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This paper presents a novel real-time dynamic framework for quantifying time-series

structure in spoken words using spikes. Audio signals are converted into multi-channel

spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator.

These spike trains are mapped into a function space of infinite dimension, i.e.,

a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a

state-space model learns the dynamics of the multidimensional spike input using

gradient descent learning. This kernelized recurrent system is very parsimonious and

achieves the necessary memory depth via feedback of its internal states when trained

discriminatively, utilizing the full context of the phoneme sequence. A main advantage

of modeling nonlinear dynamics using state-space trajectories in the RKHS is that

it imposes no restriction on the relationship between the exogenous input and its

internal state. We are free to choose the input representation with an appropriate

kernel, and changing the kernel does not impact the system nor the learning algorithm.

Moreover, we show that this novel framework can outperform both traditional hidden

Markov model (HMM) speech processing as well as neuromorphic implementations

based on spiking neural network (SNN), yielding accurate and ultra-low power word

spotters. As a proof of concept, we demonstrate its capabilities using the benchmark

TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword

spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end

without time-derivatives, our MFCC-KAARMA offered improved performance. For

spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions.

Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in

certain low signal-to-noise ratio (SNR) regime.

Keywords: spike-based learning, noise-robust automatic speech recognition (ASR), keyword spotting, kernel

adaptive filtering (KAF), reproducing kernel Hilbert space (RKHS), kernel method, neuromorphic computation

1. INTRODUCTION

Automatic speech recognition (ASR) or the task of translating audio signal into text is an especially
challenging problem due to both the non-stationarity of speech signal and the large variations
in its spatiotemporal representation. Particularly, the variability in the temporal dimension of
speech signal prevents state-of-the-art pattern classifiers such as support vector machines (SVMs)
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(Scholkopf and Smola, 2001), which are limited to static
patterns or fixed (constant) dimension inputs, from being
implemented in a straightforward manner. Compounding the
issue is that performance often degrades significantly under noisy
environments.

Figure 1 illustrates a typical ASR system. Following pre-
processing, which includes speech/non-speech detection and
filtering, feature extraction is performed on the post-processed
speech signal to form a compact representation. Desirable speech
features should emphasize linguistic information over extraneous
content such as the speaker’s age, emotion, gender, etc. The most
commonly used features in speech recognition systems are Mel-
frequency cepstral coefficients (MFCCs) (Davis andMermelstein,
1980). The extraction process involves segmenting the speech
signal into quasi-stationary short-time frames of 20–40ms,
overlapped every 10ms (i.e., frame-rate of 100 fps). For each
frame, a Mel-scale filter bank is applied to its power spectrum
estimate. TheMFCCs are defined as the discrete cosine transform
(DCT) of the log energies in the corresponding frequency bands.
They measure the power spectrum envelope in each frame, which
correlates to the shape of the vocal tract, providing an appropriate
representation of the sound or phone being produced.

At the heart of an ASR system is the decoder. Feature
vectors are decoded into linguistic units that make up
speech, using acoustic models learned from recordings and
their corresponding transcripts. Linguistic and pronunciation
knowledge are often used to improve the decoding performance
(Kuhn and Mori, 1990; Bengio et al., 2003; Mikolov et al.,
2010). The standard approach to tackle ASR is to impose a
statistical framework by scoring each speech signal with words
in a vocabulary on a probability scale, with the most likely
word selected as the ASR output. The hidden Markov model
(HMM) was the most widely used acoustic model for speech
recognition (Rabiner, 1989) until recent years and is still used
for many practical applications. Under this statistical framework,
the observations or speech feature vectors are modeled as
acoustic signals generated by a stationary process, while the
transition probabilities in the hidden states account for the time-
varying nature of speech. Current advances in accuracy achieved
with deep learning (DL) (Hinton et al., 2012) are mismatched
with mobile devices and resource-constrained systems, due
to difficulty of training, power, and footprint requirements.
Conventionally, these applications utilize cloud-based solutions,
where processing is performed on large remote servers. However,
this imposes additional demands on quality of service. There are
many mobile applications where the on-device acoustic model
output accuracy is insufficient.

Figure 2 shows a typical discrete HMM, parametrized by an
initial state distributionπ = {πi = Pr(S1 = si)}, a state transition
probability matrix A = {ai,j = Pr(St = sj|St−1 = si)}, an
observation distribution B = {bi(ut) = Pr(ut|St = si)}, where
U = {u1, u2, · · · , uf } is an f -frame observation sequence, and
S = {s1, s2, · · · , sL} is the underlying state sequence of length L,
which forms a first-order Markov chain. The Gaussian mixture
model (GMM) is typically used to approximate the observation
distribution B. An HMM (π,A,B) can be estimated using the
Baum-Welch (BW) algorithm (Baum et al., 1970), a special

case of the expectation-maximization (EM) algorithm (Dempster
et al., 1977). In ASR, one HMM is trained for each speech
unit (e.g., phone, syllable, word, etc.,) in the vocabulary. A test
utterance is compared to all trainedHMMs, in order to determine
the likelihood that it was generated by a particular HMM. This
framework represents an unsupervised learning paradigm. As
a maximum-likelihood estimation (MLE) method, it relies on
strong assumptions on the statistical properties of the observed
phenomenon, but lacks discriminative power among different
models.

Since humans naturally and very efficiently decode speech
and perform better than most ASR systems, especially in noisy
environments, it is only logical for researchers to turn to
biological inspiration in the design of ASR systems. As amatter of
fact, MFCC already makes use of the psychoacoustic properties
of the auditory system (the Mel scale imitates the cochlea by
employing linearly and logarithmically distributed filters along
the frequency axis, with the cutoff at 1 kHz), a fine tuned
preprocessing step in the human auditory system. The pressure
waves originating from the cochlea are translated into spike
trains by the peripheral auditory neurons, which travel through
nerve fibers to the auditory cortex. The computation in this
complex and hierarchical structure is carried out via action
potential timing information. Computing with spikes is therefore
an important aspect to bio-inspired ASR.

There has been limited research in spike train representation
for spoken word recognition (Hopfield and Brody, 2001;
Verstraeten et al., 2005;Wade et al., 2010; Zhang et al., 2015). The
state-of-the-art spike-based ASR systems are based on spiking
neural network (SNN) such as liquid state machines (LSMs)
(Maass et al., 2002). LSM utilizes a large randomly initialized
network with recurrent connections, also referred to as a dynamic
reservoir or liquid. The parameters of the liquid remain fixed,
and only a readout layer is adapted through training to optimally
project the network or liquid states onto the desired output.
The LSM falls under a general framework called reservoir
computing (RC), which is further identified as an echo state
network (ESN) (Jaeger, 2001) for continuous valued inputs and
LSM for spike train inputs. The primary advantage of the LSM
approach is that it does not require consideration for time
dependency of the learning task, since all temporal processing
is performed implicitly in the recurrent neural circuit. RC is
free from the problems associated with gradient-based recurrent
neural networks training such as local optima, slow convergence,
and high computational complexity. However, performance
depends largely on the reservoir hyperparameters that need to
be cross-validated appropriately to find an optimal solution,
without which RC is a less reliable convex universal learning
machine (CULM) than conventional adaptive networks using
kernel adaptive filtering (Príncipe and Chen, 2015). Furthermore,
producing a constant output for time-varying liquid state is a
major challenge for LSM, since its memory-less readout has to
transform the transient and non-stationary states of the liquid
into a stable output without the assistance of stable states or
attractors (Maass et al., 2002).

In our previous work (Li and Príncipe, 2016), we introduced
a novel online kernel adaptive filtering algorithm: the kernel
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FIGURE 1 | Automatic speech recognition system diagram.

FIGURE 2 | Example of an L-state left-to-right discrete HMM used for ASR, with two non-emitting states: s1 and sL. For each emitting state, the HMM can only

remain in the same state or move to the next state on its right.

adaptive autoregressive-moving-average (ARMA) or KAARMA.
We demonstrated this kernelized recurrent network’s ability to
model dynamical systems and as a bit-stream classifier using
the benchmark Tomita grammars. Specifically, we showed that
KAARMA-based solutions can outperform LSMs on spike data,
which opened the door for many novel neuroscience applications
(Dura-Bernal et al., 2016). Furthermore, we have successfully
applied the methods to model flight dynamics of insects and
plant growth patterns (Li and Príncipe, 2017a,b; Li et al., 2017).
Since speech production is both nonlinear and non-stationary in
nature, KAARMA can deliver computationally efficient solutions
for ASR as we demonstrate below.

In this paper, we propose a novel paradigm to work with
spike timing information. Instead of projecting the input spike
train nonlinearly into a much higher dimensional space using
a recurrent interconnection of spiking neurons as is done
with LSM, we project the input spike trains into an infinite
dimensional function space (RKHS) using positive definite

functions, where we train a linear state-space model with a very
small order using backpropagation and the kernel trick. The
theory of adaptive signal processing is greatly enhanced through
the integration with the theory of RKHS. By performing classical
linear methods in an infinite-dimensional feature space, online
kernel learning (Kivinen et al., 2004), such as kernel-Adaline
(Frieß andHarrison, 1999), kernel recursive least-squares (KRLS)
(Engel et al., 2004), kernel least mean square (Liu et al., 2008),
and extended-KRLS (Liu et al., 2009) algorithms provide general
nonlinear solutions in the original input space. It also gives rise
to kernel Kalman implementations, such as using subspace kernel
principal component analysis (Ralaivola and d’Alche Buc, 2005)
and statistical embedding (Zhu et al., 2014) to model nonlinear
dynamics.

A major advantage of the KAARMA algorithm is that it
works with functions in the RKHS and changing the kernel
function does not impact the underlying learning algorithm.
Therefore, KAARMA is agnostic to the type of input and can
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be applied to static data using Gaussian kernels, or directly to
spike trains, by designing an appropriate spike kernel (Park et al.,
2012, 2013). In this paper we use a biologically-inspired auditory
filterbank and a LIF neuron model to convert the continuous-
amplitude signal output from each channel of the filterbank into
a sparse spike train representation, to create a multichannel spike
train, encoding the signal-structure changes in each frequency
band. The spike trains are then segmented using a sliding
window into frames of fixed duration and frame rate or stride,
similar to conventional speech processing. A special designed
temporal kernel then maps the spike-train frames to an RKHS
by estimating the distance between successive frames of the spike
trains, using their precise spike timings. Inference is performed
not on individual frames, but on sequences of spike-train frames
without assumption on the sequence length. Nonlinear ARMA
networks have theoretical capability to model dynamics of
arbitrary complexity. This methodology suggests a novel way to
apply spike-based computation using a recurrent neural coding
algorithm in RKHS as an alternative for a biologically-inspired
robust ASR system. Without any feature engineering step, we
evaluate how well this spike-based KAARMA ASR performs
compared to conventional amplitude-based MFCC-KAARMA
and other SNN solutions. We also evaluate the inherent noise-
robustness of the spike-train sparse representation, due to the
smoothing effect of the integration operation in the LIF neuronal
model.

The rest of this paper is organized as follows. In section 2,
we briefly introduce the KAARMA methodology. We present
its application for bio-inspired spike-based ASR in section 3.
Performances of the proposed KAARMA classifiers are evaluated
in section 4. Section 5 concludes this paper.

2. METHODS

We would like to model and learn the temporal evolution
of speech time-series acoustical features’ structure encoded in
spike trains. The goal, here, is a bio-inspired ASR system
where as much of the traditional speech pipeline as possible is
replaced by a recurrent network architecture. Specifically, we
wish to evaluate an end-to-end spike-based keyword spotting
system, without hand-designed feature extraction algorithm,
past the spike-generation stage. Furthermore, we wish to use a
unifying framework that does not depend on input signal type.
For example, conventional artificial neural network and SNN
have completely different output and learning mechanisms due
to the non-differentiable activation functions associated with
discrete spikes. To accomplish this, we apply the theory of
RKHS to map the inputs into a function space and construct
a recurrent network in this space. This way, the learning
algorithm is defined not in terms of the input representation
(continuous-valued attributes vs. discrete spikes), but in terms
of dot products between respective infinite-dimensional features,
where they can be computed in closed form using the kernel
trick. Thus, we are free to choose the input representation
independently with an appropriate reproducing kernel, and
changing the input-kernel pair does not impact the learning

algorithm itself. An additional drawback of conventional speech
pipeline is alignment, specifically frame-level training targets.
We can resolve all the issues mentioned by modeling speech as
a dynamical system and treating isolated word recognition as
a grammatical inference task trained on sequences and not on
individual frames, using the kernel adaptive ARMA algorithm.

2.1. Kernel Adaptive ARMA Algorithm
Here, we briefly introduce the KAARMA algorithm for isolated-
word speech recognition or keyword spotting, while the
adaptation of parameters is presented in the Appendix (see
Supplementary Material) for completeness. For a more in-depth
derivation, please refer to Li and Príncipe (2016).

A dynamical system approach studies the evolution of
observables over time according to specific rules. We can trace
it to a classical Newtonian root: the forces are much simpler
to describe than planetary motions. Under this framework,
even seemingly-chaotic time series actually follow an easy to
explain hidden order, and a dynamical model allows us to find
such attracting behavior. Rule discovery provides a compact
and convenient way to analyze and model a class of equivalent
trajectories but with large variations in realization.

First, let us define a dynamical system using a state-
space representation with a general continuous nonlinear state-
transition function g(·, ·) and an observation function h(·) :

xi = g(si−1, ui), (1)

yi = h(xi)
1
= h ◦ g(si−1, ui), (2)

with input vector ui ∈ R
nu , hidden state vector xi ∈ R

nx , output

vector yi ∈ R
ny , the augmented state vector si

1
= [xi, yi]

T , and
the function composition operator ◦. For our application, the
state-transition function g(·, ·) describes the dynamics driven by
the input speech ui and the previous state (for isolated word,
all speech sequences are assumed to have the same initial state).
The sequence output yi is related to the states and inputs by
observation function h(·).

Using a grammatical-inference formulation, the only thing
we know during training are labels for the full sequences or
speech utterances, i.e., the final sequence output yf = {±1}
for positive or negative examples of a target class or word
model. The state and transition functions can be parametrized
with weight values of a fully connected recurrent network and
learned using backpropagation of the label error at the end
of each speech sequence. This task is an inference problem as
opposed to a prediction one, i.e., a sequence-based approach
vs. the conventional frame-based approach of an HMM. There
is no prediction of the next frame of speech in the utterance
sequence. The network either accept or reject an entire utterance
at the end of each sequence. This is a more difficult problem
than prediction, since we do not have complete classification
knowledge of every subsequence (i.e., when prediction and
inference are equivalent). On the other hand, it does not require
a frame-level target or alignment, i.e., a desired signal di is not
required at each time/frame index of output yi, only for the
final index yf ; the internal state trajectories si are also learned
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directly from the training sequences (given a fixed initialized
state) without any observables except at the end of the sequence
when yf = {±1} for sf = [xf , yf ]

T ; and, this dynamical
model makes no assumption on the speech utterance duration
or sequence length f , i.e., it can operate on sequences of arbitrary
length.

Adaptation of parameters in the linear state model is very
well understood, and the famed Kalman filter (Kalman, 1960)
presents a very efficient recursive update algorithm that can be
computed in real time. The problem of the linear state model is
that it is not universal, i.e., it only can solve problems with small
error when the desired response exists in the span of the input
space (Haykin, 1998). Past work with dynamical modeling of
speech shows that the linear dynamical model is not competitive
with the HMM statistical model. The theory of RKHS allows
classical linear method to produce general nonlinear solutions,
and by operating in a new, function space, we are freed from the
limitations of the original input representation/space.

To emphasize the input-agnostic property of a function-space
formulation for applications using either continuous-valued
input or discrete-time events, we first describe the KAARMA
algorithm using a generic input sequence ui, then specify it
for spikes in section 2.2, which basically amounts to a simple
substitution on the kernel choice. Using the representer theorem,
we can express the state-space model Equation (1-2) as a set of

weights (functions in the input space) in the joint RKHS Hsu
1
=

Hs ⊗Hu

�
1
= �Hsu

1
=

[

g(·, ·)

h ◦ g(·, ·)

]

, (3)

where ⊗ is the tensor-product operator. Finally, the kernelized
state-space model becomes

si = �
Tψ(si−1, ui), (4)

yi = Isi, (5)

where ψ(si−1, ui)
1
= ϕ(si−1) ⊗ φ(ui) is a feature in the joint

RKHS and I
1
=

[

0 Iny

]

is a fixed selector matrix with Iny is an

ny × ny identity matrix, used to extract the output components y
from the augmented state vector s. This is analogous to a second-
order recurrent neural network defined in a function space in our
previous work (Li and Príncipe, 2016).

It follows that the tensor-product kernel is defined as

〈ψ(s, u),ψ(s′, u′)〉Hsu = Ksu(s, u, s
′, u′) = (Ks ⊗Ku)(s, u, s

′, u′)

= Ks(s, s
′) ·Ku(u, u

′). (6)

This construction has several advantages over the simple
concatenation of the input u and the state s. First, the product
of two positive-definite (PD) kernels is also a PD kernel. Second,
since learning is performed in an RKHS using features, there
is no constraint on the original input signal representation
or the number of signals, as long as we use an appropriate
reproducing kernel for each signal. Additionally, the sum or

average of two PD kernels is also a PD kernel for multi-channel
input. More importantly, this formulation imposes no restriction
on the relationship between the signals in the original input
space. This is especially useful for input signals having different
representations and spatiotemporal scales. Specifically, under
this framework, we can model a neurobiological system, taking
continuous-amplitude local field potentials, discrete-events-in-
continuous-time spike trains, and vectorized state variables as
inputs.

Figure 3 shows a graphical interpretation of a dynamical
system defined in a joint RKHS using a product kernel. Data
instances are processed using inner products or similarity
measures. The tensor-product kernel is analogous to a soft-
valued logical AND operator on the joint similarity measure. To
output a desired next state requires both an appropriate current
input AND the right previous state. In general, the states si are
assumed hidden, and during training, the desired signal does not
need to be available at every time step, e.g., a deferred desired
output value (±1 sequence label vector) for yi may only be
observed at the final indexed step i = f .

The KAARMA preserves the simplicity of linear dynamical
models with the universality of functional spaces, so it is an
attractive candidate to substitute linear dynamical systems in
computational neuroscience applications using either local field
potentials or spike trains. In computational neuroscience there
is a chasm between the methodologies for spike trains and
continuous amplitude signals that can be easily bridged with
RKHS methodologies. Indeed the same machine learning code
can be utilized for both types of signals, once specific kernel
are designed for each signal modality. The application for
speech recognition exemplifies a statistical learning approach
to work with spike trains, which improves the biorealism of
the processing and lets us take advantage of the spike timing
information.

The fundamental building block for designing the KAAMA
for spike trains is therefore the kernel, which will be explained
next.

2.2. Reproducing Kernel Hilbert Space
(RKHS) for Spike Trains
We want to study how information is represented and processed
as spike trains using the theory of RKHS. Since spike trains are
devoided of a natural algebra, they impose many challenges to
signal processing methods. We must first establish a space for
computation or transformation to a space with the necessary
properties. The approach explained here is to define a proper
kernel function on spike trains to capture non-parametrically
the instantaneous temporal structure and the variability of the
spike trains of interest. Once a positive-definite kernel is defined,
it maps the spike trains into a Hilbert space of functions which
allows signal processing tools to be applied directly through the
kernel trick, as shown in Figure 4.

We use the Schoenberg kernel (Park et al., 2012), a universal
binless nonlinear spike train kernel, to define the joint tensor-
product RKHS. This kernel is bio-inspired using conditional
intensity function of a temporal point process. Among spike train
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FIGURE 3 | Block diagram of the kernel adaptive ARMA (KAARMA) algorithm. The values of the adaptive weights � in the feature space are learned using

backpropagation and the kernel trick. In general, the states si are assumed hidden, and during training, the desired value for label yi is only observed at the end of the

sequence, i.e., at the final indexed time step i = f .

FIGURE 4 | Graphical interpretation of a reproducing kernel Hilbert space

defined on spike trains. Spike trains with precise spike timings are mapped

into an infinite-dimensional feature space (Hilbert space). Applying the kernel

trick allows inner products in this space to be computed without explicit

reference to the feature representation.

kernels [count and binned kernels, spikernel (Shpigelman et al.,
2005), linear functional kernels (Paiva et al., 2009), and nonlinear
functional kernels (Park et al., 2012)], the Schoenberg kernel
has three distinct advantages: (1) provides injective mapping, (2)
embeds arbitrary stochasticity of neural responses as the sample
mean in the RKHS, and (3) approximates arbitrary function on
spike trains as a universal kernel (Park et al., 2013).

A spike train or sequence ofM ordered spike times, i.e., S(i) =

{tm ∈ T :m = 1, · · · ,M} in the interval T = [0,T], can be
viewed as a realization of an underlying stochastic point process

with conditional intensity function λ(t|H
(i)
t ), where t ∈ T =

[0,T] denotes the time coordinate, and H
(i)
t is the history of the

process up to time t. The point process is approximated as a
zero-baseline-rate Hawkes process (Hawkes, 1971). Schoenberg
kernel between the conditional intensity functions of two point
processes (Paiva et al., 2009; Park et al., 2012; Dura-Bernal et al.,
2016) is defined as

Kaλ (λ(t|H
(i)
t ), λ(t|H

(j)
t ))

1
= exp

(

−aλ

∫

τ

(λ(t|H
(i)
t )− λ(t|H

(j)
t ))2dt

)

,

(7)
where aλ > 0 is the spike-train kernel parameter. The conditional
intensity function of the self-exciting point process with zero
background rate is approximated by convolving the precise spike
times with a smoothing kernel g(t), yielding

λ̂(t) =

M
∑

m=1

g(t − tm), {tm ∈ T :m = 1, · · · ,M}. (8)

It computes the similarity between a pair of spike trains in
T , either from a single neuron at different times or from
a pair of neurons. In this application, instead of two spike
trains from different frequency bands, we are interested in
quantifying the time-series structure or difference in conditional
intensity functions across time of the same spike channel. For
computational simplicity, we use the rectangular function g(t) =
1
T

(

U(t)− U(t − T )
)

, where U(t) is a Heaviside function and
T is chosen to be much greater than the average inter-spike
interval. Since we are interested in time-binned or frame-based
raw spike events, T is effectively set to the frame duration.
Figure 5 illustrates this squared distance between the conditional
intensity function estimates of two spike-train frames S(i) and
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FIGURE 5 | The Schoenberg spike kernel computes the similarity between a pair of spike trains. In this application, we compare the conditional intensity function

estimates for spike-train frames S (i) and S (j) at different times in a given frequency band or channel. Using Heaviside step function for smoothing greatly simplifies the

computation. We can visualize it as a sum of squared pair-wise spike-timing differences between two unit-step staircase functions (squared areas in blue) or as

squared Euclidean distance on ordered sets of spike timings, with the fewer-spike set padded with frame duration time T. For multichannel spike input, the sum or

average distance is used.

S(j) at different times for a given frequency band or channel,
i.e., the integral in Equation (7) using Equation (8). In this
formulation, the spike-train distance only depends on the precise
spike timings in ordered sets. When two spike trains are “close,”
more of their spike timings are synchronized, yielding a smaller
pair-wise distance.

For multichannel spike input, we sum or average the spike-
train distances over all channels in each time frame. Specifically,
the multichannel spike trains are segmented into frames or
smaller spike trains the same way as the MFCCs, with a frame
duration of 25 ms and rate of 100 fps. Figure 6 illustrates a
KAARMA network working directly on spike trains.

2.3. Comparisons Between Spike-Based
Kernel Approach vs. LSM
The LSM and the KAARMA are both adaptive recurrent models
that operate with spike trains, but the similarity ends here.

The LSM uses a recurrent layer of spiking neurons, designed
by a user, to project the input spike data into a high dimensional
space, where it will be easier to find a learned projection that
fulfills the data processing goal. Clearly, not all projections to
high dimensional spaces will preserve the information contained
in the input spike train, therefore, the designer must select a
hyperparameter that achieves the prescribed separation property
or SP (Maass et al., 2002). SP is quantified by a kernel-quality
measure proposed in Maass et al. (2005) that is based on the rank
of amatrix formed by the system states corresponding to different
input signals (Bertschinger and Natschläger, 2004). Therefore, SP
is signal and application dependent, which means that creating
the optimal liquid is still today more of an art than a science. The
advantage of the LSM is that it uses directly the instantaneous
intensity function of the spike trains because it is a dynamical
system.

The KAARMA handles the processing of spike trains in a very
different way. First, the spike trains are projected to an infinite
dimensional space of functions (RKHS) with the Schoenberg
kernel using the instantaneous conditional intensity function
estimated on an interval. Linear models in RKHS are universal

mappers, i.e., they can approximate any input-output map. In
this space, one can train a linear state model directly from data to
learn the spike train structure and deliver a high quality mapping
with very small model orders, using directly the input data (the
representer theorem). So instead of a high dimensional and
usually randomly created and fixed reservoir that an LSM uses,
the KAARMA uses the functions in the Hilbert space centered
by the projected input spike trains. This RKHS is based entirely
on the available data samples with optimized adaptive weights.
The spike kernel still operates with instantaneous information
but now in the conditional intensity function of learned data,
which is a suitable approximation to the intensity function, but
requires the selection of a hyperparameter.

3. AUTOMATIC SPEECH RECOGNITION
SYSTEM USING KAARMA

We can treat certain speech recognition tasks as grammatical
inference problems and apply the KAARMA algorithm to learn
temporal structures of speech features with arbitrary length,
analogous to syntactic pattern recognition involving the Tomita
grammars (Li and Príncipe, 2016). As a recurrent network, the
KAARMA algorithm exploits the full contextual information of
the entire feature sequence to create a discriminative model. It
makes no assumption on the model topology of the data, and the
states are learned completely from the observations.

Many spoken words share similar or identical acoustic
features. Given the large variations in speech production,
common trailing phoneme can be difficult for recurrent
systems learning long-term dependencies, where long-drawn-
out overlapping ending sequences can cause two different word
models to converge. One simple way to circumvent this problem,
without significant change to the experiment, is to simply reverse
the temporal order of the acoustic features, such that the trailing
sequences no longer overlap, and train a KAARMA classifier that
recognizes this new input ordering. Digits that used to share the
same trailing phoneme may end up in different ones (of course
the opposite can also happen). To maximize recognition rate for
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FIGURE 6 | Spike-input KAARMA network unfolded in time for f frames. The multichannel spike-train input frames are mapped into a joint RKHS with the current

hidden state vector using a tensor-product kernel to generate the next state vector. The final state vector at frame f contains the prediction label for the entire

sequence.

each digit, we can combine the results of two networks trained
on sequences in the natural left-to-right temporal direction and
the reversed right-to-left ordering, by simply multiplying their
softmax scores. Flipping the sequence ordering generates a new
complementary grammar that can be combined to enhance
classification results. This is a feature that is entirely missing in
HMMs, due to theMarkov property that states are formed locally
and only operate on adjacent observation vectors. States in a
recurrent network, on the other hand, are memory units which
encode the entire past history, starting from an initial state, and
indicate a global status. To further reduce the need to learn long-
term dependencies and to simplify computation, we can partition
a speech feature sequence into smaller segments, without the
need for complicated alignment, which we discuss in detail
next.

3.1. KAARMA Chain
Here we formulate the KAARMA chain approach for isolated
word recognition under a simple statistical framework. First, let
us revisit the conventional HMM in Figure 2. In the hidden
Markov model, speech signal, specifically, the sequence of
acoustic feature vectors U = {u1, u2, · · · , uf } is generated by a
finite state automaton consists of L states S = {s1, s2, · · · , sL}
under a probabilistic framework. An HMM is equivalent to a
stochastic regular grammar (Lari and Young, 1990). Each speech
unit is associated with a specific Markov model Mi comprised
of states from S according to a predefined topology. The left-
to-right (Bakis) model is the most commonly used topology for
speech recognition (Bakis, 1976). States are aligned from left
to right to form a single Markov chain, indexed incrementally
and with only self- or right-transitions allowed, i.e., ai,j =

0, for j < i. Furthermore, the initial state is fixed at state s1. Left-
to-right HMMs are able to model the temporal properties of
speech.

The training and recognition criteria for HMMs are based
on maximizing the a posteriori probability Pr(Mi|U ) that the
observation U has been produced by the HMMMi. Using Bayes’
rule, we can rewrite the expression as

Pr(Mi|U ) =
Pr(U |Mi)Pr(Mi)

Pr(U )
, (9)

where Pr(U |Mi) is the maximum likelihood estimate (MLE)
criterion, Pr(U ) is constant during recognition, and the a priori
probability Pr(Mi) is an appropriate language model.

The BW algorithm can be used to maximize the likelihood
estimate of the parameters of a HMM, given the set of observed
feature vectors. Alternatively, the MLE can be replaced by the
Viterbi criterion, where only the most probable state sequence of
producing U is considered

P̂r(U |Mi) = max
S

Pr(S ,U |Mi), (10)

and the optimal S∗ is given by

S
∗ = argmax

S

L
∏

ℓ=1

Pr(sℓ|sℓ−1)Pr(uℓ|sℓ), (11)

which can be solved using the Viterbi algorithm (Viterbi, 1967).
This frame-based approach is fundamentally different from our
novel sequence-based approach which requires no alignment or
frame-level target for isolated word recognition.

Under a hybrid ANN-HMM paradigm, connectionist
statistical methods (Franzini et al., 1990; Levin, 1990; Morgan
and Bourland, 1990; Niles and Silverman, 1990; Robinson, 1994)
were proposed as improvements to the standard HMM. It is
well-established that the outputs of a multilayer perceptron
(MLP) operating in classification mode can be interpreted as
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FIGURE 7 | Example of a KAARMA chain of three equal-partition grammar states.

estimates of the local a posteriori probabilities of output classes
conditioned on the input (Bourlard and Wellekens, 1990)

y∗j (ui) = p(sj|ui), (12)

where y∗j is the optimal (MLP with sufficient parameters and

no local minimum) classification output value for state sj. In
the hybrid approach the a posteriori probabilities are converted
into the HMM emission probabilities p(ui|sj) by dividing the
MLP output by the prior class probabilities. To provide context
information, 2c+ 1 frames were used at the input (where c is the
context window parameter, with the current input frame centered
in the middle) of the MLPs in Boulard and Morgan (1993), and
RNNs were used in Robinson (1994).

A mixture-of-experts ESN architecture with a winner-take-all
update strategy exhibited superior noise-robustness than HMM
(Skowronski and Harris, 2007) for continuous-valued human
factor cepstral coefficients (HFCC) (Skowronski and Harris,
2004). Multiple readout filters are grouped together to form a
state (paralleling the Gaussian mixture of a Bakis HMM state),
and test utterances were classified as the word model with the
lowest mean-squared prediction error (MSE) along the Viterbi
path for each model. Context features were used (first- and
second-order temporal derivatives over ±4 frames), along with
the log energy of each frame. Our approach, on the other hand,
learns the contextual information directly from the input stream,
without being hard-coded at each time step (a 12-dimension
vector vs. the 39-dimension speech feature of the ESN), and
the internal states are integrated under a unifying framework.
The KAARMA recognition results are also directly obtained,
without the need for Viterbi computation. Furthermore, while
the ESN matched the baseline HMM performance for noise-
free conditions, we will show that automatically learned
recurrency can outperform HMM using the same inputs, for a
computationally simpler implementation.

3.1.1. Grammar States

Instead of using universal approximators as local state emission
probability estimators in the HMM framework, we can solve
the statistical recognition criterion directly using the KAARMA
algorithm. Recall that the MAP is defined as

M∗ = argmax
M

Pr(M|U ), (13)

where M is the inference model, which is equivalent to
maximizing the a posterior state sequence or most probable state
sequence for each model.

Let us define the states in a KAARMA chain as context-free
grammars, denoted by Q = {q1, q2, · · · , qL}. This distinction
is made to not confuse a grammar state qi with the KAARMA
internal hidden-state variables si (grammar state q is a discrete
set and network hidden state s is a vector). Each grammar state qi
has its own set of unique internal hidden-states s(i) that transition
according to the rules learned directly from data, i.e., qi =

{s
(i)
0 , s

(i)
1 , · · · , s

(i)
ni−1}. Under this formulation, a single KAARMA

network (global grammar with Q = {q1}) trained on the entire
observation trajectory U = {u1, u2, · · · , uf } can be viewed as an
HMMwith only a single state, e.g.,

ỹ
(i)
f

=
exp(y

(i)
f
)

∑9
j=0 exp(y

(j)

f
)
= Pr(Q = q = i|U ), (14)

where y
(i)
f

is the final output of a KAARMA network trained

to recognize the grammar q = i or classify the word “i.” A
softmax function is used to ensure that the posterior estimates
are non-negative and sum to one. To improve the classification
results, we can train several KAARMA networks that specialize
in different ordered regions of a word in cascade, as in Figure 7.
Since the utterances in the TI-46 digit corpus are not labeled
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by phoneme, without any frame-to-state alignment computation,
we can simply fix the number of grammar states at L and partition
naively the MFCC sequence for each isolated word into L equal
segments. When necessary (e.g., total number of frames is less
than L), the last MFCC vector is replicated to pad the partition.
Each ordered segment is treated as a different grammar state, but
given the same class label, and trained using a separate KAARMA
network to learn its classification grammar, as shown in Figure 7

(where L = 3).
Next, we fix the transition probability for grammar states qi

to qj in a KAARMA chain at ai,j = 1, for j = i + 1, and 0
otherwise. This is a major difference between a standard HMM
and a KAARMA chain. The states in an HMM do not cope
well with non-stationarity, thus during each Viterbi pass, frame-
to-state alignment is performed such that each frame falls into
the most likely quasi-stationary region or state in the temporal
sequence, and the state transition probabilities are re-estimated.
KAARMA and similar recurrent networks, on the other hand,
are able to handle non-stationarities by leveraging their internal
hidden states si. One way to visualize these internal hidden states
si in a grammar state qi is to view the KAARMA chain as a nested
HMM. But unlike the restricted structure of a traditional left-to-
right model, the hidden state si in each grammar state are free to
form transitions that best fit the available data, i.e., an ergodic
model, as shown in Figure 7. Finally, in the KAARMA chain
formulation, the recognized word is given by the following MAP
criterion

M∗ = argmax
M

L
∏

i=1

Pr(qi = M|u
f ·i/L

(f ·(i−1)/L)+1
). (15)

As discussed earlier, we can further improve the recognition rate
by training a second KAARMA network for each grammar state,
using the reversed-order feature sequences and multiplying the
two softmax scores to derive a bi-directional probability score.
By working on smaller segments of a speech signal, not only
do we improve the training speed and reduce the need for the
KAARMA algorithm to learn long-term dependencies, but also
the latency needed for processing sequences of reversed order is
shortened.

For real-valued speech features such as MFCCs, we can
simply use a Gaussian kernel to apply the KAARMA algorithm
for ASR. Next, we describe the appropriate steps for applying
the KAARMA chain paradigm to a biologically-inspired ASR
system. For each speech signal, biologically-plausible features are
generated in the form of spike trains to mimic the front-end
filtering performed by the human auditory system.

3.2. Spike-Based Speech Representation
Performing adaptive filtering in the RKHS has many advantages.
One main merit being that the KAARMA model works with
functions in the RKHS transformed by kernels and changing
the kernel does not impact the KAARMA algorithm. Therefore,
it is agnostic to the type of input and can be applied to
any spatiotemporal signal, such as speech, by designing an
appropriate kernel. By having separate formulations of the
exogenous input vectors u and the internal state vectors s, the

KAARMA algorithm imposes no restriction on the relationship
between the two signals in the original input space. We are free
to choose the input representations independently as long as
the appropriate reproducing kernels are selected. This enables
us to work directly with non-numeric bio-inspired data such
as spike trains, without modification of the underlying learning
algorithm. The theory of RKHS allows signals of heterogeneous
types to be operated under a unifying framework in a joint feature
space, constructed using either direct sum or tensor-product
reproducing kernels.

For our experiments, we combined a gammatone filterbank
with a bank of spiking neuron models. First, a gammatone
filterbank (Patterson et al., 1987) is applied to each acoustic
signal. This formulation is motivated by the mechanical to
electrical transduction in the cochlea (Meddis, 1986). Different
regions of the basilar membrane vibrate to particular sound
frequencies, in response to fluid flow in the cochlea. Sensory hair
cells in the organ of Corti then convert the mechanical response
to electrical signals which travel along the auditory nerve to the
brain for processing. The gammatone filterbank simulates the
mechanical response of the cochlea in which the output of each
filter models the frequency response of the basilar membrane at a
particular location, as shown in Figure 8. Its impulse response is
defined in the time domain as

g(t) = ag t
n−1e−2πbt cos(2πfct + φ), (16)

where fc is the center frequency (in Hz), φ is the phase of the
carrier (in radians), ag is the amplitude, n is the filter order,
b is the filter bandwidth (in Hz), and t indicates time (in s).
The output of each gammatone filter is converted into spike
trains using LIF neurons with spike-rate adaptation (SRA) and
refractory current (Gerstner and Kistler, 2002), as shown in
Figure 9.

The LIF neuron captures the basic spiking mechanism of
nerve cells and is one of the simplest and most widely used
model for spike processing in computational neuroscience. In
this biological neuron model, the membrane capacitor Cm is
charged by incoming current I until its potential V exceeds a
certain threshold Vth, at which time it fires an action potential
or spike, discharges, and resets the potential to a level Vreset .
There are many variants of the model, based on various levels
of realism, the one that we will use for this paper is determined
by the following resistor-capacitor (RC) equation of the leaky
integrator:

τm
dV

dt
= (Erest − V)+ RmI − Esra, (17)

where τm = RmCm is the membrane time constant, Erest is the
resting potential, Rm is the membrane resistance, I is the total
current flowing into the cell, and instead of a fixed absolute
refractory period, a reversal potential for SRA is used and defined
as

Esra
1
= (V − Ek)Rm(gsra + gref ), (18)

where Ek is the potassium reversal potential, gsra and gref are
the SRA and refractory conductances with time derivatives of
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FIGURE 8 | A gammatone filterbank mimics the mechanical response of the cochlea in which the output of each filter models the frequency response of the basilar

membrane at a particular location.

FIGURE 9 | Spike-based front-end for keyword spotting system. Speech signal first passes through a 12-channel output gammatone filterback, with center

frequencies equally spaced between 50 Hz and 8 kHz on the ERB-rate scale, then converted into spike trains using leaky integrate-and-fire neurons. The mean spike

count per frame (25 ms) ranged from 0.42 to 25.49 and varied across digits and channels.

ġsra = −gsra/τsra and ġref = −gref /τref , respectively. When
membrane potential exceeds the spiking threshold or V > Vth,
SRA and refractory conductances increment by 1sra and 1ref

respectively, i.e., the two conductances increase at each spike and
decrease exponentially between spikes. Initially, at t = 0, we set
V = Erest .

4. RESULTS

As a proof of concept, we used the TI-46 corpus of isolated digits
to benchmark the KAARMA-based decoders in this paper. This
corpus of speech consists of utterances from 16 English speakers
(eight males and eight females) each speaking the digits “zero"
through “nine" 26 times. Specifically, 25 out of the 26 utterances
were used in the subsequent multispeaker experiments (i.e., our
dataset comprises 4,000 of the 4,160 possible utterances). These
utterances were further partitioned randomly into a training

set (2,700 utterances with an equal number of male/female
utterances and digits: 135 utterances per gender, per digit)
and a testing set (1,300 utterances with an equal number of
male/female utterances and digits: 65 utterances per gender,
per digit). Furthermore, to reduce the number of non-speech
data points used in the computation and to help align each
utterance, speech signals were normalized with respect to their
maximum absolute amplitudes, then automatically truncated
into the smallest contiguous windows containing all non-silent
regions, using a simple threshold-based endpoints detection
algorithm.

Next, each truncated utterance was analyzed on 25 ms
speech frames at 100 fps. For MFCC front-end, each frame
was Hamming windowed, filtered by a first-order pre-emphasis
filter (α = 0.95). The magnitude spectrum from the discrete
Fourier transform (DFT) was computed and scaled by a Mel-
scale triangular filter bank. The output energy was then log-
compressed and transformed via the DCT to cepstral coefficients.
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Thirteen MFCCs were computed per frame, with only the last
12 used as features. In order to highlight the performance
difference between context/grammar-based solution delivered by
the KAARMA algorithm and results derived from a conventional
Markov model, neither the log Parseval energy of each frame
nor the time derivatives, i.e., delta and delta-delta coefficients
(Furui, 1986), were used as a feature. HMM will benefit from
these dynamic spectral features (Skowronski and Harris, 2007).
However, our primary goal is to evaluate the performance using
a bio-inspired end-to-end spike-based keyword spotting system,
without hand-designed feature extraction algorithm past spike
generation. The MFCC-HMM design parameters were selected
to establish a more comparable baseline without significant
increase to complexity.

The performances are summarized in Table 1. The KAARMA
solution outperformed the HMM in both the training and testing
sets. A big advantage of the KAARMA framework is that it
can operate on a single frame at a time, but exploits the full
context of an entire input sequence. As a recurrent network, it
has an inherent deep structure in time. Furthermore, partitioning
each sequence into smaller grammar states improves KAARMA
performance and computational efficiency. On the other hand, in
general, the amount of data needed to learn an HMM increases
quadratically with the number of states.

For a comparable processing with the 12 MFCC coefficients
used above, to generate the spike trains, a 12-filter gammatone
filterbank with center frequencies equally spaced between 50 Hz
and 8 kHz on the equivalent rectangular bandwidth (ERB)-rate
scale was applied to each acoustic signal. Then, the maximum
absolute amplitudes of the 12-channel output were normalized to
4 µA and converted into spike trains using LIF neurons defined
by Equation (17). A single neuron is used per channel, for a total
of 12 input neurons in this experimental setup. The parameters
were membrane resistance Rm = 10 M�, time constant τm =

10 ms, spike threshold Vth = −55 mV, spike delta Vspike =

500 mV, reversal potential for SRA EK = −200 mV, reset
potential Vreset = −80 mV, SRA time constant τsra = 200 ms,
increase in SRA per spike 1sra = 5 nS, time for refractory
conductance to decay τref = 2 ms, and increase in refractory
conductance per spike1ref = 200 nS. Again, the motivation here
is that for a human-engineered speech feature such as MFCC,
we can expect reliable performance with only 12 coefficients or
inputs. Difference here is that instead of working with waveforms,
we encode the information in a sequence of events over time,
and not in the amplitude of the signal as is common in ASR.
Increasing the number of input channels should improve the
recognition accuracy, but as a proof-of-concept, we wanted to
evaluate the baseline performance using only 12 channels of spike
input.

We directly applied the spike trains in each time frame
(temporal coding) as features in our isolated word recognition
task. To reduce the bias from data imbalance using the one-
vs.-all approach, the positive class (10% of the data for each
word model) was replicated three times in the training set with
random placement. A five-network KAARMA chain was used
to model each word and trained for a single epoch only. To
reduce over-fitting, the parameters were not fully optimized over
their respective ranges. The results are presented in Table 1.

TABLE 1 | Comparisons of KAARMA chain classification accuracies with those of

HMMs using an equivalent number of states and a mixture of eight Gaussians per

state.

Input type Training Testing

5-State HMM

MFCC 98.74% 98.00 %

Spike train Rate 93.74% 93.23 %

5-Network KAARMA Chain

MFCC Sequence ordering: Left-to-Right 99.33% 98.62

Bi-Directional 99.78% 99.08%

Spike train Rate Left-to-Right 99.04% 91.85 %

Bi-Directional 99.56% 94.54 %

Temporal Left-to-Right 96.70% 93.54 %

(Spike kernel) Bi-Directional 98.56% 95.23 %

Only 12 MFCC coefficients were used, without log energy and time derivatives. Similarly,

only 12 channels of spike trains were used. Bold values indicate the best performance.

Since HMM does not provide native support for spike trains,
the spike count in each frame was used to compute the firing
rate and formed a continuous-valued 12-D feature vector across
all channels. We also show the five-network KAARMA chain
recognition performances using spike-count or rate coding
(hidden states s ∈ R

3, kernel parameters as = au = 5, learning
rate η = 0.1, quantization threshold ε = 0.55) and temporal
coding (hidden states s ∈ R

3, spike-train kernel parameter aλ =

1, hidden-state kernel parameter as = 4, learning rate η = 0.1,
quantization threshold ε = 0.25) in Table 1.

For rate vectors, a five grammar state KAARMA classifier
outperformed similar HMM architecture (five-state with a
mixture of eight Gaussians) significantly in the training set, but
suffered from overfitting to a greater degree in the testing set.
Using temporal coding yields worse performance on the training
set, but is better on the test set. This suggests that KAARMA
generalizes better using temporal coding of spike trains than
rate coding. The information capacity of temporal coding is
significantly greater than that of the spike-count rate and is
limited only by the temporal resolution of the code. Therefore,
the mismatch between model complexity and the task is reduced
(spike timing provides additional temporal information over
spike count), and the network is less prone to overfitting. On
the other hand, spike-count rate is less sensitive to session
variability and akin to the spectral power. This is evident from
the performances shown in Table 1: left-to-right KAARMA
networks can be easily trained to recognize the training set using
rate coding (99.04%) vs. temporal coding (96.70%), but the better
performance on the test set is given by temporal coding (93.54 vs.
91.85%).

Compared to the left-to-right KAARMA chain test-set
performance using MFCCs (98.62%) and that of the HMM
(98.00%), in Table 1, we see a drop in accuracies using
spike-based front-ends. This is a testament to the popularity of
MFCC as the de facto speech feature, but also to the fact that the
focus of this paper is not to optimize the feature representation,
i.e., feature engineering, but rather to demonstrate, as a proof
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TABLE 2 | Comparisons of spike-input KAARMA chain with state-of-the-art SNN and sparse representation on TI46 multispeaker spoken digits.

Speakers Samples Spike train Train Accuracy (%)

(Train/Test) input channels epochs

Spike-train KAARMA 16 4,000
(

2
3 /

1
3

)

12 1 95.23†

Digital LSM (Zhang et al., 2015) 16 1,590
(

4
5 /

1
5

)

77 500 92.30

SWAT SNN (Wade et al., 2010) 8 400
(

4
5 /

1
5

)

180 input neurons 250 95.25

LSM (Verstraeten et al., 2005) 5 500
(

3
5 /

2
5

)

39 – 95.5

†
Spike-KAARMA achieved over 95% recognition accuracy using the largest subset with the fewest number of input channels and training epochs.

of concept, that a simple spike-based coding scheme achieves
competitive result over other ASR systems using spikes.

Furthermore, reversing the input sequence ordering yields a
complementary grammar that can be learned using a new set
of KAARMA chains, and the two classification outputs can be
combined (as discussed in section 3) to enhance recognition
accuracy. The results from this formulation are labeled bi-
directional in contrast to the natural left-to-right convention.
The bi-directional KAARMA spike-based performances are also
summarized in Table 1. The best spike test-set performance was
given by bi-directional KAARMA chains operating directly on
the spike trains (temporal coding) with a recognition accuracy of
95.23% with only one epoch of training.

As noted in a recent publication on LSM-based ASR (Zhang
et al., 2015), a systematic comparison with other spike-based
methods is difficult. There has been limited research in spike train
representations for keyword spotting and speech recognition
performances depend largely on specific experimental setups,
which often vary greatly and are not fully reported. Most of the
recent spike-based ASR systems in the literature utilize a variant
of the liquid state machine (Maass et al., 2002). It is interesting
to mention that speech was used in this landmark paper as an
example of application of LSM, but unfortunately no validation
of the method was reported. For a very small subset of the TI-
46 corpus of ten different utterances of digits “zero" to “nine”
(60% for training and 40% for testing), spoken by five different
female speakers, the best LSM achieved a recognition accuracy of
95.5% (Verstraeten et al., 2005). Expanding on the five-speaker
result, the state-of-the-art bioinspired performance on a larger
subset of the TI-46 digit corpus is reported using a digital LSM
(Zhang et al., 2015). For this multispeaker spoken digit task
with 1590 speech samples (using five-fold cross validation: 80%
used for training and remaining 20% for testing) and training
epoch of 500, the final classification rate for the 77-channel spike-
input digital LSM is 92.3%. For a smaller subset using a synaptic
weight association training (SWAT) SNN, an accuracy of 95.25%
was reported (Wade et al., 2010). Our proposed spike-based
word spotting system achieved an accuracy of 95.23% for the
largest subset with 4,000 samples (67% for training and 33% for
testing) and all 16 speakers (eight male, eighht female), using
a single training epoch (where only the desired class or 10%
of the training data is replicated three times). The results are
summarized in Table 2. Again, since the experimental setups
are different, the performance comparisons are indicative and
not directly quantitative. Nonetheless, spike-input KAARMA
achieved over 95% recognition accuracy using the largest subset

of the TI46 corpus with the fewest number of spike-train input
channels (12) and training epochs (1).

Furthermore, we note that producing a constant output for
time-varying liquid state is a major challenge for LSM, since the
memory-less readout has to transform the transient and non-
stationary states of the liquid filter into the output without any
stable states or attractors to rely on Maass et al. (2002). For the
KAARMA formulation using spike-based signals, once the stable
dynamics are learned, we can even extract a finite state machine
or deterministic finite automata (DFA) from the binary time
sequences, where all the information of the input is contained in
its temporal evolution, i.e., the inter-spike intervals of individual
spike trains, as illustrated in our previous work (Li and Príncipe,
2016).

To further improve the classification accuracies in the current
work under clean conditions, we can expand the original feature
space by increasing the number of filtered outputs with a
larger Gammatone filterbank and corresponding number of
LIF neurons. For optimal application-specific results, feature
engineering is required to design a set of novel spike-domain
attributes.

4.1. Computational Complexity Analysis
For sequence learning (training) of length n using KAARMA,
where the weight update frequency is only once per sequence,
the memory and computation complexities are O(n) and O(n2),
respectively, the same as the simplest online kernel adaptive
filter, i.e., the KLMS (Li, 2015). For testing, the memory
and computation complexities are O(n), which can be easily
implemented using parallel processing in hardware. To further
reduce the computational complexity, we use the quantization
technique to curb the linear growth of the network by discarding
redundant data points and merging the updating coefficients
with their nearest neighbors’, resulting in a significantly more
compact network with size m ≪ n. The model complexity of
KAARMA and other kernel or SVM methods are automatically
set by the support vectors, in contrast to neural network based
solutions like the SNN. The average number of support or
centers of a KAARMA network is 1880.5, compared to the
5,040 neurons in the hidden layer of the SWAT SNN (Wade
et al., 2010) and the 135 reservoir neurons in a multilayer 3D
grid with thousands of synaptic connections randomly allocated
(83 input neurons and 26 readout neurons) of the digital LSM
(Zhang et al., 2015). Similarly, we only need to tune a few
parameters, compared to the neuron modeling and learning,
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FIGURE 10 | Recognition accuracies for five-network KAARMA chain classifier using spike-train front-end compared with five-network KAARMA chain classifier and

HMM using MFCC as a function of SNR. Results (mean ± 1 standard deviation) are averaged over 10 trials with different additive noise. Three types of noise sources

are evaluated: (A) White noise degrades the performance of Mel-cepstra-based recognition systems most significantly; (B) Pink noise is a stationary noise having

equal energy per octave; (C) Babble noise shares statistical properties of the reference speech and corrupts the entire information bearing spectra. For each noise

type, spike-KAARMA classifiers outperformed MFCC-KAARMA and HMM baseline in certain low-SNR regime.

e.g., spike timing dependent plasticity and Bienenstock-Cooper-
Munro learning in Wade et al. (2010). Furthermore, the data
requirement to train KAARMA is greatly reduced compared to
alternative methods. As shown in Table 2, KAARMA uses orders
of magnitude fewer training epochs to converge to a suitable
solution.

4.2. Noise Robustness Analysis
We have shown that for clean data, the KAARMA chain
solution outperformed the state-of-the-art spike-based
ASR system. However, we also see that KAARMA chain
operating on spike trains performed worse (for bi-directional
sequencing: 95.23 vs. 99.08%) than its MFCC front-end

counterpart, for reasons discussed in the above section.
A major drawback of MFCC features is their sensitivity
to additive noise. Low energy perturbations in the power
spectrum are known to cause significant variations after
the log compression in their computation (Paliwal,
1998). Spike trains encoded from analogy/digital speech
signals using LIF neurons have inherent noise robustness
due to the integration or smoothing operation in spike
generation.

Here we demonstrate that despite this initial performance
degradation, KAARMA chain using spike-train front-end shows
superior noise robustness in certain low-SNR regime than the
MFCC front-end, with three types of noise. Additive white,
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pink, and multi-speaker babble noise (Hirsch and Pearce,
2000) were introduced to the test utterances, then decoded
using the same KAARMA chains trained on noise-free or
clean data. Figure 10 shows the classification accuracies of
the five-network left-to-right KAARMA chains train using
spike-train front-end (green dotted line) as a function of
SNR, from −20 to 25 dB in increments of 5 dBs. Again,
although the clean-data performance on spike trains is below
those of the MFCC-based solutions, the noise robustness is
increased with an extended flat region from peak performance,
and the drop-off SNR is pushed to the left. In certain low
SNR regime, spike-based KAARMA classifiers outperformed
five-network KAARMA chains and five-state HMMs using
MFCCs. For additive pink noise, we see that KAARMA chain
using spike-train front-end outperforms HMM with MFCC
for all SNRs below 20 dB. This increased noise robustness
demonstrates that neural computation is not merely an artifact
of biology, but rather a key to the performance robustness
of the auditory system. KAARMA classifiers are able to
leverage high-dimensional nonlinear representation of speech
in the RKHS, which increases the likelihood of linear class
separability in the infinite-dimensional space, and the contextual
information provided by the recurrency of the dynamical
model.

5. CONCLUSION

We present a biologically-inspired spike-based isolated-word
speech recognition or keyword spotting system with superior
noise robustness using the KAARMA algorithm. By leveraging
the contextual information of the input spike sequence using
stable states, KAARMA networks outperform state-of-the-
art spike-based processing on the benchmark TI-46 digit
corpus. The grammar-based deterministic KAARMA classifier
models complex nonlinear dynamical systems using spike train
representation and provides a viable alternative to LSMs in small-
vocabulary ASR systems and similar applications. By operating in
a continuous state space, it has a parsimonious architecture, using
hidden states of only three dimensions. Furthermore, spike-
based KAARMA classifier outperforms its MFCC counterpart
and HMMs in certain low SNR regions.

So far, in this paper, we have only provided a simple spike
generation mechanism without any feature engineering
step. Speech signals are encoded into spike trains and
applied directly to the kernelized recurrent network. In

the future, we will investigate ways to optimize the spike-
based feature extraction for improved ASR performance,
particularly for noisy-data. Specifically, we will address
issues such as the number of filters in the gammatone
filter-bank and spike-based coding that provides a suitable
representation of the local spectral properties in the speech
signal.

In earlier works, we represented spike trains as binned
binary sequences and trained KAARMA networks to learn
the dynamics directly from data, and later extracted the
dynamics in the forms of deterministic finite automata
(DFA). Computing using DFA is much faster than traditional
methods involving analog integration or kernel functions,
since state transitions are done automatically based on spike
arrival, i.e., a lookup table. We will encode speech spike-
train dynamics into DFA in the future. Furthermore, this
methodology can be applied to other analog time series,
not just limited to speech, using an appropriate analog-
to-spike converter. This opens the door to countless novel
applications that benefit from improved noise-robustness,
ultra-low power, and ultra-fast computation, especially in
hardware.
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