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Abstract: In this paper, the multi-state synchronization of chaotic systems with non-identical, un-
known, and time-varying delay in the presence of external perturbations and parametric uncertainties
was studied. The presence of unknown delays, unknown bounds of disturbance and uncertainty, as
well as changes in system parameters complicate the determination of control function and synchro-
nization. During a synchronization scheme using a robust-adaptive control procedure with the help
of the Lyapunov stability theorem, the errors converged to zero, and the updating rules were set to
estimate the system parameters and delays. To investigate the performance of the proposed design,
simulations have been carried out on two Chen hyper-chaotic systems as the slave and one Chua
hyper-chaotic system as the master. Our results showed that the proposed controller outperformed
the state-of-the-art techniques in terms of convergence speed of synchronization, parameter estima-
tion, and delay estimation processes. The parameters and time delays were achieved with appropriate
approximation. Finally, secure communication was realized with a chaotic masking method, and our
results revealed the effectiveness of the proposed method in secure telecommunications.

Keywords: time-delayed chaotic systems; adaptive-robust control; multi-state synchronization;
unknown time delays; secure communications; time varying parameter; circular multi
state synchronization
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1. Introduction

Applications of digital telecommunications can be seen in all aspects of daily life and
all industries including medicine and education, as well as social interactions [1]. Hence,
there is a need to have secure communication. To do this, many cryptography methods
have been introduced, mainly encoding the data from the sender and decoding them at
the receiver [1]. Cryptographical methods are based on various schemes, and a number
of related papers have been published in this field [2–5]. There has been a considerable
amount of work done in this field, and chaotic systems play a significant role among all
cryptographical schemes [6–8].

One of the fundamental characteristics of chaotic systems is the extreme response to small
changes in initial circumstances. The main goal of proposing synchronization methods is the
suitable tuning of controller parameters in chaotic systems [9–12]. In chaotic synchronization,
the vector state of the master system follows the slave system [13]. Various control-based
schemes have been used previously for synchronization, such as adaptive [14–16], sliding
mode [17,18], back stepping [19], fuzzy [20], predictive [21], and robust [22].

The work on applications of chaotic synchronization in secure communication has
grown dramatically in recent years [23–36]. Developing control systems for synchronization
of various chaotic systems has been one of the main focuses of prior works, aiming to
improve security in communication. Furthermore, few researchers have concentrated
on the hardware implementation of these systems in order to create reliable and rapid
hardware for sending and receiving data securely [23]. The summary of various works
done on this topic is given below.

Çiçek et al. [24] conducted the design and implementation of an analog circuit of
a secure telecommunications system based on slipping mode control (SMC). The chaos
system is the jerk, which is less complex than other chaotic systems. The most significant
novelty of this work is applying SMC synchronization along with the jerk chaos system,
which was introduced for the first time. The results of Op-Amp-based analog circuit
simulation in SMC and jerk-based synchronization demonstrated the effectiveness of the
proposed method.

A method based on a four-dimensional chaotic system has been proposed by Ayub
Khan et al. [25]. The chaotic system proposed is of the fractional-order type, contributing
greatly to the confidentiality of information. The results obtained justified the theoretical
scheme and simulation results.

Yu et al. [26] recommended a system based on hyper-chaotic theory for secure telecom-
munications. The proposed chaotic system is multistable four-wing memristive (FWMHS),
which is five-dimensional and was used to conduct the experiments. The disturbance
included in the inputs of the proposed method enhanced the security factor in telecommu-
nications. The sliding mode control is also used in this method, the parameters of which
are unknown.

A novel model for synchronization in secure telecommunications based on the fractional-
order complex chaotic system has been proposed in [27]. The fractional difference function
synchronization (FDFS) method used in this work yielded good results.

In [28], a new synchronization approach for utilization in internet of things (IoT)
applications has been used. The design of the synchronization system in their work is
based on the Lyapunov stability theorem. Synchronization is based on a nonlinear adaptive
controller. In their work, the input signals are first decomposed into small segments and
then combined and transmitted with chaotic signals. Subsequently, important information
is separated from the chaotic signals at the receiver. The simulation results proved the
effectiveness of the proposed scheme in sending and receiving confidential information.

Another work by [29] proposed the design of an Op-Amp-based analog circuit to
obtain secure communication. The proposed analog circuit of the seven-dimensional
chaotic system is designed and implemented. The results of the circuit simulation confirm
the greater capability of the circuit designed for secure communication.
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Chen et al. [30] proposed a novel methodology for the synchronization of secure
telecommunications. This new technique is based on the polynomials fuzzy model applied
to the Chen chaotic system. The approach proposed in this paper is implemented on
several various examples, and the results showed that the receiver worked successfully in
retrieving the signals transmitted by the transmitter.

Wangli He et al. [31] introduced a new approach based on quantized synchronization
of neural networks. In their work, the implementation of the master and slave section of
the chaos system is done on the Chua circuit. In order to perform experiments, different
images for synchronization with the proposed procedure are employed, and successful
results were achieved.

The idea of utilizing adaptive control for synchronization is proposed in [32]. The
master and slave chaos systems discussed in this work are of the memristor type. Addition-
ally, to enhance the security of information, an unknown parameter in the slave system is
applied. The most significant contribution of this scheme is that it is simple to implement,
and it helps to achieve valuable results in secure communication applications.

Ouannas et al. [33] adopted linear and nonlinear controllers to synchronize in secure
telecommunications applications. The improved Robinovich chaotic system employed
in this study is of the fractional order type. The stability investigation of the proposed
technique is proven by means of the Lyapunov theorem. Numerical results illustrated the
effectiveness of their proposed scheme in maintaining the confidentiality of information.

In a study, Wang et al. [34] proposed a novel idea of synchronization in secure telecom-
munications based on neural networks. Associative memory neural networks are widely
employed in various applications for synchronization. This network has been chosen
based on memristor. In the Lyapunov stability theorem, two controllers with different
activation functions are applied. The proposed approach ensured synchronization of drive
and response systems in a finite time.

Jing Wang et al. [35] conducted the implementation of analog hardware for a synchro-
nization method; the chaotic system tested in this method is six-dimensional. In order to
implement the hardware, all conditions are considered so that the theory of the proposed
scheme is consistent with the simulation results.

Zirkohi et al. [36] used terminal slipping model control (TSM) for synchronization.
The Duffing–Holmes oscillator is considered the first chaotic system, and the chaotic gyro
oscillator as the second chaotic system. Uncertainty, unknown parameters, and ultimately
external disturbances are taken into account in both chaotic systems. In the controller
section, Chebyshev polynomials are applied to approximate the master and slave systems.

In this paper, a robust adaptive controller was proposed for multi-mode synchroniza-
tion of chaotic systems. In the proposed method, both slave and master systems have
uncertainty, disturbance, unknown parameters, and time-varying delay characteristics. By
defining a suitable Lyapunov function, rules for updating parameters, time delays, and
estimation errors of uncertainty and disturbance bounds were determined. The proposed
controller guarantees that convergence of disturbance and uncertainty bounds estimation
error and synchronization error to zero. To prevent the chattering phenomenon, the control
law is a continuous function. By using the masking method and using chaotic signals as
a carrier signal, the security of communication channels was improved. In the provided
example, a 3D Chua system was chosen as the master system, and two Rössler systems
were chosen as the slave system. Given the proper and quick reconstruction of message
signals and also the convergence of all errors to zero, it was shown that the proposed
method has the ability to obtain better performance for synchronization of chaotic systems.

In time-delayed chaotic systems, little work has been done on delay uncertainty with
parametric uncertainties, external perturbations, and uncertainty in modeling the multi-state
synchronization problems of chaotic systems. The novelties of this paper are as follows:

(1) synchronization of chaotic systems with unknown time delays;
(2) synchronization of chaotic systems in the presence of disturbance and uncertainty

with unknown boundaries and variable parameters;
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(3) guarantee of convergence of tracking errors and parameters estimation to zero;
(4) Determining the rules for updating parameters, time delays, and disturbance and

uncertainty boundaries.

The paper is organized as follows. First, the concept of multi-state synchronization in
the presence of perturbation and uncertainty is described. Then, the essential theorems
to prove the convergence of errors to zero are explained. Adaptive rules for updating
parameters and delays are achieved. Finally, the concept of masking the synchronization of
three chaotic systems and its application in secure communication is presented.

2. Multi-State Synchronization of Chaotic Systems in the Presence of Disturbance
and Uncertainty

In multi-state synchronization of chaotic systems, a master chaotic system is synchro-
nized with multiple chaotic systems. Figure 1 shows the synchronization of the master
system with multiple system slave systems.
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We represent the driver system with the following equation [30]:

.
x1(t) = f1(x1) + F1(x1(t− τ1)) + H1(x1)θ1(t) + ∆ f1(x1) + D1(t) (1)

The N-1 slave systems control function can be represented as [30]

.
xi(t) = fi(xi) + Fi(xi(t− τi)) + Hi(xi)θi(t) + ∆ fi(xi) + Di(t). i = 2, 3, . . . , N (2)

where xi(t) = [xi1, xi2, . . . , xin]
T is the state vector of i-th system, fi(xi(t)) = [ fi1, fi2, . . . , fin]

T

is a continuous function, Fi(xi(t− τi)) is a continuous function with Lipschitz [30] condition
and constant hi, τi is the unknown variable system delay, and Hi(xi(t)) = [Hi1, Hi2, . . . , Hin]

T

is a matrix function. Moreover, θi(t) = [θi1, θi2, . . . , θin]
T are the main parameters with

unknown step changes, ∆ fi(xi) uncertainties, and bounded disturbance Di(t).
Based on Equations (1) and (2), the synchronization of chaotic system with control

function is as follows:
.
x1 = f1(x1) + F1(x1(t− τ1)) + H1(x1)θ1(t) + ∆ f1(x1) + D1(t)..

x2 = f2(x2) + F2(x2(t− τ2)) + H2(x2)θ2(t) + ∆ f2(x2) + D2(t) + u1(t).
...

.
xN = fN(xN) + FN(xN(t− τN)) + HN(xN)θN(t) + ∆ fN(xN) + DN(t) + uN−1(t).

(3)

in which it is assumed that ui−1(t) = [ui−1.1(t), ui−1.2(t), . . . , ui−1.n(t)]
T is the i-th slave

system control function, uncertainties and disturbance have unknown bounds,

|∆ fi(xi)| ≤ γigi(xi) , |Di(t)| ≤ di i = 1, 2, . . . , N. (4)
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In Equation (4) γi and di are unknown constants, gi(xi) is a known function, and in
few cases gi(xi) = |xi|.

In multi-state synchronization, the synchronization error is defined as [37]

ei−1(t) = xi(t)− x1(t). i = 2, 3, . . . N. (5)

Hence, the error dynamics can be represented as [37]

.
ei−1(t) = fi(xi) + Fi(xi(t− τi))− f1(x1)

−F1(x1(t− τ1)) + Hi(xi)θi(t)
−H1(x1)θ1(t) + ∆ fi(xi)
−∆ f1(x1) + Di(t)− D1(t)
+ui−1(t). i = 2, 3, . . . , N − 1.

(6)

Assuming that the control function is defined as

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i(t)
+H1(x1)θ̂1(t) + Ki−1ei−1
−Fi(xi(t− τ̂i))
+F1(x1(t− τ̂1)) + ui−1(t).
i = 2, 3, . . . , N − 1,

(7)

The control function is selected in such a way that first it removes well-determined
sentences ( f1(x1) , fi(xi)) from the error dynamics, and then it approximates the sentences
with variable parameters (H1(x1)θ̂1(t) and Fi(xi(t− τ̂i))). To stabilize the system, it ex-
ploits the Ki−1ei−1 state feedback, and finally the sentence ui−1(t) determines the proper
estimation of the disturbance and uncertainty boundaries.

Where θ̂i(t) and τ̂i(t) are the estimates of θi(t) and τi(t), and ui−1(t) is a part of the
control function (introduced later in the paper), the feedback gain matrix is defined as

Ki−1 = −diag(ki−1,1, ki−1,2, . . . , ki−1,n)· ki−1,j > 0 j = 1, 2, . . . , n. (8)

Ki−1 is a diagonal matrix with negative elements that result in the synchronization
error to converge to zero in the design.

Plugging the control function into Equation (6), the errors dynamics read as

˙
ei−1(t) = Hi(xi)θ̃i(t)− H1(x1)θ̃1(t)+

∆ fi(xi)− ∆ f1(x1) + Fi(xi(t− τi))− Fi(xi(t− τ̂i))−
F1(x1(t− τ1)) + F1(x1(t− τ̂1)) + Di(t)− D1(t)+

Ki−1ei−1 + ui−1(t).i = 2, 3, · · · , N − 1

(9)

where θ̃i(t) = θi(t)− θ̂i(t) is the approximation error.

Theorem 1. If the derivative of function f (t) is bounded in (a, b) i.e.,
∣∣∣ d f

dt

∣∣∣ ≤ M, then f (t) is
Lipschitz.

Proof of Theorem 1. Considering the mean value theorem,

∀t1, t2 ∈ (a, b) ∃c ∈ (a, b) :
f (t1)− f (t2)

t1 − t2
= f ′(c), (10)

=⇒ | f (t1)− f (t2)| = |t1 − t2|
∣∣ f ′(c)∣∣ ≤ |t1 − t2|

sub
t ∈ (a, b)

∣∣ f ′(c)∣∣ ≤ M|t1 − t2|.

Theorem 2. In a chaotic system, all the state variables are Lipschitz.
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Proof of Theorem 2. Considering a chaotic system characteristic, all of its state variables
are bounded. On the other hand, the derivative of state variables is nothing but a set of
addition, subtraction, and multiplication operations. Hence, the state variable derivatives
are bounded so according to Theorem 1, the state variables are Lipschitz with δi constant,
which in turn implies

∀t1, t2 ∈ R ∃δi > 0 : |xi(t1)− xi(t2)| ≤ δi|t1 − t2|. (11)

where xi(t) is the state vector of i-th system.

Theorem 3. The errors dynamics System (6), controlled by (46), using updating Rules (29)–(34) is
stable. Moreover, the synchronization errors assuming uncertainty and disturbance will converge
to zero.

Proof of Theorem 3. Defining the Lyapunov function as

V =
1
2
(Ve + Vθ + Vγ + Vd + Vτ). (12)

where

Ve =
N

∑
i = 2

eT
i−1ei−1 , Vθ =

N

∑
i = 1

θ̃T
i θ̃i. (13)

Vγ =
N

∑
i = 2

γ̃i
2 + γ̃1

2, Vd =
N

∑
i = 1

d̃i
2, Vτ =

N

∑
i = 1

ϑiτ̃i
2 ϑi > 0. (14)

In Equation (14), γ̃i = γi − γ̂i, d̃i = di − d̂i, τ̃i = τi − τ̂i are the estimation errors.
Computing the Lyapunov function derivative,

.
V =

N
∑

i=2
[eT

i−1 (Hi(xi)θ̃i − H1(x1)θ̃1 + ∆ fi(xi)

−∆ f1(x1) + Di(t)− D1(t)
+ 1

2 (Ki−1 + Ki−1
T)ei−1

+Fi(xi(t− τi))
−Fi(xi(t− τ̂i))
−F1(x1(t− τ1))
+F1(x1(t− τ̂1)) + ui−1(t))

+θ̃T
i

.
θ̃i + γ̃i

.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i]

+θ̃T
1

.
θ̃1 + γ̃1

.
γ̃1 + d̃1

.

d̃1

+ϑ1τ̃1
.
τ̃1

(15)

The adapting rules of system parameters are determined as

.
θ̃i = −(Hi(xi)

T ei−1 + σi θ̃i ). σi > 0
i = 2, 3, . . . , N

(16)

.
θ̃1 =

N−1

∑
i = 2

H1(x1)
Tei−1 − σ1θ̃1. σ1 > 0. (17)

If θis are constant, then their derivatives are zero (
.
θi = 0), and the update rules for

the parameters estimation are computed as

.
θ̂i = Hi(xi)

Tei−1 + σi θ̃i. σi > 0
i = 2, 3, . . . , N

(18)



Sensors 2021, 21, 254 7 of 21

.
θ̂1 = −

N−1

∑
i=2

H1(x1)
Tei−1 + σ1θ̃1. σ1 > 0 (19)

Plugging the updating rules (16–17) in Equation (15) yields

.
V =

N
∑

i=2
[eT

i−1 (∆ fi(xi)− ∆ f1(x1) + Di(t)− D1(t) + Ki−1ei−1

+Fi(xi(t− τi))− Fi(xi(t− τ̂i))− F1(x1(t− τ1))

+F1(x1(t− τ̂1)) + ui−1(t)) + γ̃i
.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i] + γ̃1

.
γ̃1

+d̃1

.

d̃1 + ϑ1τ̃1
.
τ̃1 −

N
∑

i =1
σi θ̃

T
i θ̃i

(20)

If ∆ fi
j, Fi

j, Di
j, ej

i−1, and ui−1
j are the j-th component of vectors ∆ fi, Fi, Di, ei−1, and

ui−1(t), respectively, then

.
V =

N
∑

i=2

n
∑

j=1
ej

i−1 (∆ fi
j − ∆ f1

j + Di
j − D1

j

+Fj
i (xi(t− τi))

−Fj
i (xi(t− τ̂i))

−Fj
1(x1(t− τ1))

+Fj
1(x1(t− τ̂1)) + ui−1

j

+
N
∑

i = 2
(γ̃i

.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i)

+
N
∑

i = 2

1
2 eT

i−1Ki−1ei−1 + γ̃1
.
γ̃1

+d̃1

.

d̃1 + ϑ1τ̃1
.
τ̃1

−
N
∑

i = 1
σi θ̃

T
i θ̃i.

(21)

Therefore,

.
V ≤

N
∑

i = 2

n
∑

j = 1

[∣∣∣ej
i−1

∣∣∣ (
∣∣∆ fi

j
∣∣+ ∣∣∆ f1

j
∣∣+ ∣∣Di

j
∣∣

+
∣∣D1

j
∣∣

+
∣∣∣Fj

i (xi(t− τi))

−Fj
i (xi(t− τ̂i))

∣∣∣
+
∣∣∣Fj

1(x1(t− τ̂1))

−Fj
1(x1(t− τ1))

∣∣∣)
+ej

i−1ui−1
j
]

+
N
∑

i = 2
(γ̃i

.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i)

+
N
∑

i = 2
eT

i−1Ki−1ei−1 + γ̃1
.
γ̃1

+d̃1

.

d̃1 + ϑ1τ̃1
.
τ̃1

−
N
∑

i = 1
σi θ̃

T
i θ̃i.

(22)

In Equation (22), bounds of disturbance and uncertainty can be applied on components
∆ fi and Di(t) as follows:∣∣∣∆ fi

j
∣∣∣ ≤ max

j

∣∣∣∆ fi
j
∣∣∣ ≤ |∆ fi(xi)| ≤ γigi(xi). (23)
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∣∣∣Di
j(t)
∣∣∣ ≤ max

j

∣∣∣Di
j(t)
∣∣∣ ≤ |Di(t)| ≤ di. (24)

Since Fi(xi(t− τi)) and xi(t− τi) are Lipschitz, their components are Lipschitz as well:∣∣∣Fj
i (xi(t− τi))− Fj

i (xi(t− τ̂i))
∣∣∣ ≤ hi|xi(t− τi)− xi(t− τ̂i)|

≤ hiδi|(t− τi)− (t− τ̂i)| = hiδi|τi − τ̂i| = hiδi|τ̃i|
= ϑi|τ̃i|

(25)

ϑi , hiδi.

Substituting the above equation in Equation (22) yields

.
V ≤

N
∑

i = 2

n
∑

j = 1

[∣∣∣ej
i−1

∣∣∣ (γigi(xi) + γ1g1(x1) + di

+d1) + ϑi|τ̃i|+ ϑ1|τ̃1|)
+ej

i−1ui−1
j
]

+
N
∑

i = 2
(γ̃i

.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i)

+
N
∑

i = 2
eT

i−1Ki−1ei−1 + γ̃1
.
γ̃1

+d̃1

.

d̃1 + ϑ1τ̃1
.
τ̃1 −

N
∑

i = 1
σi θ̃

T
i θ̃i.

(26)

Defining ui−1
j(t) as

ui−1
j(t) = −(γ̂igi(xi) + γ̂1g1(x1) + d̂i + d̂1)·sgn(ej

i−1). (27)

yields
.

V ≤
N
∑

i = 2

n
∑

j = 1

[∣∣∣ej
i−1

∣∣∣ (γ̃igi(xi) + γ̃1g1(x1) + d̃i

+d̃1 + ϑi|τ̃i|+ ϑ1|τ̃1|)
]

+
N
∑

i = 1
(γ̃i

.
γ̃i + d̃i

.

d̃i + ϑiτ̃i
.
τ̃i

−σi θ̃
T
i θ̃i) +

N
∑

i = 2
eT

i−1Ki−1ei−1

=
n
∑

j = 1
(
∣∣∣ej

i−1

∣∣∣γ̃igi(xi) + γ̃i
.
γ̃i)

+
n
∑

j = 1
(
∣∣∣ej

i−1

∣∣∣ϑi|τ̃i|+ ϑiτ̃i
.
τ̃i)

+
n
∑

j = 1
(
∣∣∣ej

i−1

∣∣∣d̃i + d̃i

.

d̃i) + (γ̃1
.
γ̃1

+
N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣γ̃1g1(x1))

+(d̃1

.

d̃1 +
N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣d̃1)

+(ϑ1τ̃1
.
τ̃1

+
N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣ϑ1|τ̃1|)

−
N
∑

i = 1
σi θ̃

T
i θ̃i

+
N
∑

i = 2
eT

i−1Ki−1ei−1.

(28)
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To determine the update rules, we determine the derivatives of the signals in (28) in
such a way that

.
V is negative. To that end, the updating rules can be set as follows:

n

∑
j = 1

(
∣∣∣ej

i−1

∣∣∣ϑi|τ̃i|+ ϑiτ̃i
.
τ̃i) = −ωiτ̃i

2 ⇒
.
τ̃i = −

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣sgn(τ̃i)− ρiτ̃i·ρi =
ωi
ϑi

. (29)

ϑ1τ̃1
.
τ̃1 +

N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣ϑ1|τ̃1| = −τ̃1
2 ⇒

.
τ̃1

= −
N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣sgn(τ̃1)− ρ1τ̃1· ρ1 = ω1
ϑ1

.
(30)

n

∑
j = 1

(
∣∣∣ej

i−1

∣∣∣γ̃igi(xi) + γ̃i
.
γ̃i) = −αiγ̃i

2 ⇒
.
γ̃i = −

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣gi(xi)− αiγ̃i. (31)

γ̃1
.
γ̃1 +

N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣γ̃1g1(x1) = −α1γ̃1
2 ⇒

.
γ̃1

= −g1(x1)
N
∑

i = 1

n
∑

j = 1

∣∣∣ej
i−1

∣∣∣− α1γ̃1.
(32)

n

∑
j = 1

(
∣∣∣ej

i−1

∣∣∣d̃i + d̃i

.

d̃i) = −βi d̃i
2 ⇒

.

d̃i = −
n

∑
j = 1

∣∣∣ej
i−1

∣∣∣− βi d̃i. (33)

d̃1

.

d̃1 +
N

∑
i = 1

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣d̃1 = −β1d̃1
2 ⇒

.

d̃1 = −
N

∑
i = 1

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣− β1d̃1. (34)

where αi, βi, and ωi are positive values. Substituting the update rules (Equations (29)–(34))
in Equation (28) yields

.
V ≤

N

∑
i = 2

eT
i−1Ki−1ei−1 −

N

∑
i = 1

(αiγ̃i
2 + βi d̃i

2 + ωiτ̃i
2 + σi θ̃

T
i θ̃i). (35)

Given that the matrixes Ki−1 are diagonal and have negative elements (Hurwitz).
Therefore: eT

i−1Ki−1ei−1 < 0.
Defined µ as

µ = min
i.j

(αi, βi, σi , ωi, ki−1,j) > 0 (36)

Using (35) for the derivative of the Lyapunov function, the following inequality is
established: .

V ≤ −µV ⇒ V(t) ≤ V(0)e−µt ⇒ V(t)→ 0 (37)

As the values of the parameters αi, βi, σi , ωi, ki−1,j augment, the convergence speed
of synchronization errors and estimation error signals to zero increases.

Therefore, the system stability is proved. Additionally, the convergence of synchroniza-
tion errors to zero in the presence of time delay, uncertainty, and disturbance is guaranteed.
The update rules for delays estimation, disturbance bounds, and uncertainty are as follows

.
τ̂i =

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣sgn(τ̃i) + ρiτ̃i.i = 2, 3, . . . , N (38)

.
τ̂1 =

N

∑
i = 1

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣sgn(τ̃1) + ρ1τ̃1. (39)
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.
γ̂i = gi(xi)

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣+ αiγ̃i.i = 2, 3, . . . , N (40)

.
γ̂i = g1(x1)

N

∑
i = 1

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣+ α1γ̃1. (41)

.
d̂i =

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣+ βi d̃i. i = 2, 3, . . . , N (42)

.
d̂1 =

N

∑
i = 1

n

∑
j = 1

∣∣∣ej
i−1

∣∣∣+ β1d̃1. (43)

Theorem 4. If τi(t) are constant values, then τ̃i(t)→ 0 . In other words, the delays are
identified accurately.

Proof of Theorem 4. Based on Equations (29) and (30), τ̃i
.
τ̃i < −ωiτ̃i

2 i = 1, 2, 3, . . . , N, as t
approaches infinity ( t→ ∞ ),τ̃i(t) approaches zero ( τ̃i(t)→ 0). Therefore, estimation τ̂i(t)
approaches the true value.

Theorem 5. If the delays change in a step-wise manner and the steps are large enough, the update
Rules (17) and (19) hold.

Proof of Theorem 4. Similar to Theorem 4 with the exception that t→ ∞ condition is
replaced with condition “the step changes are large enough”.

Note 1: If the delays vary with time and
∣∣ .
τi(t)

∣∣ ≤ si holds with si < 1, then the update
rules in (38-39) are valid with reasonable approximation.

Considering that τ̃i(t) = τi(t)− τ̂i(t),
.
τ̂i =

.
τi(t)−

.
τ̃i ≈ −

.
τ̃i, the update rules (38-39)

are valid with reasonable approximation. Moreover, under such conditions, update Rule
(29-30) is exactly valid.

Note 2: If the systems vary with time, i.e., θi = θi(t), Equations (16) and (17) hold,
which allow us to apply Theorem (3) based on which Lyapunov Function (12) can be
used, and its derivative satisfies Condition (35) as well. Hence, the Lyapunov function
approaches zero:

V → 0⇒ Vθ =
N

∑
i=1

θ̃T
i θ̃i → 0⇒

∣∣∣θ̃i

∣∣∣→ 0 (44)

Therefore, if θi(t) is a vector function with step changes and appropriate temporal
distance between the changes, the update Rules (16) and (17) hold and parameter are
estimated accurately. Let

∣∣∣ .
θi(t)

∣∣∣ < qi < 1, then update Rules (18) and (19) are valid with
reasonable accuracy.

Note 3: To guarantee the continuity of the control function, the following equation
can be used:

ui−1
j(t) = −(γ̂igi(xi) + γ̂1g1(x1) + d̂i + d̂1)·tan h(λej

i−1)).λ ≥ 10 (45)

Note 4: If the uncertainties are in their typical form, i.e., |∆ fi(xi)| ≤ γi|xi| i = 1.2. . . . .N..,
it suffices to set gi(xi) = |xi| in the update equations and the control rule.

Note 5: The final control function is as below:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i(t) + H1(x1)θ̂1(t) + Ki−1ei−1(t)− (γ̂igi(xi)+

γ̂1g1(x1) + d̂i + d̂1)·tan h(λei−1(t)).λ ≥ 10
(46)
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3. Application in Secure Communication Based on Chaotic Masking

In chaotic masking, an information signal is added to the linear combination of base
state signals. Given that Q(t) is the primary signal carried by the master system and W(t) is
the transfer message given by [38,39]:

W(t) = Q(t) +
n

∑
i = 1

ηizi(t). (47)

where zi(t) is the i-th component of the master system, and W(t) is masked using the
chaotic signal. This signal is transmitted via the communication channel from sender
to the receiver. Using the proposed controller, the multi-state chaotic synchronization is
performed in one of its states. The received signal can be recovered using the following
equation [40]:

P(t) = W(t)−
n

∑
i = 1

ηiyi(t). (48)

where yi(t) is the i-th component of the slave system. Considering the synchronization
concept, the following equation is obtained [40]:

P(t) = Q(t) +
n
∑

i = 1
ηizi(t)−

n
∑

i = 1
ηiyi(t) = Q(t) +

n
∑

i = 1
ηi(zi(t)− yi(t))

= Q(t) +
n
∑

i = 1
ηiei(t)→ Q(t)

(49)

Figure 2 shows the block diagram of chaotic masking using multi-state synchroniza-
tion. Since we have one master and two slave systems, two independent messages are
sent to the master which are encrypted, then the master is synchronized with two slaves.
After the synchronization with the receiver side, the signals are decrypted and the original
messages are recovered.
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Using chaotic masking, we demonstrated the encryption and decryption of two sinu-
soidal signals using our proposed multi-state synchronization approach. The simulation is
carried out with Matlab software. The encryption and decryption are applied when the
chaotic signals are synchronized. To evaluate this, two sinusoidal signals are added to the
master system signals. Next, the master system is synchronized with two slave systems.
Finally, based on the synchronization error, the signal is decrypted and recovered at the
receiver side.
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4. Simulation and Results

We used one Chua chaotic system and two Rössler time-delayed chaotic systems as
master and slaves, respectively. These systems are defined as follows:

.
x11 = θ11(x12 − x11 − f (x11))..
x12 = x11(t− τ1)− x12 − x13.

.
x13 = −θ12x12.

f (x11) = ax11 + 0.5(a− b)(|x11 + 1|)−|x11 − 1|.

(50)


.
x21 = −x22 − x23 + u11.

.
x22 = x21(t− τ2) + θ21x22 + u12.

.
x23 = θ22x21 − θ23x23 + x21x23 + u13

(51)


.
x31 = −x32 − x33 + u21.

.
x32 = x31(t− τ3) + θ31x32 + u22.

.
x33 = θ32x11 − θ33x33 + x31x33 + u23.

(52)

where θi,j, b, a are system parameters. The values of the parameters are set as a = − 61
44 ,

b = 3
4 , θ11 = 10, θ12 = 18, θ21 = θ31 = 0.34, θ22 = θ32 = 0.4, θ23 = θ33 = 4.5 .

τ1(t) =


1 0 ≤ t ≤ 2
0.3 2 < t ≤ 4

1 t > 4
(53)

τ2(t) =


2 0 ≤ t ≤ 3

5 3 < t ≤ 6.5
3 t > 6.5

(54)

τ3(t) =


3 0 ≤ t ≤ 2.5

5 + 0.4sin(2πt) 2.5 < t ≤ 5.5
10 + 0.6sin(πt

2 ) t > 5.5
(55)

The initial values of the parameters are set as below:

θ̂1(0) =


10
10
10
10

θ̂2(0) =


2
2
2
2

θ̂3(0) =


3
3
3
3

σi = 10 . i = 1.2.3.4.5 (56)

Under such circumstances, the parameters have step changes. In addition, the distur-
bance and uncertainties influencing the master and slave systems are expressed as

∆ f1 =

 0.2x11 sin (x11 + x13)
0.01x13 sin (x11 + x13)

0.02(x11 + x12) cos (x11 − x13)

 (57)

∆ f2 =

 0.5 sin (x21 − x22)
0.2x24 cos (x21 − 3x22)

0.5 cos (x21 + 2x23)

 (58)

∆ f3 =

 0.3x32cos(x31 + x32)
0.5sin(x31 − x32)

0.4x32sin(x31 + x33)

 (59)

∣∣∣∆ fi
j
∣∣∣ ≤ max

j

∣∣∣∆ fi
j
∣∣∣ ≤ |∆ fi(xi)| ≤ γi|xi| (60)
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D1 =

 0.2sin(π
3 t)

0.1sin( π
10 t)

0.25sin(π
4 t)

.D2 =

 0.25sin(π
2 t)

0.15sin( π
20 t)

0.20sin( π
10 t)

.D3 =

 0.3sin( π
30 t)

0.2sin( π
20 t)

0.15sin( π
10 t)

 (61)

The controller’s parameters are chosen as

αi = 1, βi = 20, i = 1, 2, 3K1 = K2 = diag(−20,−20,−20) (62)

In Figure 3, the synchronization errors and control efforts are illustrated. As can be seen,
despite the parameter uncertainties and time-variable delays, the error signals were reduced
to zero quickly. During large parameter changes, the error increased slightly but turned back
to zero quickly. Hence, the proposed controller was robust against parameter uncertainties,
external disturbance, and variable delays. Moreover, the control function was continuous and
smooth, which was helpful in the implementation of the proposed method.
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It can be noted from Figure 4 that the estimated parameters of Chua and Rössler
systems have converged to their real values. It is evident from this figure that, despite
being variable with time, the delays have also converged to their real values quickly. During
the instances when delays exhibited step changes, the system parameters deviated from
their real values, but they were corrected in short duration. Since Lipschitz conditions are
Fi(xi(t− τi)) functions, the parameter changes do not affect the delays significantly. On the
other hand, Chua is a non-smooth system, which causes more complication in the control
as well as synchronization problems.
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In Figure 5, the plots of estimation error of unknown uncertainties bounds γ̃i, i = 1, 2, 3
and unknown disturbances bounds d̃i, i = 1, 2, 3 are shown.
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It can be seen in Figure 5 that the estimation error of unknown parameter bounds
and uncertainties bounds have approached zero quickly. In the tenth second, little error is
observed, which is compensated in a short amount of time. Figures 6–8 shows the phase
curves of the slave system and indicates the chaotic behavior of the system. In spite of
various changes, the behavior of the system is still chaotic.
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Figure 8. Sample phase curves of the second slave system.

Phase curves of the master system: Chua time-delayed chaotic system (x11 − x13,
x11 − x12, x12 − x13) indicating the chaotic behavior for the provided parameters.

The phase curve of the first slave system: Rössler time-delayed chaotic systems
(x21 − xx22 − x23, x21 − x2322) which shows the chaotic behavior for the given parameters.

The phase curve of the second slave system: Rössler time-delayed chaotic systems )
x31 − x33, x32 − x33, x31 − x32) representing the chaotic behavior for the given parameters.

5. Discussion

The presented results reveal good performance of the proposed method in estimating
parameters, delays, as well as disturbance bounds and uncertainties. This in turn leads to
an acceptable performance of the overall system in synchronization and convergence of
errors to zero.

In the rest of the paper, the proposed method was evaluated in secure communication
using chaotic masking. To evaluate this, five sinusoid signals were added as messages to
the master system’s signal, independently. The decryption and recovering of each message



Sensors 2021, 21, 254 16 of 21

was done by synchronization of the master system with two slave systems. The message
signals added to the master system are given below:

S1(t) = sin(0.7t) + 2cos(5t) + 4sin(πt)
S2(t) = sin(0.8t) + 2cos(8t) + 5sin(πt)
S3(t) = 2sin(0.85t) + 5cos(5.1t) + 6sin(πt)
S4(t) = 2.5sin(0.85t) + 3.2cos(5.16t) + 5.5sin(πt)
S5(t) = 2.5sin(0.85t) + 3.2cos(5.16t) + 4.5sin(πt)

(63)

After the synchronization, the recovered signals were obtained. In Figures 9–13, the
original and recovered message signals obtained using multi-state synchronization and
chaotic masking are shown.
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Figure 9 shows the recovered signal (R1) followed the original signal (S1) very well.
Due to sudden changes in delays and parameters, there was a pick at 10 s, which was dealt
with, and after that the recovered signal faithfully followed the original signal again.

Figures 10–13 show that the original signal given to the master and received by the
slave has been recovered faithfully using our proposed multi-state synchronization method.
The advantages of the proposed method are as follows:

Guaranteed closed loop stability in the presence of disturbance, uncertainty, parameter
changes, and delays.

1. Accurate estimation of variable time delays and parameters.
2. Specifying the control laws as continuous time functions.
3. Capable of dealing with disturbance and uncertainties with unknown boundaries.
4. Faithful recovery of message signal in secure communication.

The disadvantages of our method are given below:

1. Involves relatively large magnitude of control signal in a few cases (control functions
u13, u23).

2. Changes occur solely in a step-like manner; hence, there is a large distance between
parameter changes.

In the future, we intend to extend this work by multi-state synchronization with mini-
mization of sum of control efforts and synchronization of chaotic systems with variable
parameters. Secure communication can be employed in medical applications as well [41].
Medical data stored in hospitals contain significant information about the patients. In
future work, the proposed method for secure communication can be used for medical
applications [42–47]. Synchronization of chaotic systems is also used in some other ap-
plications such as electromagnetism [48] and mechanics [49,50]. As a future work, the
chaotic synchronization method of this paper can be developed and implemented for
electromagnetic and mechanical applications.

In this paper, we have proposed that, using our multi-state synchronization and
chaotic masking method, secure communication can be achieved. In secure communica-
tion, encoding (masking) and accurately recovering the message signal is very important.
The most important feature in secure communication is the security of the method and
complexity of the algorithm, which makes decoding practically impossible or very difficult.
In this regard, important points of the proposed method are given below:

(1) Presence of delay and variable parameters in master and slave systems.
(2) Ability to switch to different slave systems.
(3) Presence of undesirable and unwanted factors such as disturbances and uncertainty.

Therefore, our proposed method helps to ensure secure communication. Accurate
retrieval of message signal was another prominent feature of this method. It can be noted
from our examples that our proposed method is able to recover the message signal faithfully
at the receiver. Hence, our proposed approach has two important properties: the ability
to mask the data and to recover the message accurately, which can be used in secure
communications.

6. Conclusions

In this paper, multi-state synchronization of two time-delayed chaotic systems with
unknown parameters and delays in the presence of unknown parameters and external
disturbance was investigated. The disturbance and uncertainties have unknown bounds,
and the master system was non-smooth. To estimate the parameters and time delays, the
Lyapunov method was used. This way, convergence of various types of defined errors
were guaranteed, and the adaptive rules for estimation of parameters and time delays were
determined. Moreover, the update of rules for the bounds of unknown parameters and
external disturbance were established. To evaluate the proposed method, the simulations
were carried out in a multi-state synchronization setting with time variable delays and
parameters. Our results revealed that the proposed controller was good at reducing the
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synchronization errors to zero with little oscillations. In addition, despite changes such as
step and sinusoid, the time delays have been identified and estimated well. Moreover, the
errors related to the bounds of unknown parameters and external disturbance converged to
zero quickly. The experimental results revealed the capability and flexibility of the proposed
method in synchronization of chaotic systems, parameters, and time delay identification in
the presence of uncertainty and disturbance. Finally, the capability of the proposed method
to recover the message signals in secure communication applications was presented. Due
to time variability of the system, the chaotic behavior was more complex, which leads to
better protection in secure communication.
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