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Abstract: Various important transcription factors in the pancreas are involved in the process of pan-
creas development, the differentiation of endocrine progenitor cells into mature insulin-producing
pancreatic -cells and the preservation of mature (3-cell function. However, when f-cells are con-
tinuously exposed to a high glucose concentration for a long period of time, the expression levels
of several insulin gene transcription factors are substantially suppressed, which finally leads to
pancreatic -cell failure found in type 2 diabetes mellitus. Here we show the possible underlying
pathway for B-cell failure. It is likely that reduced expression levels of MafA and PDX-1 and/or
incretin receptor in -cells are closely associated with (3-cell failure in type 2 diabetes mellitus. Ad-
ditionally, since incretin receptor expression is reduced in the advanced stage of diabetes mellitus,
incretin-based medicines show more favorable effects against 3-cell failure, especially in the early
stage of diabetes mellitus compared to the advanced stage. On the other hand, many subjects have
recently suffered from life-threatening coronavirus infection, and coronavirus infection has brought
about a new and persistent pandemic. Additionally, the spread of coronavirus infection has led to
various limitations on the activities of daily life and has restricted economic development worldwide.
It has been reported recently that SARS-CoV-2 directly infects 3-cells through neuropilin-1, leading
to apoptotic 3-cell death and a reduction in insulin secretion. In this review article, we feature a
possible molecular mechanism for pancreatic 3-cell failure, which is often observed in type 2 diabetes
mellitus. Finally, we are hopeful that coronavirus infection will decline and normal daily life will
soon resume all over the world.
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1. A Variety of Pancreatic Transcription Factors Are Involved in the Development of
the Pancreas and Differentiation of Endocrine Progenitor Cells into Mature Pancreatic
[3-Cells: Pancreas-Related Phenotype in Knockout Mice of Each Transcription Factor
Pancreatic islets are composed of -, 3-, 8-, -, and PP-cells, which secrete glucagon,
insulin, somatostatin, ghrelin, and pancreatic polypeptide, respectively. A variety of
pancreatic transcription factors are involved in the development of the pancreas and
differentiation of endocrine progenitor cells into mature 3-cells. Pancreatic and duodenal
homeobox factor-1 (PDX-1) was identified by several independent research groups at
around the same time. It is well known that PDX-1 plays a crucial role in the early stage
of the development of the entire pancreas [1-12]. Hb9 plays an important role in the
development of the dorsal pancreas [13,14] (Table 1). Arx, Isl-1, Pax4, Pax6, Nkx6.1 and
Nkx2.2 are also involved in the development of the pancreas [15-26]. The phenotype in
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the pancreas in knockout mice of each transcription factor is as follows: Arx knockout mice,
absence of a-cells and increase in [3- and 6-cells [26]; Isl-1 knockout mice, absence of islet
cells [15]; Pax4 knockout mice, absence of (3-cells, decrease in 5-cells, and increase in - and
e-cells [16,23]; Pax6 knockout mice, absence of x-cells, decrease in 3-, 6- and PP-cells, increase
in e-cells [17,18,24]; Nkx6.1 knockout mice, decrease in -cells; Nkx2.2 knockout mice,
absence of (3-cells, decrease in «- and PP-cells, and increase in e-cells [19,20,23] (Table 1).

Table 1. Expression pattern in mature islets and phenotype in the pancreas in knockout mice of each
pancreatic transcription factor.

Transcription Expression Site Pancreas-Related Phenotype
Factor in Mature Islets in Each Knockout Mouse
PDX-1 - and d5-cells absence of the pancreas

Hb9 B-cells absence of the dorsal pancreas

Isl-1 all islet cells absence of 1sle.3t cells and
dorsal pancreatic mesoderm

Paxd not detected absence of 3- and d-cells

increase in «- and e-cells

absence of «-cells
Pax6 all islet cells decrease in (3-, 6- and PP-cells
increase in e-cells

absence of 3-cells

Nkx2.2 &, B-and PP-cells decrease in «- and PP-cells
Nkx6.1 3-cells decrease in 3-cells
Ngn3 not detected absence of endocrine cells

NeuroD all islet cells decrease in endocrine cells
MafA B-cells decrease in insulin

biosynthesis and secretion

It is well known that PDX-1 plays a crucial role in the development of the whole
pancreas [1-12], the differentiation of endocrine progenitor cells into mature (3-cells [27-37],
and maintenance of mature 3-cell function [38-45]. PDX-1 is initially expressed in the
gut region in the early stages of embryonic development. PDX-1 expression is preserved
in endocrine progenitor cells during the development of the pancreas, but its expression
is restricted to insulin-producing (-cells in the mature pancreas. In PDX-1 knockout
mice, there was no pancreas [1], which clearly shows that PDX-1 plays a very important
role during the process of pancreas formation (Table 1). Moreover, pancreatic agenesis is
observed in subjects with loss of PDX-1 function [9]. In mature 3-cells, PDX-1 transactivates
several (3-cell-related genes including insulin, GLUT2 and glucokinase [41,42]. Abnormal
glucose metabolism, an increase in (3-cell apoptosis and a decrease in islet mass were also
observed in PDX-1 hetero-deficient mice [13,42].

NeuroD and neurogenin3 (Ngn3) function as transcription factors in the pancreas.
NeuroD plays an important role in the development of the pancreas and in regulation as
insulin gene transcription in mature (3-cells [46-52]. It was reported that in NeuroD knock-
out mice, the 3-cell number was markedly reduced, leading to severe diabetes mellitus and
perinatal death [47] (Table 1). Neurogenin3 (Ngn3) is also involved in the differentiation of
endocrine progenitor cells [51-60]. After bud formation, Ngn3 is transiently expressed in
endocrine progenitor cells, and functions as a potential initiator of endocrine differentiation.
It was reported that in transgenic mice overexpressing Ngn3, endocrine cell formation was
markedly increased [52]. In contrast, it was reported that in Ngn3 knockout mice there
were no endocrine cells. These findings clearly show that Ngn3 plays a crucial role in
endocrine differentiation [53] (Table 1).
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MafA was identified by several independent research groups around the same time.
MafA transactivates insulin gene by binding the RIPE3b1 element, and its expression is
observed only in 3-cells [61-72]. Furthermore, abnormality of glucose metabolism was
induced by MafA knockout [61]. In MafA knockout mice, insulin biosynthesis and glucose-
stimulated insulin secretion were reduced (Table 1). These findings clearly show that MafA
plays a crucial role in the maintenance of mature pancreatic 3-cell function.

2. Reduced Expression Levels of Insulin Gene Transcription Factors Such as PDX-1 and
MafA Are Involved in Pancreatic 3-Cell Failure Found in Type 2 Diabetes Mellitus

Recently, obesity has markedly increased all over the world. Previously, it was thought
that obesity was simple accumulation of fat tissues. However, it is now well known that
obesity exerts different effects on our body, depending on the site of fat deposition. Obesity
is the starting point of most metabolic diseases such as metabolic syndrome and type 2
diabetes mellitus. In subjects with obesity and/or metabolic syndrome, insulin resistance
develops mainly due to overeating and/or lack of exercise, but sufficient insulin is secreted
from intact 3-cells to compensate for the insulin resistance. However, in subjects with
insulin resistance, 3-cells have no choice but to produce and secrete larger amounts of
insulin, which finally leads to (3-cell overwork. Additionally, 3-cell function gradually
deteriorates due to a large amount of free fatty acids and / or various inflammatory cytokines
that are secreted from visceral fat tissues. This process is known as (3-cell lipotoxicity. Such
[3-cell overwork and lipotoxicity finally lead to the development of type 2 diabetes mellitus
in subjects with obesity and/or metabolic syndrome.

The major function of pancreatic 3-cells is to secrete insulin when blood glucose levels
are increased. However, when (3-cells are exposed to chronic hyperglycemia after the onset
of type 2 diabetes mellitus, 3-cell function gradually deteriorates due to overwork for
insulin biosynthesis and secretion. Once hyperglycemia becomes overt, 3-cell function
progressively deteriorates. Such f3-cell failure is often observed in subjects with type 2
diabetes mellitus and is known as pancreatic 3-cell glucose toxicity in clinical practice,
as well as in the islet biology research area. In the diabetic state, hyperglycemia and
the subsequently provoked oxidative stress suppress insulin biosynthesis and secretion
and finally lead to apoptotic 3-cell death [73-85]. This reduction in insulin biosynthesis
and secretion is preserved by mitigating pancreatic 3-cell failure with insulin preparation
or SGLT2 inhibitors [86-90]. Additionally, an important concept regarding (3-cell failure
was recently proposed. It was shown that the reduction in (3-cell mass was not only
due to apoptotic 3-cell death but also due to differentiation of insulin-producing mature
[3-cells into Ngn3-expressing endocrine progenitor cells [54,55]. Moreover, it was shown
that insulin therapy facilitated re-differentiation of Ngn3-expressing endocrine progen-
itor cells into insulin-producing mature (-cells [55]. These findings clearly show that
de-differentiation of insulin-producing mature 3-cells into other cell types is involved in
pancreatic 3-cell failure in type 2 diabetes mellitus. Additionally, such findings show that in-
sulin therapy protects [-cells not only through the suppression of apoptotic
[3-cell death, but also through the facilitation of re-differentiation of progenitor cells into
insulin-producing mature (3-cells.

Under diabetic conditions, oxidative stress is provoked through several pathways
and is involved in pancreatic -cell failure [76]. Since the expression levels of antioxi-
dant enzymes in 3-cells are very low compared to other tissues, it is thought that 3-cells
are more easily damaged by oxidative stress compared to other kinds of cells or tissues.
Provoked oxidative stress reduces the expression levels of insulin and its transcription
factors PDX-1 and MafA. Consequently, it is likely that chronic exposure of 3-cells to a high
glucose concentration finally leads to 3-cell failure by inducing oxidative stress (Figure 1).
Additionally, it has been shown that such a reduction in insulin biosynthesis and secretion
together with a reduction in PDX-1 and MafA is preserved by mitigating pancreatic (3-cell
failure with insulin preparation or SGLT2 inhibitors, especially in the early stage of diabetes
mellitus [86-90].
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Figure 1. Possible underlying pathway of (3-cell failure. Chronic hyperglycemia provokes oxidative
stress and thus substantially reduces PDX-1 and MafA expression in nuclei, which finally reduces
insulin biosynthesis and secretion. After chronic exposure to a high glucose concentration, incretin
receptor expression level is also reduced, which leads to pancreatic (3-cell failure.

It has been thought that the activated JNK pathway is, at least partially, associated
with (-cell failure. It was reported that inhibition of this pathway protected 3-cells from
oxidative stress [91]. Additionally, it was shown that inhibition of the JNK pathway
suppressed nucleo-cytoplasmic translocation of PDX-1 induced by oxidative stress [92]. On
the other hand, it was reported that MafA expression was not clearly observed in almost all
[3-cells expressing c-Jun, and that c-Jun overexpression with c-Jun expressing adenovirus
in f-cells significantly reduced MafA expression level [65]. Taken together, it is likely that
the activated JNK pathway and induced c-Jun expression are closely associated with (3-cell
failure found in type 2 diabetes mellitus (Figure 1).

Moreover, it was clearly demonstrated that MafA overexpression in (3-cells preserved
B-cell mass and function and finally alleviated -cell failure, which is often observed
in type 2 diabetes mellitus [67]. In (3-cell-specific MafA overexpressing transgenic mice,
plasma insulin levels were increased, and plasma glucose levels were decreased. Addition-
ally, B-cell mass was preserved, and insulin biosynthesis and secretion were preserved in
the 3-cell-specific MafA transgenic mice [67]. In conclusion, it is likely that down-regulation
of MafA expression is closely associated with (3-cell failure found in type 2 diabetes mellitus.

In addition, it is known that the transcription factor Nrf2 plays a crucial role in pro-
tecting (3-cells from oxidative stress. The preservation of 3-cell mass and function largely
depends on the presence of Nrf2. Indeed, it was reported that activated Nrf2 alleviates
inflammation and maintains 3-cell mass by suppressing apoptotic 3-cell death and pro-
moting 3-cell proliferation. [84]. Various kinds of Nrf2 activators have been examined in
clinical trials for the treatment for the preservation of 3-cell function and mass in addition
to the prevention of diabetic complications. We think that modulating Nrf2 activity in
(-cells would be a promising and useful therapeutic approach for the treatment of type 2
diabetes mellitus.

3. Alteration of Exosome microRNAs in Pancreatic 3-Cells Is, at Least in Part, Involved
in Pancreatic 3-Cell Failure Found in Type 2 Diabetes Mellitus

It has been thought that exosomes are a useful tool for the diagnosis and treatment
of various diseases in the early stage of the disease. It has been shown that various kinds
of exosome-microRNAs such as miR-375 and miR-29 are associated with abnormality
of glucose and lipid metabolism [93-95]. Among them, miR-375 is closely associated
with pancreatic (3-cell failure. First, a combination of inflammatory cytokines induces a
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significant change in miR-375 expression level [96]. Second, since miR-375 expression
level is higher in subjects with diabetes mellitus compared to those without it, it is likely
that miR-375 is an early marker of 3-cell failure. Third, miR-375 is important for glucose-
regulated insulin secretion. Indeed, when human embryonic stem cells differentiate into
endodermal lineages, miR-375 expression level is substantially increased. Taken together,
miR-375 plays an important role in the process of pancreas development, 3-cell growth
and proliferation, and insulin secretion, which could be regulated by the above-mentioned
pancreatic transcription factors. Furthermore, since miR-375 plays a crucial role in 3-cells,
it may be a potential target to treat diabetes mellitus. In addition, microRNAs secreted
from p-cells can be transferred to other tissues, which in turn regulates (-cell activity.
For instance, when miR-26a is transferred to the liver, it enhances insulin sensitivity and
alleviates the abnormal glucose metabolism [97]. In conclusion, the alteration of exosome
microRNAs in (3-cells is, at least in part, involved in pancreatic 3-cell failure found in type
2 diabetes mellitus.

4. Impairment of Incretin Signaling in Pancreatic 3-Cells Is, at Least in Part, Involved
in Pancreatic -cell Failure Found in Type 2 Diabetes Mellitus

Two kinds of incretins, GLP-1 and GIP bind to each receptor in 3-cells and facilitate
insulin secretion. Such insulin secretion is regulated through various pathways in 3-cells. First,
cyclic adenosine monophosphate (cAMP) facilitates insulin secretion through phosphorylation
of protein kinase A (PKA). Second, cAMP has another target Epac in (3-cells [98-101]. Third, a
physiologically low concentration of GLP-1 activates protein kinase C (PKC) and enhances
insulin secretion [102]. Taken together, it is likely that GLP-1 enhances glucose-stimulated
insulin secretion through various pathways, depending on its concentration.

It has been reported, however, that expression levels of incretin receptors in (3-cells are
reduced under diabetic conditions, leading to the impairment of incretin effects [103,104]
(Figure 1). It has also been shown that a reduction in transcription factor 7-like 2 (TCF7L2)
expression level is involved in the reduced incretin receptor expression [105-107]. Taken
together, down-regulation of incretin receptor expression after chronic exposure to a high
glucose concentration is likely associated with the impairment of incretin effects and is
involved in (-cell failure found in type 2 diabetes mellitus.

It has also been reported that TCF7L2 is closely associated with the maintenance of
-cell mass and function though activation of the AKT and mTOR pathway [108-111].
Indeed, inactivation of TCF7L2 impairs insulin secretion and abnormality of glucose
metabolism. Additionally, it is known that common genetic variations of TCF7L2 are
associated with type 2 diabetes mellitus and that subjects with its high-risk allele of TCF7L2
show impaired insulin secretion [112-116].

5. Incretin-Based Medicine Shows Protective Effects against Pancreatic 3-Cell Failure
Found in Type 2 Diabetes Mellitus

Incretin-based medicines such as the GLP-1 receptor activator and DPP-1V inhibitor
ameliorate glycemic control and mitigate the deterioration in 3-cell function in human
subjects as well as animal models. It has been reported that the GLP-1 receptor acti-
vator preserves pancreatic $-cell function and mass in several types of type 2 diabetes
animals [117-123]. For instance, it was shown that when type 2 diabetes db/db mice
were treated with the GLP-1 receptor activator, liraglutide for 2 weeks, insulin biosynthe-
sis and glucose-stimulated insulin secretion were increased [117]. Liraglutide enhanced
the gene expression involved in cellular differentiation (Hb9, NeuroD and PDX-1) and
proliferation (cyclin D and Erk-1) in pancreatic islets even in normoglycemic m/m mice,
strongly suggesting the direct effect of GLP-1 on [3-cell kinetics [117]. There have been
several similar reports so far, indicating that the GLP-1 receptor activator exerts protective
effects on f3-cell mass and function in other kinds of diabetic model animals [120-123].
Indeed, in alloxan-induced diabetic mice, both (3-cell mass and function were substantially
preserved by liraglutide treatment, which led to amelioration of glycemic control [120]. It
was also shown that (3-cell mass was preserved by liraglutide treatment due to an increase
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in 3-cell proliferation and a decrease in 3-cell apoptosis. Moreover, the beneficial effects
of liraglutide in these mice were preserved even 2 weeks after drug withdrawal [120].
In conclusion, incretin-based medicine shows protective effects against pancreatic 3-cell
failure in type 2 diabetes mellitus.

It has been shown that the GLP-1 receptor activator shows more beneficial effects in
the early stages of diabetes mellitus [118,119]. Obese type 2 diabetic db/db mice were
treated with GLP-1 receptor activator liraglutide and/or insulin sensitizer pioglitazone for
2 weeks at 7 weeks old as the early stage and at 16 weeks old as the advanced stage. Insulin
biosynthesis and glucose-stimulated insulin secretion were markedly enhanced by the
treatment only in the early stage. [119]. We assume that reduced GLP-1 receptor expression
after chronic exposure to a high glucose concentration explains why the GLP-1 receptor
activator did not show beneficial effects in the advanced stage [119]. Taken together, we
should use incretin-based medicine in the early stages without hesitation or clinical inertia
in order to maintain (3-cell mass and function and ameliorate glycemic control.

In addition, it was shown that DPP-1V inhibitor together with SGLT2 inhibitor exerted
more favorable effects on (3-cell function and mass, especially in the early stage of diabetes
mellitus compared to the advanced stage in type 2 diabetic db/db mice [90]. In the study,
7-week-old and 16-week-old db/db mice were used as an early and advanced stage of
diabetes mellitus, respectively, and all mice were treated for 2 weeks with DPP-IV inhibitor,
linagliptin and /or SGLT?2 inhibitor, empagliflozin. In the combination group, (3-cell mass
and function were significantly preserved compared to those without treatment only at
the early stage, together with enhanced (-cell proliferation [90]. Taken together, such
combination therapy shows beneficial effects on 3-cells, particularly in the early stages.

6. GLP-1 Receptor Activator Shows Protective Effects against Pancreatic 3-Cell Failure
for a Long Period of Time without Down-Regulating GLP-1 Receptor Expression Level
in 3-Cells

In general, chronic exposure to a large amount of ligand leads to down-regulation of its
receptor. Additionally, it is known that the serum GLP-1 concentration becomes extremely
and non-physiologically high after usage of GLP-1 receptor activator. It remained unknown,
however, whether the long-time usage of GLP-1 receptor activator down-regulates its
receptor. However, it was reported that GLP-1 receptor expression was not reduced, even
after treatment with the GLP-1 receptor activator, dulaglutide for as long as 17 weeks in
type 2 diabetic db/db mice [124]. Treatment with dulaglutide ameliorated glycemic control
for 17 weeks in the mice compared to those without treatment. In addition, treatment with
dulaglutide enhanced insulin biosynthesis and glucose-stimulated insulin secretion [124].
Taken together, the GLP-1 receptor activator protects 3-cells against glucose toxicity for a
long time due to preservation of GLP-1 receptor expression level in 3-cells.

GLP-1 binds to its receptor in various kinds of cells, and the complex of GLP-1 ligand
and its receptor is internalized in the cells. It is thought that receptors that are internalized
in cells preserve their expression level compared to those without internalization. Conse-
quently, although speculative, we think that such characteristics of the GLP-1 receptor could
explain, at least in part, why GLP-1 receptor expression in 3-cells was not down-regulated
even after long-term exposure to GLP-1 ligand. Moreover, a strategy for the use of some
drugs has been developed based on such phenomena [125-128].

7. SARS-CoV-2 Directly Infects Pancreatic 3-Cells through Neuropilin-1, Leading to
Pancreatic (3-Cell Failure such as Apoptotic 3-Cell Death and Reduction in
Insulin Secretion

Many subjects have recently suffered from life-threatening coronavirus infection, es-
pecially coronavirus-mediated pneumonia, all over the world, and coronavirus infection
has brought about a new and persistent pandemic. The mortality in subjects with coron-
avirus infection is extremely high, and the main reason for this is coronavirus-mediated
pneumonia [129]. It seems that in subjects with a coronavirus infection, various kinds of
inflammatory cytokines are produced and are likely associated with the aggravation of
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infection. The defense mechanism against the inflammation is substantially weakened,
especially in elderly subjects with comorbidities such as diabetes mellitus. Indeed, it was
shown that the mortality rate due to coronavirus infection was quite high in subjects with
diabetes mellitus [130,131]. Additionally, the spread of coronavirus infection has led to var-
ious limitations on the activities of daily life and the obstruction of economic development
all over the world. However, we are hopeful that coronavirus infection will decline and
normal daily life will soon resume all over the world

It is thought that there is some association between diabetes mellitus and coronavirus
infection. Although it remains unclear, subjects with diabetes mellitus are more easily
infected with coronavirus compared to healthy subjects, and it is likely that coronavirus
infection becomes severe more easily in subjects with poor glycemic control compared to
healthy subjects. In addition, although it has been thought that the deterioration of (3-cell
function is a key factor in the pathogenesis of diabetes mellitus due to coronavirus infection,
it remains controversial as to whether 3-cells are directly damaged by coronavirus or
not. Indeed, it is thought that the coronavirus does not directly infect 3-cells because of
the low expression level of angiotensin-converting enzyme 2 (ACE2), which allows the
coronavirus to go into cells [132,133]. Very recently, however, it has been reported that
SARS-CoV-2 directly infects 3-cells through neuropilin-1, leading to apoptotic 3-cell death
and a reduction in insulin secretion [134-139] (Figure 2). It was reported that there was
SARS-CoV-2-containing nucleocapsid protein in 3-cells after infection with SARS-CoV-2.
It was also shown that such phenomena were suppressed by a neuropilin-1 antagonist.
These data clearly indicate that neuropilin-1 is important for SARS-CoV-2 to go into f3-
cells. Furthermore, it was shown that neuropilin-1 expression was high in 3-cells with
SARS-CoV-2 infection compared to those without the infection. Infection with SARS-CoV-2
increases TUNEL-positive apoptotic 3-cell death. Indeed, it was reported that infection
with SARS-CoV-2 stimulated p21-activated kinase (PAK) and c-Jun N-terminal kinase (JNK)
pathways in (3-cells (Figure 2). Activation of the JNK pathway finally increases apoptotic
[-cell death and reduces insulin secretion. In addition, as described above, it has been
shown that activation of the JNK pathway reduces the expression level and activity of
insulin gene transcription factor PDX-1, which we assume also leads to a reduction in
insulin biosynthesis and secretion. It was also shown that the expression of «-cell markers
and acinar cell markers was increased in (-cells after SARS-CoV-2 infection. Therefore,
it is possible that 3-cells undergo trans-differentiation to x-cells or acinar cells after the
infection. It was also reported that elF2-mediated response was closely associated with the
pathology of (-cell failure induced by SARS-CoV-2 infection. (Figure 2). In conclusion, it is
likely that SARS-CoV-2 directly infects pancreatic (3-cells through neuropilin-1, and various
pathways are activated in 3-cells, and finally, apoptotic 3-cell death, a reduction in insulin
secretion, and trans-differentiation of 3-cells into other cell types are brought about by the
activation of various pathways in 3-cells (Figure 2).
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Figure 2. Pancreatic (3-cell failure induced by coronavirus infection. SARS-CoV-2 directly binds to
NRF1 and ACE2 in pancreatic 3-cell membrane. Then, PAK, JNK and elF2« are activated within
pancreatic 3-cells, which finally leads to increase in apoptotic 3-cell death, reduction in insulin

biosynthesis, and trans-differentiation of 3-cells to other cell types.

8. Conclusions

Various transcription factors play crucial roles in the differentiation of endocrine
progenitor cells into mature insulin-producing {3-cells and preservation of adult (3-cell
function. However, after the exposure of 3-cells to a high glucose concentration for a
long period of time under diabetic conditions, the expression levels and activities of
PDX-1 and MafA are reduced, which leads to 3-cell failure. Additionally, the expression
levels of incretin receptors in (3-cells are reduced after the onset of diabetes mellitus. It is
likely that the reduced expression level of insulin gene transcription factors and incretin
receptors explains, at least in part, the molecular mechanism for 3-cell failure found in
type 2 diabetes mellitus. Additionally, since incretin receptor expression is reduced in the
advanced stage of diabetes mellitus, incretin-based medicine shows more favorable effects
against 3-cell glucose toxicity, especially in the early stage of diabetes mellitus compared
to the advanced stage. On the other hand, many subjects have recently suffered from
life-threatening coronavirus infection and coronavirus infection has brought about a new
and persistent pandemic. Additionally, coronavirus infection has led to various limitations
on daily activities and restricted economic development worldwide. It has been reported
recently that SARS-CoV-2 directly infects 3-cells through neuropilin-1, leading to apoptotic
[3-cell death and reduction in insulin secretion. Additionally, it was shown that there was
SARS-CoV-2-containing nucleocapsid protein in 3-cells after coronavirus infection. In this
review article, we featured a possible molecular mechanism for pancreatic 3-cell failure,
which is often observed in type 2 diabetes mellitus. Finally, we are hopeful that coronavirus
infection will be cleared up and normal daily life will soon resume all over the world.
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