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a b s t r a c t 

Quantum computing is rapidly establishing itself as a new 

computing paradigm capable of obtaining advantages over its 

classical counterpart. However, a major limitation in the de- 

sign of a quantum algorithm is related to the proper map- 

ping of the corresponding circuit to a specific quantum pro- 

cessor so that the underlying physical constraints are sat- 

isfied. Moreover, current deterministic mapping algorithms 

suffer from high run times as the number of qubits to map 

increases. To bridge the gap in view of the next genera- 

tion of quantum computers composed of thousands of qubits, 

this data paper proposes the first datasets that help ad- 

dress the quantum circuit mapping problem as a classifica- 

tion task. Each dataset is composed of random quantum cir- 

cuits mapped onto a specific IBM quantum processor. In de- 

tail, each dataset instance contains some features related to 

the calibration data of the physical device and others related 

to the generated quantum circuit. Finally, the instance is la- 

beled with a vector encoding the best mapping among those 

provided by deterministic mapping algorithms. Considering 

this, the proposed datasets allow the development of ma- 

chine learning models capable of achieving mapping similar 

to those achieved with deterministic algorithms, but in a sig- 

nificantly shorter time. 
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pecifications Table 

Subject Physical sciences 

Specific subject area Quantum computing, Quantum circuit mapping, Quantum compiling 

Type of data CSV files 

How data were acquired The datasets were acquired generating random quantum circuits and mapping 

them onto IBMQ processors. In detail, each dataset contains set of features 

related to both the random quantum circuits generated and to the quantum 

device which each dataset refer. Three datasets are provided, each one refer to 

a specific IBM quantum machine. Namely, IBMQ Santiago, IBMQ Athens , and 

IBMQ 16 Melbourne were the processors used. The target mappings in the 

datasets were collected selecting the best deterministic mapping among those 

provided by the algorithms of qiskit transpiler. 

Data format Raw (.csv) 

Parameters for data collection The generated random quantum circuits have a number of qubits belonging to 

the range [2, processor number of qubits] and their depths vary from 1 to 8. 

The calibration data for the processors refer to the data provided by IBM daily 

in the period 31 December 2019–30 June 2021. 

Description of data collection The collection of data can be divided in four steps: 1) Circuit Generation and 

Date Selection : a random quantum circuit is generated by Qiskit and 

simultaneously a date is selected; 2) Circuit Features Extraction : a set of 

information related to the generated quantum circuit is extracted; 3) Processor 

Features Extraction : the calibration data provided by IBM for the date 

selected in step 1, are extracted; 4) Label Selection : the best deterministic 

mapping provided by qiskit transpiler is selected as label of the instance. 

Data source location Quantum Computing and Smart Systems (QUASAR) Laboratory, University of 

Naples Federico II, Naples, Italy 

Data accessibility Schiattarella, Roberto; Acampora, Giovanni (2021), “Dataset for Quantum 

Circuits Mapping”, Mendeley Data, V1, doi: 10.17632/pmycgb2bt7.1 

Related research article Giovanni Acampora and Roberto Schiattarella. Deep neural networks for 

quantum circuit mapping. Neural Computing and Applications, pages 1–21, 

2021. https://doi.org/10.10 07/s0 0521- 021- 06009- 3 

alue of the Data 

• The proposed datasets can be helpful to address the Quantum Circuit Mapping on NISQ pro-

cessors problem as multi-output classification task. This can significantly reduce the execu-

tion time of current mapping algorithms, speeding up the whole quantum compiling process

in view of the next generation of quantum processors. The proposed datasets are the firsts

in literature. 

• Reducing the computational time of the quantum circuit mapping is a key point for the de-

velopment of fully efficient quantum devices. Therefore these datasets can be used by re-

searchers to develop innovative circuit mapping techniques based on machine-learning and

artificial intelligence. 

• Considering this, the datasets lend themselves to any multi-output classification algorithm.

Furthermore, given the high dimensionality of the proposed data, techniques of dimension-

ality reduction can also be used and tested on it. 

• These data were acquired as proposed in Acampora and Schiattarella [1] where a Deep Neural

Network was used to perform the multi-output classification task. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/pmycgb2bt7.1
https://doi.org/10.1007/s00521-021-06009-3


G. Acampora, R. Schiattarella and A. Troiano / Data in Brief 39 (2021) 107526 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Data Description 

Besides the issues related to their size and noise, a critical problem that characterizes the

current NISQ devices (Noisy Intermediate-Scale Quantum) [2] is the low connectivity of their

coupling maps , for which each qubit is connected to a limited number of other qubits. Con-

sidering this, there is a strong demand for quantum compilers able to identify efficient initial

mapping among circuit qubits and processor qubits, so as to optimize in a reasonable amount

of time the number of SWAP operations required to execute the compiled circuit. To bridge this

gap this paper proposes the firsts dataset useful to address the quantum circuit mapping prob-

lem as classification task. The provided datesets are csv files named as the IBM quantum pro-

cessor which they refer. Considering a quantum circuit C = { q C 
1 
, . . . , q C 

N 
} composed of N qubits,

and a quantum processor P = { q 1 , . . . , q M 

} with M qubits, then the information related to C in

each dataset can be summarized as follows: 

• N - an integer value representing the number of circuit qubits. In the csv files this feature

is contained in the column named N qubits . The values of N for each proposed dataset range

from 2 to M, because 2 is the minimal number of qubits required to build quantum circuits

composed of multi-qubits gates, while M is the maximal number of circuit qubits that can

be mapped onto a M qubits quantum processor; 

• N cx - an integer value representing the total number of CNOT gates in the circuit C. The 

range of values of N cx varies for each of the proposed dataset and it depends on the random

quantum circuits considered during the data acquisition procedure. For the dataset related

to Athens , N cx ranges from 0 to 69, for the one related to the Santiago quantum processor it

varies from 0 to 71 and finally, for the dataset related to the Melbourne device it ranges from

0 to 113; 

• N measures - an integer value representing the number of measurement operations in the circuit

C. In the csv files this number is contained in the column N measures . Moreover, because all the

random quantum circuits considered to collect the data end with a measurement operation

on each circuit qubit, the number N measures is always equal to N; 

• N 

cx 
i, j 

- a matrix of integer values where the item [ i, j] contains the number of CNOT gates

between the control qubits q C 
i 

and the target qubit q C 
j 

of the circuit C. Each element of N 

cx 
i, j 

is

reported in the datasets in the column cx _ i _ j. As for N cx , the range of values for each element

of N 

cx 
i, j 

is strictly related to the random quantum circuits obtained during the data acquisition

procedure. However, it is always true that N 

cx 
i, j 

≥ 0 and 

∑ 

i, j N 

cx 
i, j 

= N cx . 

Similarly, with respect to the processor P , the following information have been considered: 

• Date of calibration data- a date related to when the calibration data of P refer. Column

last _ upd ate _ d ate in the datasets. The calibration data refer to random day in the period 31

December 2019-30 June 2021; 

• CX ER 
i, j 

- an array of real values where each value represents the error rate of a CNOT using

q i as control qubit and q j as target qubit for each (q i , q j ) ∈ P . If (q i , q j ) are not connected

in the processor’s coupling map there is a default value set to 10 0,0 0 0. Both for the devices

of Athens, Santiago and Melbourne these quantities are symmetrical, i.e. C X ER 
i, j 

= C X ER 
j,i 

. These

values are limited between 0 and 1. In the csv files each element CX ER 
i, j 

is inserted in the

column named edge _ er ror _ i _ j; 

• CX ET 
i, j 

- an array of real values where each value represents the execution time (in nanosec-

onds) of a CNOT gate using q i as control qubit and q j as target qubit for each (q i , q j ) ∈ P .

If (q i , q j ) are not connected in the processor’s coupling map there is a default value set

to 10 0,0 0 0. In contrast to the values for error rates, the gate times are not symmetri-

cal, i.e. C X ET 
i, j 

� = C X ET 
j,i 

. In the csv files each element CX ET 
i, j 

is inserted in the column named

edge _ length _ i _ j; 
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Fig. 1. Example of circuit mapping. 

Fig. 2. ibmq_santiago and ibmq_athens coupling map. 
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• T 1 - an array of real values where each value represents the longitudinal relaxation time ( T 1 i )

in micro-seconds characterizing a qubit q i of the processor P . Each element of T 1 is reported

in the T 1 i column of the datasets; 

• T 2 - an array of real values where each value represents the transverse relaxation time in

micro-seconds ( T 2 i ) characterizing a qubit q i of the processor P . Each element of T 2 is re-

ported in the T 2 i column of the datasets; 

• E R 0 an array of real values where each value E R 0 
i 

represents the readout error characterizing

a qubit q i of the processor P . A readout error can assume values ranging from 0 to 1. Each

E R 0 
i 

is inserted in the column readout_error_i of the datasets. 

A schematic view of the features related to the quantum circuit mapping problem is provided

n Table 2 in Acampora and Schiattarella [1] . 

Finally, each instance of the dataset is labelled as follows: 

• Label - an M -dimensional array of integers, where the position of each value refer to proces-

sor qubit index and the integer value refer to the circuit qubit index mapped on it. In the csv

files, the label vector is contained in the final M columns of each file. Each of this column is

named with an integer that represent the related index of the processor qubit. 

If M > N, a NaN value is present in the columns related to processor qubits not involved

uring the mapping operation. 

To better understand how the mapping is encoded in the dataset label let us analyze the

xample in Fig. 1 : a 5-qubits quantum circuit (on the left) is mapped onto a 5-qubits quantum

rocessor (on the right). The black arrows in the figure represent the mapping performed. For

 five qubits processor, the label in the related dataset is an array of five elements and the

apping in Fig. 1 is encoded in it as follows: 

Label = [0 , 4 , 1 , 3 , 2] (1)

In detail, the provided files are the following: 

• The Santiago.csv file which contains random quantum circuits composed from two to five

qubits mapped on ibmq_santiago quantum processor. This device is characterized by a Quan-

tum Volume of 32, 5 physical qubits and from the coupling map reported in Fig. 2 . The
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Fig. 3. ibmq_16_melbourne coupling map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset contains 74,576 random quantum circuits with number of CX which varies from 0 to

71. In detail, the file contains 4862 2-qubits circuits, 19,197 3-qubits circuits, 21,552 4-qubits

circuits and 28,965 5-qubits circuits. Overall, the dataset is composed of 84 columns. 

• The Athens.csv file which contains random quantum circuits composed from two to five

qubits mapped on ibmq_athens quantum processor. This device is characterized by a Quan-

tum Volume of 32, 5 physical qubits and from the coupling map reported in Fig. 2 . The

dataset contains 66,747 random quantum circuits with number of CX which varies from 0 to

69. In detail, the file contains 4660 2-qubits circuits, 16,201 3-qubits circuits, 19,128 4-qubits

circuits and 26,758 5-qubits circuits. Overall, the dataset is composed of 84 columns. 

• The Melbourne.csv file which contains random quantum circuits composed from two to fif-

teen qubits mapped on ibmq_16_melbourne quantum processor. This device is characterized

by a Quantum Volume of 8, 15 physical qubits and from the coupling map reported in Fig. 3 .

The dataset contains 47,111 random quantum circuits with number of CX which varies from

0 to 113. In detail, the file contains 1330 2-qubits circuits, 3355 3-qubits circuits, 3595 4-

qubits circuits, 3644 5-qubits circuits, 3634 6-qubits circuits, 3590 7-qubits circuits, 3571 8-

qubits circuits, 3553 9-qubits circuits, 3537 10-qubits circuits, 3513 11-qubits circuits, 3488

12-qubits circuits, 3455 13-qubits circuits, 3427 14-qubits circuits and 3419 15-qubits circuits.

Overall, the dataset is composed of 694 columns. 

2. Experimental Design, Materials and Methods 

In this section the data acquisition procedure is discussed. All the dataset have been collected

using Python 

1 : in detail, for each of them, an empty pandas dataframe was filled in with the

procedure hereafter described. Such process makes intensive use of the Qiskit 2 library [3] . The

steps to insert a row in the dataframe are now analysed: 

1. Generation of a random quantum circuit using the generator provided by Qiskit: in detail,

this step is useful to create random quantum circuits composed of single and multi-qubits

logical gates. The number of qubits in the circuit ranges from 2 to the number of qubits

composing the quantum processor. The initial depth of the generated circuit is a value se-

lected in the range 1–8. Furthermore, the quantum circuit ends with a measurement gate for

each qubits. Once the quantum circuit is obtained, the quantum gates that compose it are

unrolled in terms of the following basis gates: 

BG = [ U 1 , U 2 , U 3 , CX, ID ] (2) 

using the Unroll 3 pass available in the traspiling methods of Qiskit. In Eq. (2) ID indicates the

identical operator, CX is the controlled-not gate, U 3 represents the most general single-qubit

quantum gate, whose matrix form is given in Eq. (3) , whereas U 2 and U 1 are respectively
1 Python 3.7.6. 
2 The versions of qiskit used to collect the data are qiskit 0.23.1.; qiskit-terra 0.16.1; qiskit-ibmq-provider 0.11.1; qiskit- 

aer 0.7.1. 
3 Unroller . 

https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.Unroller.html
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obtained from U 3 setting θ = 

π
2 and θ = φ = 0 . 

U 3 (θ, φ, λ) = 

(
cos ( θ2 ) −e iλ sin ( θ2 ) 

e iφ sin ( θ2 ) e iλ+ iφ cos ( θ2 ) 

)
(3)

At this point, the number of circuit qubits and the number of measurement operations are

inserted in the dataframe; 

2. Extrapolation of Quantum Circuit Features: considering the operations performed in the pre-

vious step, the unrolled quantum circuit is composed of single-qubit quantum gates ID, U 1 , U 2

and U 3 and only CX gates as multi-qubits gates. At this point, the total number of controlled

not quantum gates N cx is collected together with the matrix N 

cx , whose item [ i, j] contains

the number of CX gates between the i th and the j th qubit of the circuit where the further is

the control qubit and the latter the target one. N cx and N 

cx 
i, j 

are inserted in the dataframe; 

3. Extrapolation of Quantum Processor Features: in this step a random date is selected (the

datasets are limited to the period 31 December 2019–30 June 2021) and the calibration data

provided from IBM for that day are retrieved. If for some reasons the calibration data are

unavailable for the selected date, a new random day is selected. The calibration data contains

all the features related to the processor P described in previous section, that are therefore

collected and inserted in the pandas dataframe; 

4. Selection of the best deterministic circuit mapping among those computed by using well-

known algorithms available in IBM Qiskit, namely Dense Layout, Noise Adaptive Layout [4] and

SABRE Layout [5] : In this context, the best mapping of a circuit is the one that generates a

new circuit characterized by the smaller number of SWAP gates. The number of SWAP gates

in a circuit is computed by means of three IBM Qiskit routing algorithms, named Lookahead

Swap 4 , Stochastic Swap 5 and Sabre Swap . 6 

Therefore, the process of labeling each circuit c randomly generated is outlined as follows: 

4.1 Compute the initial mappings for the circuit c by using both Dense Layout and SABRE

Layout and Noise Adaptive Layout approaches; 

4.2 For each mapping computed at previous step, compute the number of SWAPs needed

to run the circuit c by using both Lookahead Swap and Sabre Swap and Stochastic Swap

approaches; 

4.3 Choose the mapping requiring the smaller number of SWAP gate executions. 

The mapping is encoded in a vector whose index represents the index of the processor qubits

and whose elements the index of the circuit qubits. See Eq. (1) for a practical example. 

At this point the vector is inserted in the dataframe row, which is now completed. 

he row is saved in a csv file and a new iteration of steps 1–4 is carried out to build a new

ataset line. Finally, each obtained dataset have been cleared from duplicate instances using the

andas 7 drop_duplicate method. 

thics Statement 

The authors declare that this work does not involve the use of human subjects or experimen-
ation with animals. 

4 IBM Qiskit Lookahead Swap Algorithm . 
5 IBM Qiskit Stochastic Swap Algorithm . 
6 IBM Qiskit Sabre Swap Algorithm . 
7 https://pandas.pydata.org . 

https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.LookaheadSwap.html#qiskit.transpiler.passes.LookaheadSwap
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.StochasticSwap.html#qiskit.transpiler.passes.StochasticSwap
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.SabreSwap.html
https://pandas.pydata.org
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