derived factor
which controls the vasodilatory effect whereas factors such as
reactive oxygen species (ROS), thromboxane, and endothelin 1
exerts vasoconstrictor effects (Just et al., 2008; Loscalzo, 2013).
Endothelial dysfunction is commonly associated with increased
cellular oxidative stress and with decreased nitric oxide (NO)
bioavailability, resulting in dysregulation of vascular tone and
ultimately compromised cardiovascular function (Pitocco et al.,
2010). Endothelial dysfunction is correlated with various
cardiovascular and metabolic diseases such as hypertension,
atherosclerosis, and diabetes mellitus (Sena et al., 2013).

Over the years, hyperglycemia-induced oxidative stress has
been known as a key process in the onset of diabetic
complications (Matough et al., 2012). Hyperglycemia causes
excessive production of ROS, especially superoxide anions (O2-)
which are generated through partial reduction of molecular
oxygen to O2- by NADPH oxidase, uncoupled endothelial nitric
oxide synthase (eNOS), mitochondrial electron transport chain as
well as xanthine oxidase (Jay et al., 2006). O2− will react with NO
to form the toxic peroxynitrite (ONOO−), which uncouples
eNOS to produce more superoxide anions. This vicious
continuous cascade of events reduces NO bioavailability and
leads to endothelial dysfunction (Schulz et al., 2008).
Frontiers in Pharmacology | www.frontiersin.org 2
The edible bird’s nest is made from the saliva of swiftlets
inhabiting the limestone caves. Edible bird’s nest has been used
in Chinese cuisine mainly in the form of bird’s nest soup since
1,200 years ago as it is believed to enhance energy levels, prevent
aging, and improve overall well-being (Ma and Liu, 2012). Edible
bird’s nest has lethal dose (LD50) cut off more than 5,000 mg/kg
and is classified as category 5 or unclassified category of globally
harmonized classification system (GHS), therefore it is safe to be
taken by to humans (Haghani et al., 2016). Furthermore, there
are scientific reports of its anti-oxidative, anti-inflammatory,
influenza virus inhibitory effect, hemagglutination-inhibitory
activities, and bone-strengthening effects (Kong et al., 1987;
Guo et al., 2006; Matsukawa et al., 2011; Ma and Liu, 2012;
Vimala et al., 2012; Yida et al., 2014). In 2015, Yida et al. showed
that edible bird’s nest prevents high-fat diet- (HFD) induced
insulin resistance in rats. However, thus far, the protective effect
of edible bird’s nest in glucotoxicity condition has not been
studied. Therefore, the present study investigated the effect of
hydrolyzed bird’s nest (HBN) in abating oxidative stress and
improving endothelial dysfunction in the hyperglycemia-
induced oxidative stress in models of diabetes, in vitro, ex vivo,
and in vivo.
MATERIALS AND METHODS

Quantification of Sialic Acid in Hydrolyzed
Bird’s Nest
The HBN was prepared and kindly provided by Professor YL
from University Tunku Abdul Rahman, Malaysia. A voucher
specimen was deposited in the Nature Inspired UM Natural
GRAPHICAL ABSTRACT | Mechanism of action of hydrolyzed bird’s nest on hyperglycemia-induced endothelial dysfunction.
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Products Library, University Malaya (voucher number
UMCNA1801). Briefly, the raw edible birds nest sample eluted
in distilled water was boiled at 80°C for an hour. The extracts
were filtered with membrane filter paper and the resulting
filtrates were lyophilized and stored at −80°C for further use.
Liquid chromatography-mass spectrometry quadrupole–time of
flight (LCMS Q-TOF) was used to determine the amount of sialic
acid, one of the active compounds in HBN. The LCMS Q-TOF
protocol was adapted from Marni et al., 2014 with slight
modification (Marni et al., 2014). Briefly, a series of a standard
solution of sialic acid with different concentration (50, 25, 12.5,
6.3, 3.1, and 1.5 µg/mL) and 10 mg/mL of HBN were prepared in
distilled water. The samples were sonicated for 10 min and were
subjected for LCMS Q-TOF analysis. The C-18 reversed phased
column with diameter 4.6 × 250 mm was used with a mobile
phase of water: methanol (1:1), the flow rate of 2 mL.min-1,
sample quantity of 10µL, and column temperature 25° C. HBN
and standard sialic acid were run in triplicates. A linear graph
was plotted using standard sialic acid and the sialic acid content
in HBN was determined from the standard curve. A standard
solution graph of concentration versus area was plotted. Finally,
the sialic acid concentration of each extract was determined
based on the graph.

Animals
Male db/m+ and db/db mice (10 weeks old) were obtained from
The Jackson Laboratories (Bar Harbor, ME, USA) for the in vivo
experiment while male C57BL/6J (12 weeks old) mice were
obtained from the Monash University (Sunway Campus,
Malaysia) for the ex vivo experiments. All the experimental
procedures were approved by the University of Malaya Animal
Care and Ethics Committee (Ethics Reference No: 2015-180709)
and accredited by Association for Assessment and Accreditation
of Laboratory Animal Care International (AAALAC). Animal
study was carried out in strict accordance with the established
institutional guidelines and the NIH guidelines on the use of
experimental animals. The animals were housed in a well-
ventilated room maintained at a temperature of 23°C with
12 h light/dark cycles, 30–40% humidity and had free access to
standard rat chow (Specialty Feeds Pty Ltd., Glen Forrest,
Australia) and filtered tap water.

Ex Vivo Culture of Mouse Aortic Rings
The male C57BL/6J mice were euthanized using carbon dioxide
(CO2), and the aorta was carefully isolated and immersed in
sterile phosphate buffer saline (PBS). The aortas were cleaned
from fat and connective tissues under the microscope and cut
into several segments of approximately 2 mm in length. The
aortic rings were incubated in normal glucose (NG, 2.5 mM) or
high glucose (HG, 30 mM) with or without co-incubation of
HBN (15 and 30 mg/mL), sialic acid (20 mg/mL), glibenclamide
(10 mM), apocynin (20 mM), and compound C for 48 h at 37°C in
Dulbecco ’s Modified Eagle ’s Media (DMEM; Gibco,
Gaithersburg, MD, USA) with 10% fetal bovine serum (FBS;
Gibco), 100 µg/mL streptomycin, and 100 U/mL penicillin (Lau
et al., 2013). The concentrations of HBN used in this study were
determined using MTT assay (data not shown).
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HBN Treatment in db/db Mice
The male db/db mice male randomly assigned into four groups
(n = 6 per group) of mice receiving: (a) vehicle (distilled water);
(b) hydrolyzed bird’s nest (75 mg/kg); (c) hydrolyzed bird’s nest
(150 mg/kg); (d) glibenclamide (1mg/kg) by oral gavage for four
weeks. The db/m+ mice (n = 6) was used as the non-diabetic
control. The animals were humanely sacrificed by CO2

inhalation at the end of treatment. Blood samples were
collected from inferior vena cava after an overnight fast, and
the serum were stored at −80°C for total nitrate/nitrite assay. The
aorta was excised and cleaned of adjacent connective tissues and
fat and cut into rings for functional studies and some arteries
were snap-frozen in liquid nitrogen and stored at −80°C for
further experiments.

Functional Study
The aortic rings from the treated groups and organ-cultured
rings were mounted on myograph chamber containing 5 mL of
oxygenated Krebs solution which consists mM of NaCl 119,
NaHCO3 25, KCl 4.7, KH2PO4 1.2, MgSO4·7H2O 1.2, glucose
11.7, and CaCl2.2H2O 2.5. The aortic rings were maintained at
37°C and stretched to optimal baseline tension of 3 millinewtons
(mN) in a Multi-Wire Myograph System (Danish Myo
Technology, Aarhus, Denmark) and continuously oxygenated
with 95% O2 and 5% CO2. The changes of isometric tension of
aortic rings in response to different drugs were recorded using
the PowerLab LabChart 6.0 recording system (AD Instruments,
Australia). The rings were equilibrated for approximately 45 min
and pre-contracted with high 60 mM KCl solution followed by
three times of washing with Krebs solution. Once the tension
stabilized and returns to baseline, phenylephrine (3 µM) was
added to induce contraction followed by generation of
endothelium-dependent relaxation (EDR) by cumulative
addition of acetylcholine (ACh) from 3 to 10 nM. The
endothelium-independent relaxation (EIR) was generated by
the addition of sodium nitroprusside (SNP) from 1 nM to
10 µM. Each experiment was conducted on separate rings from
six mice. Concentration-response curves for relaxations were
conveyed as the percentage of reduction in contraction induced
by phenylephrine before the application of ACh or SNP. The
maximum effect (Rmax) and concentration inducing 50% of Rmax

(pEC50) were determined from the cumulative concentration-
response curves.

Detection of Vascular Superoxide
Formation
Lucigenin-enhanced chemiluminescence assay was used in this
study to quantify the production of vascular superoxide anion.
The organ-cultured rings from each group were incubated for
45 min at 37°C in Krebs-HEPES buffer (in mM: NaCl 99.0,
NaHCO3 25, KCl 4.7, KH2PO4 1.0, MgSO4 1.2, glucose 11.0,
CaCl 22.5, and Na-HEPES 20.0) in the presence of
diethylthiocarbamic acid (DETCA, 1 mM) and b-nicotinamide
adenine dinucleotide phosphate (b-NADPH, 0.1 mM). DECTA
acts as an inactivator for superoxide dismutase (SOD) while b-
NADPH acts as a substrate for NADPH oxidase. The NADPH
February 2020 | Volume 10 | Article 1624
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oxidase inhibitor, diphenylene iodonium (DPI; 5 mM) was then
added as a positive control. Before measurement, a solution
containing lucigenin (5 mM) and b-NADPH (0.1 mM) in Krebs-
HEPES buffer was added into each well of 96-well Optiplate.
Background photo emissions were measured every 30 s for 20
min using Hidex plate CHAMELEONTM V (Finland). After
addition of the rings into the wells, the measurement was taken
again. The rings were then dried for 48 h at 65°C and weighed.
The data were expressed as average counts per weight of dried
vessel (mg) and was compared over the normal glucose (Choy
et al., 2017).

Cell Culture
Human umbilical vein endothelial cells (HUVECs, Lonza, Basel,
Switzerland, No. CC-2517) were cultured in normal glucose
endothelial cell medium (ECM) supplemented with 10% fetal
bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL
streptomycin, and 50 µg/L endothelial cell growth supplement
(all Sciencell, Carlsbad, CA). The cells were incubated in a
humidified atmosphere containing 5% CO2 at 37°C. Cells from
passages 5 to 9 were used for the current study. Experiments were
performed once the cells reached 80% confluency. The cells were
then starved for 4 h in FBS-free ECM before treatment with
either normal glucose (5.5 mM, NG) and high glucose (HG,
30mM) co-treated with hydrolyzed bird’s nest HBN (30 mg/mL),
sialic acid (20 mg/mL), glibenclamide (10 mM), and apocynin
(20 mM) for 48 h. Another set was incubated with osmotic
control, mannitol (25 mM) (Lau et al., 2013).

Measurement of Intracellular
ROS Generation
The amount of intracellular ROS generation in HUVECs was
measured using DCF-DA fluorescein (Invitrogen, CA, USA) dye.
ROS was detected after formation of fluorescent DCF product
inside the cell due to oxidation of DCF-DA. In brief, 1 × 104

HUVECs were seeded into 96 well plates. After overnight
incubation in 5% CO2 at 37°C, the cells were starved and
treated as described. Another set of cells were treated with
H2O2 (200 µM), the ROS inducer 4 h before the end of 48 h
incubation as a positive control. The treated cells were incubated
for 48 h and the media was then removed. The wells were rinsed
with phosphate buffered saline PBS followed by addition of
10 µM of DCF-DA into each well. The absorbance was then
measured kinetically for 1 h using a fluorescent multimode
reader (Infinite M1000 Pro; Tecan US, Morrisville, NC) at
fluorescence excitation and emission of 492/517 nm. The data
was presented as the fluorescent intensity (a.u.) at 50th minute
after addition of DCF-DA dye.

Measurement of NO Production in HUVECs
The amount NO production in HUVECs was measured using
DAF-FM diacetate (Invitrogen, CA, USA) dye (Namin et al.,
2013). Basically, NO within the cells will react with DAF-FM
diacetate to form fluorescent benzotriazole. The confluent
HUVECs were seeded into 96 well plates and treated
accordingly as described in the previous section. HUVECs
treated with calcium ionophore (A23187, 5 µM) were used as
Frontiers in Pharmacology | www.frontiersin.org 4
positive control. After 48 h incubation, the media was removed
and rinsed with PBS three times. Five micrograms of DAF dye
was added into each well, and the absorbance was measured
kinetically for 1 h using a fluorescent multimode reader (Infinite
M1000 Pro; Tecan US, Morrisville, NC) at fluorescence
excitation and emission of 495/515nm. The results were
presented as a value of fluorescent intensity (a.u) at 50th

minute after addition of the dye.

Measurement of Total Nitrite/Nitrate Levels
Total nitrite and nitrate level from the mice serum was detected
using Nitrate/Nitrite Colorimetric Assay Kit (Cayman Chemical
Company, Ann Arbor, MI, USA) according to the
manufacturer’s protocol. Absorbance was measured using a
plate reader (Tecan, Mannedorf, Switzerland) with an
absorbance of 540nm. The results are expressed in µM.

Western Blot
Protein samples from the treated mouse aorta and HUVECs were
lysed in ice-cold 1X RIPA buffer consists of EGTA 1 mM, EDTA 1
mM, NaF 1mM, leupeptin 1 µg/mL, aprotinin 5 µg/mL, PMSF 100
µg/mL, sodium orthovanadate 1 mM, and b-glycerolphosphate 2
mg/mL. The lysates were collected and centrifuged at 20,000 g for
20 min. Protein concentrations were determined using standard
Lowry assay protocol by (Bio-Rad Laboratories, Hercules, CA,
USA). Fifteenmicrograms of protein samples were electrophoresed
at 100 V through 7.5% or 10% SDS-polyacrylamide gels based on
the size of target proteins and transferred to an Immobilon-P
polyvinylidene difluoride membrane (Millipore, Billerica, MA,
USA). The membranes were blocked from any non-specific
binding by 3% bovine serum albumin (BSA) in 0.05% Tween 20
PBS with gentle shaking. The membranes were then incubated
with primary antibodies against NADPH oxidase 2 (NOX-2;
1:1,000, Abcam), nitrotyrosine (1:1,000, Abcam) superoxide
dismutase-1 (SOD-1; 1:1,000, Santa Cruz), phosphorylated
endothelial nitric oxide synthase (p-eNOS) at Ser1177 (1:1,000,
Abcam), endothelial nitric oxide synthase (eNOS) (1;1,000, BD
Transduction laboratory, San Diego, CA, USA), and b-actin
(1:10,000, Abcam) at 4°C overnight. Following incubation, the
membranes were washed three times with TBS-T and incubated
with horseradish peroxidase-conjugated secondary antibodies
(DakoCytomation, Carpinteria, CA, USA) for 2 h at room
temperature. Finally, the enhanced chemiluminescence detection
system (ECL reagents, Millipore Corporation, Billerica, MA) was
added onto the membrane and exposed on X-ray films. The films
were then automatically processed and developed by SRX-101
(Konica, Wayne, NJ). The densitometry analysis was performed
using Quantity One software (Bio-Rad). The respective protein
expression levels for nitrotyrosine, NOX-2, and SOD-1 were
normalized to b-actin, p-eNOS to eNOS, and then compared
with control.

Data Analysis
Results are presented as mean ± SEM from n experiments.
Concentration-response curves were fixed to a sigmoidal curve
using non-linear regression using the statistical software
GraphPad Prism version 4 (GraphPad Software Inc.,
February 2020 | Volume 10 | Article 1624
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San Diego, CA, USA). Statistical significance was determined
using two-tailed Student’s t-test for comparison of two groups
and a one-way ANOVA followed by Bonferroni multiple
comparison tests for comparisons of more than two groups.
P < 0.05 was considered statistically significant.
RESULTS

Sialic Acid Content in Hydrolyzed
Bird’s Nest
Six difference standards of sialic acid (N-acetylneuraminic acid)
were run on the LCMS Q-TOF and result was plotted. The
standard graph for sialic acid was obtained from the calibration
equation y = (3 × 106) x + 532,337 (R2 = 0.9931) where y is the
peak area and x is the weight of sialic acid content in the extract.
The LCMS spectrum for standard together with HBN is shown in
Figure 1. Sialic acid appeared at the retention time of 4.9 min of
the LCMS spectrum. The amount of sialic acid in the sample was
determined based on the molecular weight of 309.107 g/mol and
their retention time. From this analysis, it shows that HBN
contained 1.26 µg sialic acid/mg.

HBN Ameliorated Endothelial Dysfunction
in Mouse Aorta
To determine the role of HBN treatment in high glucose-induced
endothelial dysfunction in mice, we examined EDR and EIR in
Frontiers in Pharmacology | www.frontiersin.org 5
response to ACh and SNP respectively in a concentration-
dependent manner. Aorta from mice treated with HG for 48 h
displayed 48% relaxation to ACh-induced relaxation compared to
control group which showed 85% relaxation. Co-treatment with
HBN (15 and 30 mg/mL) restored the impaired relaxation to ACh
in a concentration-dependent manner, with HBN at 30 mg/mL
being an effective concentration in the HG-treated aorta. HBN
alone did not affect the ACh relaxation in the NG-treated aorta
(Figure 2A and Table 1). Additionally, co-incubation with sialic
acid (20 mg/mL), glibenclamide (10 mM), and apocynin (20 mM)
reversed the HG-induced impairment of relaxation to ACh
(Figure 2B and Table 1). SNP-induced relaxations were similar
in all groups, reflecting the lacked changes in the sensitivity of
vascular smooth muscle to NO (Figures 2C–D and Table 1).

The maximal relaxation and sensitivity to ACh in the aorta
from db/db mice treated with vehicle was significantly lesser
compared to the non-diabetic group (Rmax: 57.04 ± 3.29% vs.
95.03 ± 1.31%, respectively). Four-weeks treatment with HBN
(150 mg/kg) and glibenclamide (1 mg/kg) reversed the impaired
ACh- induced relaxation in db/db aorta (Figure 3A and Table 2)
while no significant changes was observed in SNP-induced
relaxation (Figure 3B and Table 2).

HBN Reduced High Glucose-Induced
Vascular Superoxide Production
and Intercellular ROS Formation
HG produced high levels of vascular superoxide anions (Figure
4A) in isolated mouse aorta and intercellular ROS in HUVECs
FIGURE 1 | Liquid chromatography-mass spectrometry spectrum of standard sialic acid at different concentrations and 10 mg/mL hydrolyzed bird nest (HBN). HBN
contained 1.26 µg sialic acid/mg HBN based on their molecular weight and retention time.
February 2020 | Volume 10 | Article 1624
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(Figure 4B) compared to NG, as measured by LEC and DCF-DA
respectively. Co-treatment with HBN (30 µg/mL) significantly
reduced the production of vascular superoxide anion and
intercellular ROS in HUVECs compared to HG. Similarly, co-
treatment with sialic acid (20 mg/mL), glibenclamide (10 mM),
and apocynin (20 mM) reduced the vascular superoxide anion
and intercellular ROS in HUVECs. The level of vascular
superoxide anion and intercellular ROS in HUVECs in HBN
alone in HG was similar to the NG-treated group.
Frontiers in Pharmacology | www.frontiersin.org 6
HBN Restored High Glucose-Induced
Production of NO in HUVECs and NO
Level in db/db Mice
The reduced level of NO inHUVECs in response to HGwas reversed
by co-treatment with HBN (30µg/mL), sialic acid (20 mg/mL),
glibenclamide (10 mM), and apocynin (20 mM). Meanwhile, the
positive control, calcium ionophore (A23187) significantly increased
theNO level. HBN andmannitol co-treatment did not affect NO level
in the NG-treated aorta (Figure 5A).
TABLE 1 | Agonist sensitivity (pEC50) and % maximum relaxation (Rmax) of acetylcholine (ACh)-induced endothelium-dependent relaxation and sodium
nitroprusside (SNP)-induced EIR in isolated aorta from C57BL/6J mice treated with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), hydrolyzed bird
nest (HBN, 15 and 30 mg/mL), sialic acid (SA, 20 mg/mL), glibenclamide (Glib, 10 mM), and apocynin (20 mM) for 48 h.

Groups ACh SNP

pEC50 (log M) Rmax (%) pEC50 (log M) Rmax (%)

NG −6.69 ± 0.10 84.88 ± 2.48 −7.11 ± 0.12 93.30 ± 1.52
NG + HBN (15µg/mL) −6.40 ± 0.19 80.26 ± 4.58 −7.12 ± 0.14 89.86 ± 3.46
NG + HBN (30µg/mL) −6.42 ± 0.11 79.73 ± 2.64 −7.23 ± 0.18 95.24 ± 2.55
HG −6.75 ± 0.07 47.92 ± 3.12* −7.39 ± 0.13 91.53 ± 2.07
HG + HBN (15µg/mL) −6.76 ± 0.06 64.97 ± 1.70 −7.44 ± 0.09 95.57 ± 1.25
HG + HBN (30µg/mL) −6.73 ± 0.09 79.10 ± 5.14# −7.35 ± 0.17 93.38 ± 2.34
HG + Glib −6.63 ± 0.18 82.13 ± 5.03# −7.08 ± 0.21 84.87 ± 1.70
HG + SA −6.95 ± 0.14 78.67 ± 5.18# −7.38 ± 0.20 89.33 ± 3.89
HG + Apocynin −6.54 ± 0.17 80.68 ± 5.93# −7.09 ± 0.23 88.77 ± 5.85
February 2020 | Volume 10
Results are means ± SEM (n = 6). *P < 0.05 compared with NG, #P < 0.05 when compared with HG.
FIGURE 2 | The effect of isolated aorta from C57BL/6J treated with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), hydrolyzed bird nest (HBN, 15 and 30
mg/mL), sialic acid (SA, 20 mg/mL), glibenclamide (Glib, 10 mM), and apocynin (20 mM) for 48 h in acetylcholine-induced endothelium-dependent relaxation (EDR) (A,
B) and sodium nitroprusside-induced endothelium-independent relaxation (EIR) (C, D). Results are means ± SEM of six experiments. *P < 0.05 compared with NG,
#P < 0.05 when compared with HG.
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FIGURE 4 | (A) Superoxide production measured by lucigenin-enhanced chemiluminescence assay in the aorta of C57BL/6J mice in the absence and presence of
diphenyleneiodonium, NOX inhibitor and (B) level of intercellular ROS measured by DCF-DA assay after treatment with normal glucose (NG, 5 mM), high glucose (HG,
30 mM), mannitol (25 mM), H2O2 (200 µM), calcium ionophore (A23187, 5 µM), Hydrolysed bird nest (HBN, 30 µg/mL), sialic acid (SA, 20 µg/mL), glibenclamide (Glib,
10 µM) and apocynin (Apo, 20 µM) in HUVECs for 48 hours. Results are means ± SEM of 6 independent experiments. #P < 0.05 and ###P < 0.001 compared with NG,
*P <0.05 and ** <0.01 compared to HG.
TABLE 2 | Agonist sensitivity (pEC50) and % maximum relaxation (Rmax) of acetylcholine-induced endothelium-dependent relaxation and sodium nitroprusside (SNP)-
induced EIR in isolated aorta from db/db mice treated with glibenclamide (1 mg/kg), HBN (75 mg/kg) and HBN (150 mg/kg).

Groups Ach SNP

pEC50 (log M) Rmax (%) pEC50 (log M) Rmax (%)

db/m+ −6.49 ± 0.11 95.03 ± 1.31 −6.62 ± 0.08 88.27 ± 2.12
db/db −5.93 ± 0.15 ### 57.04 ± 3.29 −6.59 ± 0.28 76.91 ± 12.49
db/db + HBN 75mg/kg −6.19 ± 0.22 70.56 ± 17.45 −6.41 ± 0.16 85.16 ± 3.92
db/db + HBN 150 mg/kg −6.05 ± 0.07 *** 83.01 ± 2.17 −6.61 ± 0.13 85.98 ± 4.20
db/db + glibenclamide 1 mg/kg −6.37 ± 0.06 *** 85.55 ± 3.48 −6.59 ± 0.17 83.21 ± 3.71
Frontiers in Pharmacology | www.frontiersin.org
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Results are means ± SEM (n = 6). ### P < 0.001 compared with db/m+, *** P < 0.001 when compared with db/db.
FIGURE 3 | The effect of four week’s treatment of hydrolyzed bird nest (HBN, 75 and 150 mg/kg) and glibenclamide (1 mg/kg) on (A) acetylcholine-induced
endothelium-dependent relaxation (EDR) and (B) sodium nitroprusside-induced endothelium-independent relaxation (EIR) in db/db mice. Results are means ± SEM
of six experiments. # P < 0.05 compared with db/m+, *P < 0.05 when compared with db/db.
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The level of NO in db/db mice was depleted about 50%
compared to the db/m+ which demonstrated a reduction from
33.5 µM to 16.7 µM (Figure 5B). Treatment withHBN (150mg/kg)
increased the level of NO up to 24 µM compared to vehicle control.
Meanwhile, the positive control, glibenclamide (1 mg/kg)
significantly increased the NO level to 27.9 µM (Figure 5B). This
results from in vivo study is in agreement with the in vitro study.
Frontiers in Pharmacology | www.frontiersin.org 8
HBN Inhibited High Glucose-Induced
Oxidative Stress Associated Proteins
in HUVECs and db/db Mouse Aorta
The effects of HBN were next explored on high glucose-induced
oxidative stress associated proteins. NADPH oxidase 2 (NOX-2)
and nitrotyrosine proteins were up-regulated in HG-induced
HUVECs (Figures 6A–C) and in diabetic mouse aorta
FIGURE 6 | Western blot and quantitative data showing proteins in HUVECs treated with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), hydrolyzed bird
nest (HBN, 30 mg/mL), sialic acid (SA, 20 mg/mL), glibenclamide (Glib, 10 mM), and apocynin (Apo, 20 mM) for 48 h. Results are means + SEM of four separate
experiments. *P< 0.05 and **P < 0.01 compared to control; #P < 0.05, ##P < 0.01 and ###P < 0.001 compared to HG.
FIGURE 5 | (A) Nitric oxide (NO) level as measured by DAF-FM after treatment with normal glucose (NG, 5 mM), high glucose (HG, 30 mM), mannitol (25mM),
H2O2 (200 µM), calcium ionophore (A23187, 5 µM), hydrolyzed bird nest (HBN, 30 mg/mL), sialic acid (SA, 20 mg/mL), glibenclamide (Glib, 10 mM), and apocynin
(Apo, 20 mM) in HUVECs for 48 h. (B) in serum of db/db mice treated with hydrolyzed bird nest (HBN, 75 and 150 mg/kg) and glibenclamide (1 mg/kg) for four
weeks. Results are mean ± SEM of three experiments. **P < 0.01 and ***P < 0.001 compared to control; #P < 0.05 and ##P < 0.01 compared to HG.
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(Figures 7A–C). In contrast, the antioxidant protein (SOD-1) and
eNOS activity were decreased in HG-induced HUVECs (Figures
6A,D, and E) and in diabetic mouse aorta (Figures 7A,D, and E).
Co-treatment of HG with HBN (30µg/mL), sialic acid (20 mg/mL),
glibenclamide (10 mM), and apocynin (20 mM) significantly
reversed the elevated levels of NOX-2 (Figure 6B) and
nitrotyrosine (Figure 6C) as well as increased the downregulated
SOD-1 (Figure6D) andp-eNOS (Figure6E) protein levels induced
by HG. No significant changes were observed between the NG and
the NG+HBNgroup. Four-weeks treatment with 150mg/kgHBN
and 1mg/kg glibenclamide to db/dbmice significantly reversed the
elevated vascular NOX-2 (Figure 7B) and nitrotyrosine (Figure
7C), while increased the reduced SOD-1 (Figure 7D) and p-eNOS
(Figure 7E) protein levels compared to the db/dbmice.
DISCUSSION

The present study provides experimental evidence that treatment
with HBN effectively restored the impaired endothelium-
dependent relaxations in mice aortas exposed to high glucose
condition. In addition, the current work showed HBN reduced
the expression of ROS markers (NOX-2 and nitrotyrosine),
increased expression of SOD-1 and phosphorylated eNOS in
HUVECs and aorta of db/db mice. These results indicate HBN
treatment attenuates the hyperglycemia-induced endothelial
dysfunction through the reduction in oxidative stress and
increasing the NO bioavailability.

Increased oxidative stress and reduced nitric oxide (NO)
bioavailability play a causal role in endothelial cell dysfunction
occurring in the vasculature of diabetic patients (Rajendran et al.,
2013). Prolonged exposure to high glucose in vitro or in vivo has
Frontiers in Pharmacology | www.frontiersin.org 9
been shown to inhibit ACh-induced endothelium-dependent
relaxation, while not affecting SNP-induced endothelium-
independent relaxation (Lau et al., 2013; Mangipudi and Hillier,
2013; El-Awady et al., 2014). A similar finding was also observed in
the present study with 48-h incubation in HG and in aorta of db/db
mice. Moreover, treatment with HBN significantly reversed the
dysfunction demonstrating the vascular protective effect of HBN.
The improvement demonstrated by HBN is comparable to
apocynin, an antioxidant, and glibenclamide, an antidiabetic
agent. High glucose has been shown to induce ROS production,
which ultimately may contribute to the endothelial dysfunction
(Cho et al., 2013; Salisbury and Bronas, 2015). Similarly, the
vascular ROS, especially superoxide anion was elevated in aorta
of db/db mice and aorta exposed to high glucose and HBN
decreased the superoxide production in the high-glucose exposed
tissues, indicating HBN protects against endothelial dysfunction by
inhibiting ROS production. This is in agreement with previous
researches that showed edible bird’s nest ameliorated oxidative
stress by reducing production of ROS in SH-SY5Y cells and human
keratinocytes (Yew et al., 2014; Hou et al., 2015; Lim et al., 2015).

In order to provide further insights into the mechanistic basis
for the effects of HBN, the effect of HBN against high glucose-
induced oxidative stress was investigated in aorta of db/db mice
and HUVECs. Parallel to the finding with mice aorta, HUVECs
exposed to high glucose also demonstrated an elevated level of
ROS. This was accompanied by a decrease in NO level. ROS was
mainly derived from NADPH oxidase which plays a role in the
pathogenesis of vascular endothelial dysfunction in diabetes
(Wong et al., 2010). High glucose-induced ROS elevation is
mainly associated with increased expression of NADPH oxidase
subunits such as NOX-2, which was also reduced by HBN.
Basically, superoxide anions, the main species of ROS will react
FIGURE 7 | Western blot and quantitative data showing proteins in aorta of db/db mice treated with hydrolyzed bird nest (HBN, 75 and 150 mg/kg), and
glibenclamide (1 mg/kg) for four weeks. Results are means + SEM of six separate experiments. *P< 0.05 compared to db/m+; #P < 0.05 compared to db/db.
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with NO to produce peroxynitrite radicals which will later lower
NO bioavailability (Maritim et al., 2003). The role of peroxynitrite
in high glucose-stimulated HUVECs and aorta of db/db was
confirmed by detecting an increased expression of nitrotyrosine
due to the facilitation of tyrosine nitration by peroxynitrate
radicals. However, following co-treatment with HBN,
expression of nitrotyrosine was significantly reduced. This was
accompanied with increased production of NO as observed with
an increase in p-eNOS expression and total nitrate/nitrite level in
HBN treated db/db mice. Thus, the ROS inhibiting effect of HBN
possibly contributed to restoring hemostatic imbalance which
augments NO level in high-glucose stimulated endothelial cells in
order to improve endothelial function.

Overall evidence suggests that on one hand, hyperglycemia
induces free radicals; on the other hand, it impairs the
endogenous antioxidant defense system in patients with
diabetes (Pitocco et al., 2010). Endogenous antioxidant defense
mechanisms such as glutathione (GSH), superoxide dismutase
(SOD), and catalase (CAT), protects against toxic ROS (Gupta
et al., 2014). HBN treatment increased SOD-1 protein level
against the reduction induced by HG in the HUVECs and in
treated db/db aorta. Likewise, previous reports by Hou et al.
(2015) demonstrated that treatment with edible bird’s nest
increased SOD activity and mRNA levels of SOD-1 in H2O2-
induced oxidative stress in SH-SY5Y cells. Similarly, edible bird’s
nest reduced the production of ROS in human HaCat
keratinocytes and SH-SY5Y human neuroblastoma cells (Kim
et al., 2012; Yew et al., 2014). HBN (Yida et al., 2015) and sialic
acid (Pawluczyk et al., 2014) has been previously demonstrated
to upregulate antioxidant enzymes including SOD at
transcriptional levels. Although in the present study, only
protein level of SOD was measured, the increase in gene
expression is most likely reflected in the protein expression.

Previous study found that the composition on edible bird nest
consist of protein (56.47–60.63%), water (17.26–24.05%), ash (3.29–
7.41%), carbohydrates (1.04–2.48%), crude fiber (12.162.59%), and
fat (0.07–12.57%) (Daud et al., 2016). The monosaccharides
composition of glycoprotein in edible bird’s nest contains about 9%
ofsialicacid,4.19–7.2%ofgalactosamine,about5.3%ofglucosamine,
5.03–16.9% of galactose, and about 0.7% of fructose (Kathan and
Weeks, 1969). Wang and Brand-Miller (2003) reported that edible
bird’s nest contains a high amount of sialic acid and this may
contribute to brain development and learning ability. This is further
supported by a recent work by Oliveros et al. (2018), whereby they
demonstrated supplementation of sialic acid and sialylated
Oligosaccharide supplementation during lactation improved
learning and memory in rats. Similarly, sialic acid has been shown
to restore mitochondrial SOD mRNA expression and quench
oxidative burst in puromycin aminonucleoside-induced
desialylation and oxidative stress in human podocytes (Pawluczyk
et al., 2014). In 2016, Guo et al. has demonstrated exogenous
supplement of sialic acid ameliorated atherosclerosis in
apolipoprotein E-deficient mice partly by elevating antioxidant
activity by restoring the activity or improving protein expression of
antioxidantenzymes, thusdemonstrating thebeneficial effectof sialic
acid on cardiovascular disease (Guo et al., 2016). The efficacy of
HBN against high glucose-induced oxidative stress and endothelial
Frontiers in Pharmacology | www.frontiersin.org 10
dysfunctionwas comparable to the sialic acid, themain carbohydrate
found in edible bird’s nest. Therefore, sialic acid contained in edible
bird’s nest could be used as an important parameter for determining
for their quality and their biological activities.The results suggest that
sialic acid may represent the active compound in edible bird’s nest
which is responsible for the mechanism involves reducing
oxidative stress.

CONCLUSION

In summary, both in vitro, ex vivo, and in vivo treatments with
HBN significantly protect against high-glucose induced
endothelial dysfunction by inhibiting oxidative stress and
increasing NO bioavailability. These results provide further
evidence for edible bird’s nest to be used as a functional food
for the prevention of cardiometabolic diseases by combating
oxidative stress and thus subsequently protect endothelial
function in hyperglycemic conditions.
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