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Abstract

Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the move-

ments of organs and the process of drug delivery. The results can provide quantitative or

semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical

applications. However, conventional DMRI techniques suffer from low temporal resolution

and long scan time owing to the limitations of the k-space sampling scheme and image

reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based

on a golden-ratio Cartesian trajectory in combination with a compressed sensing recon-

struction algorithm. The results of two simulation experiments, designed according to the

two major DMRI techniques, showed that the proposed method can improve the temporal

resolution and shorten the scan time and provide high-quality reconstructed images.

Introduction

Dynamic magnetic resonance imaging (DMRI) has been widely used to noninvasively trace

the movement of human tissues and organs (e.g., cardiac cine MRI [1] and dynamic contrast-

enhanced MRI [2]), and the process of drug delivery. The reconstructed dynamic images

obtained via DMRI can be used to extract many quantitative or semiquantitative pathology-

related parameters. These parameters contain considerable biological and pathophysiological

information about tissues and organs during the development and occurrence of diseases.

This information can be used for clinical disease research and diagnosis; therefore, DMRI has

significant potential in clinical research and applications.

The DMRI technique uses three k-space sampling schemes: sampling based on a Cartesian

trajectory [3], sampling based on a golden-angle radial trajectory [4], and hybrid sampling

based on both Cartesian and radial trajectories [5]. All three schemes must repeatedly acquire

all or parts of the k-space data. Sampling based on a Cartesian trajectory is the traditional sam-

pling scheme and has the advantages of a simple pulse sequence design and image reconstruc-

tion method; however, this scheme suffers from low temporal resolution. The second
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sampling scheme stems from the golden-ratio angle sampling scheme proposed by Winkel-

mann in 2007 [6]. The golden-angle radial trajectory sampling scheme improves the temporal

resolution of two-dimensional (2D) DMRI to a certain extent; however, three-dimensional

(3D) DMRI still suffers from low temporal resolution. Furthermore, the radial trajectory intro-

duces aliasing artifacts into the reconstructed images [7]. The hybrid sampling scheme is a

combination of linear and radial trajectories; for example, in a 3D cylindrical k-space, Carte-

sian slice encoding can be used in the kz direction and radial sampling can be used in the kx-ky

plane. The hybrid sampling scheme improves the temporal resolution of 3D DMRI to some

extent; however, the radial trajectory part still introduces artifacts. Therefore, DMRI based on

a linear sampling scheme with high temporal resolution shows significant promise for future

clinical research and applications.

To realize DMRI based on a linear sampling scheme with high temporal resolution, we

present two basic methods in this paper. First, because the use of the golden-ratio angle pro-

posed by Winklemann improves the temporal resolution in radial trajectory, we introduced

the golden ratio into a Cartesian trajectory. Second, compressed sensing (CS), first proposed

in 2006 and widely used in many scientific fields, including fast MRI [8, 9], can be used to

reconstruct relatively high-quality images from undersampled k-space data.

In this paper, we first discuss the basic theories of the golden-ratio-based linear sampling

scheme and CS. Second, the proposed DMRI technique based on the golden-ratio Cartesian

sampling scheme and CS is described. Third, computer simulation experiments conducted to

compare the proposed and traditional methods are discussed. Finally, the future development

of the proposed DMRI technique is outlined.

Theory and methods

Cartesian k-space sampling scheme based on the golden ratio

The golden ratio is an irrational number defined as ð
ffiffiffi
5
p
� 1Þ=2. It has been widely used in

mathematics, physics, architecture, and other fields. Because of its special mathematical prop-

erties, Winkelmann proposed a k-space sampling scheme based on the golden-ratio angle [6].

This scheme provides approximately uniformly distributed k-space data within an arbitrary

reconstruction window. Therefore, it offers a high degree of flexibility in choosing an appro-

priate window length and temporal resolution, in positioning the reconstruction window, and

in combining adjacent time frames. This allows the application of sliding window reconstruc-

tion to variable window lengths and arbitrary window positioning. However, radial trajectories

introduce aliasing artifacts into the reconstructed images, whereas Cartesian trajectories do

not. We propose a k-space sampling scheme based on the golden ratio and a Cartesian trajec-

tory. Diagrams of 2D and 3D sampling schemes are shown in Fig 1(A) and 1(B). The blue, red,

and green lines in Fig 1(A) denote the first, second, and third sampling trajectories, respec-

tively. ky1, ky2, and ky3 denote the corresponding coordinates in the phase-encoding direction,

where kyn is the coordinate of the nth trajectory in the phase-encoding direction and is calcu-

lated as

kyn ¼ α � kymax

α ¼ 2modðγ � n; 1Þ � 1
ð1Þ

where α is the proportionality coefficient, mod(a,b) denotes the remainder of a/b, and γ (�

1.618) is the golden ratio. In Fig 1(B), kz is the slice-encoding direction. All the trajectories

with the same kz coordinate are defined as a profile, e.g., the blue, red, and green profiles. Data

in the blue profile are acquired first, followed by those in the red and green profiles. The data
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acquisition time of each profile is mzTR, where TR is the repetition time and mz is the slice-

encoding number.

kyn values, calculated by using Eq (1), are distributed uniformly along the y-axis. However,

the low-frequency signals are concentrated near the center of the k-space. Given that the low-

frequency signals contain the main information of the image and that information can be used

to trace tissue movement, the calculation of kyn can be improved as follows:

kyn ¼ signðαÞ � ð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � α2
p

Þ � kymax ð2Þ

where sign(α) denotes the sign of α. Fig 2(A) and 2(B) show 64 successive 2D k-space sampling

trajectories with a spatial resolution of 256 × 256 derived using Eqs (1) and (2), respectively,

where the black solid lines represent the k-space sampling trajectories. The improved trajecto-

ries in Fig 2(B) are denser near the k-space center, which could be used to reconstruct the

main information of the image.

Fig 3 shows the point spread function of the golden-angle radial trajectory and the proposed

trajectory based on Eq (2).

Fig 1. Diagrams of (a) 2D and (b) 3D Cartesian k-space sampling schemes based on the golden ratio.

https://doi.org/10.1371/journal.pone.0191569.g001

Fig 2. Diagrams of 64 successive 2D k-space sampling trajectories based on (a) Eq (1) and (b) Eq (2).

https://doi.org/10.1371/journal.pone.0191569.g002
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DMRI reconstruction method based on CS

The CS technique can be used to precisely reconstruct the images in undersampling conditions

[10]. Applying CS to MRI can significantly shorten the scanning time and provide a basis for

achieving a high temporal resolution in DMRI. The fundamental concept behind DMRI image

reconstruction based on CS is to solve the following optimization problem:

y ¼ Fx ¼ FΦ� 1z

z ¼ Φx
ð3Þ

where x is the image, y is the measured k-space data, F is the Fourier transformation matrix,

and F is a sparse matrix. Optimization of Eq (3) occurs when the vector z is the sparsest. Of

the many algorithms that can solve Eq (3), we used a total-variation-based self-adaption algo-

rithm [11], in which the following optimization problem must be solved:

x̂ ¼ argmin
1

2
ky � Fxk2

2
þ λkrxk1

� �

ð4Þ

wherer is the difference operator matrix, ||A||1 is the L1-norm, ||B||2 is the L2-norm, arg min

{C} is the minimization of the argument C, and λ is the regularization factor.

Simulation experiments

MATLAB 7.0 (MathWorks, Natick, MA, USA) was used for 2D MRI simulation experi-

ments in which a 2D “Modified Shepp-Logan” phantom image was used. Fig 4 shows the

white ball, the movement of which simulates that of human organs or tissues. Two simula-

tion experiments were designed to reflect the two main applications of DMRI. The periodic

movement of human organs (such as cardiac motion) was imaged using three different tra-

jectories for k-space data acquisition: a traditional Cartesian trajectory, a golden-angle-

based radial trajectory, and the proposed sampling trajectory. The dynamic images were

reconstructed using traditional Fourier transformation, regridding-based reconstruction,

and CS-based reconstruction. The images reconstructed using these three methods were

then compared.

Fig 3. Point spread function comparison between (a) the golden-angle radial trajectory and (b) the proposed

trajectory.

https://doi.org/10.1371/journal.pone.0191569.g003
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Experiment I

In experiment I, the size of the phantom image was 256 × 256 pixels, the ball was located at the

center of the phantom image, and its radius varied with time as a cosine function, with a period

of 640TR. The radius r(t) is expressed as

r tð Þ ¼ 15þ round 3cos
t

320
� 1

� �

π
� �� �

; 0 � t < 640 ð5Þ

where round(a) indicates that the expression a should be rounded. r(t) is in units of pixels and

has an initial value of 12 and time t is in units of TR.

The three image reconstruction methods used in the simulation experiments are based on

retrospective reconstruction [12]. Data acquired within N periods are assigned to the same

phase interval according to the state of motion of the phantom and then used to reconstruct

the corresponding phase image. Therefore, the undersampling factor can be written as

η ¼
N � ðtres=TRÞ

256
ð6Þ

where tres is the temporal resolution and TR is the unit.

To compare the results of the three reconstruction methods, we reconstructed eight phase

images that traced the states of motion of the ball, with tres = 10 and N = 1–25. In addition, the

mean aliasing artifact power (AP) between the eight reconstructed images and the phantom

Fig 4. “Shepp-Logan” phantom used in the simulation.

https://doi.org/10.1371/journal.pone.0191569.g004
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images was calculated as follows:

AP ¼
P

i;jjjIði; jÞj � jI0ði; jÞjj
2

P
i;jjIði; jÞj

2
ð7Þ

where i and j are the pixel indexes of the 2D images and I and I’ are phantom images and

reconstructed images, respectively.

Experiment II

In the second experiment, the size of the phantom image was 256 × 256 pixels, the radius of

the ball was 15 pixels, and the center of the ball moved linearly along the y-axis, where

y tð Þ ¼ � 64þ round
t

20

� �

; 0 � t < 2560 ð8Þ

where y(t) is in pixels and t is in units of TR.

To compare the results of the three reconstruction methods, we reconstructed images at

eight different times that traced the states of motion of the ball using 20 different tres values in

the range of 5–100. The mean AP values of the corresponding states of motion were also

calculated.

Parameters of the reconstruction method

The parameters of the regridding-based reconstruction method included the Kaiser-Bessel

convolution kernel [13] with a window width of 2, β = 18.5547, and an oversampling ratio of

2. For the self-adapting CS reconstruction method, we set λ = 0.05, the adaption coefficient to

0.6, the initial search step size to 1, and the maximum number of iterations to 100, and used a

Wolfe line search [14].

Simulation results and discussion

Tissue and organ motion simulation results

Fig 5 shows the images reconstructed using the four methods, with tres = 10 and N = 7 (η�
0.27). Fig 5(A)–5(E) show the phantom images, the images reconstructed from data acquired

using the conventional Cartesian sampling method, the images reconstructed from data

acquired using the golden-angle radial sampling method using the regridding reconstruction

method, the images reconstructed from the data acquired using the golden-angle radial sam-

pling method using the CS reconstruction method, and the images reconstructed using the

proposed method, respectively. The images in Fig 5(B) show severe motion artifacts and the

effects of undersampling. The images in Fig 5(C) have fewer motion artifacts than those in Fig

5(B); however, there are severe aliasing artifacts due to the effects of undersampling. The

images for the golden-ratio angle trajectory sampling combined with the CS reconstruction

method [Fig 5(D)] and the proposed method [Fig 5(E)] show better results because of the

advantages of golden-ratio linear data acquisition and CS reconstruction. The results of the

simulation show that both methods suppress motion artifacts and aliasing artifacts very well

and yield better-quality images. However, in a clinical scan, radial trajectory sampling would

suffer from the gradient delay effect caused by the MRI system, which would require additional

phase correction steps [15]. The proposed method uses Cartesian k-space trajectory sampling,

so no gradient delay-related phase correction is needed.

DMRI based on golden ratio and compressed sensing
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Fig 6 shows the mean AP values of the images reconstructed from the four methods, with

tres = 10 and N = 1–25 (η� 0.04–0.98): (a) the conventional Cartesian sampling method, (b)

the golden-angle radial sampling method combined with the regridding image reconstruction

method, (c) the golden-angle radial sampling method combined with the CS image recon-

struction method, and (d) the proposed method. The AP values of the conventional Cartesian

method are greater than 0.5 for N = 1–25, which indicates that the image quality of this method

is unacceptable. The AP values of the golden-angle radial sampling method display a down-

ward trend with increasing N. However, when η< 1, the AP value is still not ideal because the

regridding image reconstruction method generally requires the acquired data to satisfy the

Nyquist sampling theorem [16]. For this simulation experiment, at least 402 echoes must be

acquired to meet this requirement. When tres = 10, N should be>40, which is oversampling.

Fig 6(C) shows that the AP value drops to nearly zero when only five periods of data (N = 5)

are used. Under the same temporal resolution condition, the proposed method can greatly

reduce the scan time. Moreover, the proposed method provides the best image quality.

Drug delivery simulation results

Fig 7 shows the mean AP values of images reconstructed from the four methods but with dif-

ferent temporal resolutions. The AP value is higher for a lower temporal resolution for both

traditional Cartesian and golden-angle radial acquisition methods. With the traditional

method, there is a tradeoff between higher image quality and lower temporal resolution. How-

ever, lower temporal resolution causes more severe motion artifacts.

Fig 5. (a) phantom images, images reconstructed from (b) data from the conventional Cartesian sampling method, (c)

data from golden-angle radial sampling using regridding reconstruction method, (d) data from golden-angle radial

sampling using CS reconstruction method, and (e) the proposed method.

https://doi.org/10.1371/journal.pone.0191569.g005
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Fig 8 shows that when the temporal resolution is high [Fig 8(A)], the image quality is not

ideal because of undersampling. The temporal resolution of the image in Fig 8(C) is the lowest

of the three images, but the state of motion of the ball is the blurriest.

The golden-angle radial sampling method combined with the CS image reconstruction

method and the method proposed in this paper can provide high image quality under under-

sampling conditions. In addition, the image quality improves when the undersampling factor

increases because the CS reconstruction algorithm allows high-quality reconstructed images

from very little data. The proposed method and the golden-angle radial sampling method can

provide approximately uniform k-space data within an arbitrary sampling window, which a

conventional sampling trajectory cannot provide. Therefore, the proposed method can

improve the temporal resolution.

Our results also showed that when tres was >30 [Fig 7(C)] and 40 [Fig 7(D)], the AP values

increase because when selecting more data to reconstruct a frame image, movement of the

organ or tissue introduces motion artifacts in the reconstructed image, thus reducing the

image quality. Therefore, it is important to select the appropriate undersampling factor and set

the temporal resolution appropriately.

Conclusion

Conventional DMRI techniques suffer from low temporal resolution and long scan time.

Golden-angle radial trajectory sampling combined with a CS image reconstruction method

provides better results but has a gradient delay effect, which imposes the need for additional

steps to correct the phase. The proposed method improved the temporal resolution, shortened

Fig 6. Mean AP values of reconstructed images versus N with a temporal resolution of 10TR.

https://doi.org/10.1371/journal.pone.0191569.g006
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the scan time, and produced high-quality reconstructed images in the simulation experiments.

In this study, we proposed and investigated DMRI that uses golden-ratio Cartesian trajectory

sampling and a CS reconstruction algorithm. However, the proposed method has some prob-

lems. First, the state of motion of human organs or drug delivery in clinical scans is complex;

however, the simulation experiments used in our study were based on only simple cosine and

linear functions. Second, the design of the acquisition trajectories must be further optimized

because linear acquisition is more sensitive to motion in the phase-encoding direction. Third,

the CS reconstruction algorithm used in this study is a generic algorithm; the reconstruction

Fig 7. Mean AP values of the four methods with different temporal resolutions.

https://doi.org/10.1371/journal.pone.0191569.g007

Fig 8. Reconstructed images from the golden-angle radial sampling method with temporal resolutions of (a) 10TR, (b)

30TR, and (c) 50TR.

https://doi.org/10.1371/journal.pone.0191569.g008
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algorithm needs improvement. Finally, the proposed method must be studied in more detail

and validated after evaluation in a clinical situation.

Supporting information

S1 Matlab code. This is the major part of the simulation codes.
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