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Abstract

Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling
networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the
information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity
of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this
limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the
first hour after the change in the cell’s state; b. The signaling components in the network largely function in the linear range
of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an
early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such
expression data provide the basis for an efficient algorithm (Plato’s Cave algorithm; PLACA) to reverse engineer functional
signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated
early gene expression measurements associated with systematic perturbations of signaling components, without measuring
the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting
the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the
algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA
reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known
interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results
of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify
novel relationships.
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Introduction

A major goal of systems biology is to elucidate the molecular

networks that underlie cellular decision-making and predict

emergent properties of the system. Knowledge of molecular

networks provides novel insight into the mechanisms underlying

both physiological and pathological cellular processes. Such

networks were constructed in yeast [1,2], Escherichia coli [3–5],

Saccharomyces cerevisiae [6] and human [7,8], mostly using large-scale

genetic manipulation in order to identify gene to gene interactions,

non-coding RNA interactions, and gene to phenotype interactions.

These networks were analyzed, and the function of several

network components was elucidated [3,4,9–13].

High-throughput gene expression assays, such as microarrays

and quantitative real-time PCR, provide insights into mechanisms

mediating normal physiology and disease states. Gene assays have

been used to identify novel genes associated with specific cellular

events or phenotypes, and to unravel interaction networks between

the genes. Still, for some of the important questions facing cell

biologists, the statistical and mathematical approaches used to

analyze these data are not applicable. Specifically, the activity state

of many signaling components mediating the cellular response (e.g.

some scaffold proteins or transcription factors) cannot be

measured in systematic high throughput assays, and therefore

the interactions between them are not directly decipherable by

these approaches.

Several methods have been developed to reconstruct signaling

networks from experimental data [14]. However, most of these

methods rely on measuring the activity levels of the signaling

components in question under several conditions, and therefore

require a large number of experiments for each signaling

component. This applies for bottom-up approaches that use

experimental determination of individual biochemical interac-

tions to reconstruct the network [15], as well as for many top-

down approaches such as partial least squares (PLS) [16–18],

modular response analysis (MRA) [19–23], many methods using

Bayesian inference [24–28], and methods based on dynamic

properties [29–31]. The few methods that do not require

measuring the activity of the signaling components rely on

creating large interaction databases by performing many

experiments [32], or integration of large databases from several

sources [33,34]. Although the latter methods can be useful for

finalizing well-studied networks, they are not appropriate when

little data is available about the network.
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Gene profiling has been previously used to find interactions

between various molecules [32,35], but the focus has been on late

time points, when gene activity reaches a quasi-steady state. At

these time-points the initial signal from the signaling component is

partly degraded due to feedback and cross-talk between the genes.

At later time points, the changes in expression of many genes may

fail to show a simple function that correlates with the activity of the

upstream signaling components responsible for regulating that

gene [36]. Thus the use of gene expression measured more than

,one hour after modulation of the system can provide a non-

mechanistic pattern-matching representation of cellular state.

However such approaches may not allow a quantitative recon-

struction of the biochemical network in a way that is analogous to

construction of a network using measurement of the protein

activity states themselves.

A potential technique to measure indirectly the activity levels of

signaling components is presented by measuring the activity of

early genes, which are defined as genes that do not require any de-

novo synthesis in order to start their transcription. Specifically,

their regulatory transcription factors are pre-formed and the

activation states of these factors are altered by modulations in

cellular signaling. As a result, their promoters act as direct,

quantitative sensors of the cellular signaling state [36–39]. Such

genes are thus the first genes to be induced following a change in

the cell’s condition, and are usually activated within minutes. To

illustrate the linear function correlating signaling components and

early genes measured at early time points, we exposed gonado-

trope cells to the hormone GnRH at varying concentration and

measured, the resulting levels of one active signaling molecule,

phosphoERK, as well as the levels of transcripts for several early

genes and non-early genes at 0.75 and 5 hours (Fig. 1). The results

show that all of the early genes are linearly correlated with the

levels of phosphoERK and the correlation is much higher, (R2

ranging from 0.92 to 0.99) when measured at 0.75 hours than

when measured at 5 hours. Therefore, if additional experiments

were performed, such as ERK inhibition, to determine which of

these genes are most dependent on activation of ERK, the

measurement of such genes would provide an indirect, yet sensitive

and accurate measurement of the levels of phosphoERK. The

relationship is most linear and most direct for early genes

measured at early time points. In contrast, in secondary and

tertiary genes, which require newly synthesized transcription

factors or enhanceosome components to regulate their activity,

their activity levels normally do not have a simple function relating

it to the activity levels of upstream signaling components at any

time point. Notably, the linear amplification between signals and

early genes is the basis of the widespread use of synthetic gene

reporter constructs to provide quantitative measurements which

accurately reflect changes in cell signaling (e.g. using the activity of

a cAMP response element reporter to reflect changes in adenylate

cyclase activity). Because of these considerations, the utilization of

early gene profiling provides an experimentally and computation-

ally tractable approach to reverse engineer the interaction network

of signaling components.

Here we present a robust and efficient algorithm named

PLACA that uses high throughput assays of early gene expression

at early time points combines with perturbation of cellular

components in order to uncover experimentally verifiable

functional interactions between the components upstream of these

early genes. Notably, in addition to the reverse engineered

network, PLACA also identifies the specific genes that manifest

the functional interaction. Thus PLACA facilitates experiments to

validate the inferred interactions.

We tested the performance of PLACA by reconstructing a

synthetic network, and found that when using several independent

experiments it is robust to experimental noise. Additionally, we

studied the early gene responses to signaling component

perturbations in the pituitary gonadotrope and used PLACA to

reverse engineer the network of this crucial component of the

reproductive system. Many of the inferred functional interaction

have been previously observed, and novel functional interaction

predictions were then successfully tested experimentally.

A web-interface for PLACA is available at http://tsb.mssm.

edu/primeportal/?q = placa_prog.

Methods

Algorithm Methodology Overview
As stated above, current methods for inferring signaling

regulatory networks from gene activity data are not suitable for

high throughput experiments in large networks. This represents a

significant bottleneck in translating readily obtainable cellular

readouts such as mRNA levels into detailed network interaction

maps. Some of the nodes within the signaling network are

comprised of elements such as transcription factors and scaffold

proteins for which it is difficult to obtain activity measurements

systematically. Even in the case of kinases, where many active state

antibodies exist, other activity states may not be well character-

ized. Therefore we have developed a robust and efficient

algorithm for the analysis of the interactions between signaling

components, based on the activity level of early genes that are

downstream of these signaling components. This algorithm infers

the activity of the signaling components indirectly from measure-

ment of the activity of early genes. By analogy to the allegory in

which reality is perceived indirectly via shadows cast on the wall of

the cavern we inhabit, we refer to this as ‘‘Plato’s Cave

Algorithm’’, or PLACA.

PLACA is a multi-step algorithm based on an integration of

well-established techniques. We outline the practical steps needed

Author Summary

Elucidating the biochemical interactions in living cells is
essential to understanding their behavior under various
external conditions. Some of these interactions occur
between signaling components with many active states,
and their activity levels may be difficult to measure
directly. However, most methods to reverse engineer
interaction networks rely on measuring gene activity at
steady state under various cellular stimuli. Such gene
measurements therefore ignore the intermediate effects of
signaling components, and cannot reliably convey the
interactions between the signaling components them-
selves. We propose using the changes in activity of early
genes shortly after the stimulus to infer the functional
interactions between the unmeasured signaling compo-
nents. The change in expression in such genes at these
times is directly and linearly affected by the signaling
components, since there is insufficient time for other
genes to be transcribed and interfere with the early genes’
expression. We present an algorithm that uses such
measurements to reverse engineer the functional interac-
tion network between signaling components, and also
provides a means for testing these predictions. The
algorithm therefore uses feasible experiments to recon-
struct functional networks. We applied the algorithm to
experimental measurements and uncovered known inter-
actions, as well as novel interactions that were then
confirmed experimentally.

Inferring Signaling Networks from Gene Expression
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to use PLACA in order to uncover the functional interactions

between signaling components, after choosing a list of n signaling

components, and a set of m early genes that are predicted or

known to be affected by the signaling components. Fig. 2 illustrates

how these steps can be divided into 3 stages: experimental data

acquisition, reverse engineering, and post processing. These stages

are briefly explained here, and described in more detail in the

following sub-sections.

The data acquisition stage for PLACA consists of n+1

experiments. The first experiment measures the mean activity

and the standard deviation of the activity of all early genes. In the

following n experiments each signaling component is perturbed in

Figure 1. Response of early and late genes and their correlation to signaling activity. A. The normalized pERK level (Y axis) as a function of
GnRH concentration (X axis) as determined by ERK ELISA assays at 5 minutes following activation of LbT2 gonadotropes. B. The expression level of
cfos mRNA (Y axis) as a function of GnRH concentrations (X axis) as determined by quantitative PCR at 45 minutes (solid line) and 5 hours (dashed
line) following GnRH stimulation of LbT2 gonadotropes. C–F. The expression level of several genes is plotted vs. the activity levels of pERK at
45 minutes (squares) and 5hrs (triangles) following activation of LbT2 gonadotropes by a number of different concentrations of GnRH. Both time-
points are fitted to a linear curve (solid and dashed lines, respectively). C and D. The early genes such as cfos and mkp1 exhibit a good linear
correlation to pERK activity at 45 minutes, and much weaker correlation at 5 hours. E and F. Later genes such as pacap and follistatin exhibit no
correlation to pERK activity at 45 minutes and show weak correlation at 5 hours. Error bars are standard error of mean. n = 4 per point.
doi:10.1371/journal.pcbi.1000828.g001

Inferring Signaling Networks from Gene Expression
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turn, and the activity and standard deviation of the activity of all

the early genes are measured. Next, the reverse engineering stage

is performed. First, a weight matrix describing the connections

between genes and signaling components is calculated, and used to

obtain an estimate of the change in activity of each signaling

components following each perturbation. The estimated change in

activity is used to infer the interactions between the signaling

components by applying a reverse engineering method, and we

chose to use MRA [19–23] for reasons that are detailed below. In

order to achieve higher statistical significance of the results, the

signaling activity estimation and MRA are repeated several times

using a data re-sampling technique. Using the results obtained by

re-sampling, only interactions with sufficient statistical significance

are retained. Finally, the post-processing stage is applied if several

independent experimental results of similar experiments are

available, in which case interactions that do not appear in a

sufficient number of the experiments are excluded. See Supple-

mentary text S1 for technical details on the post processing stage.

Data Acquisition
The algorithm is applied to the mean activity levels and the

standard deviation in activity levels of early genes. These are

performed both under normal conditions, and following

perturbation of each signaling component. Experimentally,

these perturbations can be performed using chemical inhibi-

tors (e.g. kinase inhibitors, protease inhibitors, or channel

blockers), siRNA, expression of over-active or dominant

negative constructs, or over expression of the gene. The

activity levels of the genes can be measured using quantitative

real time PCR or microarrays. The activity level of a gene

may be the fold-change of the individual transcript compared

to some gene, its concentration, or its copy number/cell. We

use the activity of early genes as an estimate for signaling

component activity, and derive a weight matrix (as explained

below) representing how much the change in activity of each

early gene contributes to the estimated change in activity of

each signaling component.

Figure 2. PLACA methodology overview. The flow chart describes the methodology proposed in Plato’s Cave Algorithm. The algorithm is made
of three stages: Data acquisition; Reverse Engineering that is repeated several times for statistical significance; and Post-processing where the results
of several experiments are integrated.
doi:10.1371/journal.pcbi.1000828.g002

Inferring Signaling Networks from Gene Expression
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Specifically, if the change in gene activity after each

perturbation is stored in matrix DG, and the weight matrix is

denoted by W, then the estimated change in activity of the

signaling components following each perturbation is given by

DS = W(DG)T. This assumes a linear connection between signaling

component activity and gene activity, as was observed experi-

mentally. Mathematically, this is equivalent to assuming that the

change in the activity of an early gene depends linearly on the

weighted sum of the changes in the activity of the signaling

components. The linearity assumption can also be justified by

considering small changes from maximal (or quasi steady-state)

values of the early gene activity.

Weight Matrix Determination and Refinement
Weight matrix construction. To obtain the weight matrix,

we face the challenge of identifying genes that change only

following certain signaling component perturbations, where this

change is not likely attributed to experimental noise or to

internal noise in the gene expression. Such genes are ideal

markers for the activity estimation of the signaling components

that caused the change. To this end we use three scoring

functions for each gene. First we define the activity score, which

estimates the relative magnitude of the change in the activity

level of each gene following each perturbation. Next we define a

P-score that estimates the probability that the change in activity

does not results from noise. Finally, we define the information

score, which takes under consideration the changes in activity

following every perturbation (the activity fingerprint of the

gene), and gives the highest score to genes that carry

information that is specific to a single perturbation. We

assume that the change in activity level, the noise levels, and

the specificity of each gene are independent quantities.

Although the scores are not true probabilities, in order to

reflect this assumption in the final score, we multiply the three

scores to obtain the final weight matrix. We note that there is

obviously some correlation between noisy genes and a large

change in activity. However, by assuming independence we give

a preference to non-noisy genes that manifest a large change in

activity, thus making the overall score a bit more restrictive.

Fig. 3 illustrates the determination of P-scores, information

scores and the final weights derived from four hypothetical gene

expression levels following perturbations of five signaling

components. Genes showing low noise levels (high P scores)

and higher specificity for particular perturbations (high

information scores) are weighed more highly in the matrix that

will be used for predicting the functional interactions of the

network.

Activity score. The activity score for each gene is the change

in activity for that gene following each perturbation, multiplied by

the sign of the perturbation (inhibition or activation of the

signaling component), and normalized across perturbations. This

is done to avoid biasing the results to favor genes that have a very

low initial activity (as might occur by normalizing according to

initial activity, e.g. fold-change), or biasing them towards highly

expressed genes (by considering the absolute change in gene

activity). A high absolute activity score means a large change in the

activity of the gene was caused by the specific perturbation when

compared to other perturbations. Let us assume n signaling

components and m early genes. We denote the mean activity of

gene k (k = 1..m) under normal conditions by Ak, and after

perturbation of signaling component j (j = 1..n) by Gjk. The

change in activity is Cjk = Ak2Gjk. The normalized change in

activity gives the activity score, given by

ĈCjk~Cjk

Xn

j~1

C2
jk

 !{0:5

:

P-score. The P-score indicates the probability that the change

in the mean expression is not due to noise. A P-score close to unity

means that it is unlikely that the measured change in the mean

activity is due to noise, and a P-score close to zero means that the

change in activity can be attributed to measurement noise. We use

a standard two-sample t-test to obtain the P-score. For

completeness we introduce here the intermediate stages used in

our calculations, and introduce nomenclature that is used in the

following sections. To construct the P-score we use an

intermediate Z-value, assuming that the distribution of the gene

activity levels is close to Gaussian. In the case of gene expression

levels, it was shown that many genes follow a log-normal

distribution [40]. Therefore, to get a Gaussian distribution we

use the mean of the logarithm of the activity following a

perturbation, denoted by LogG. We denote the standard

deviation of LogG (divided by the square root of the number of

measurements to apply for a t-test) by dG. Similarly, we denote the

mean of the logarithm of the normal activity of gene k by LogAk,

and the corrected standard deviation of LogAk measurement by

dAk. The Z-value of the change in gene k due to a perturbation in

signaling component j is given by

Zjk~
LogGjk{LogAkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dG2
jkzdA2

k

q :

The P-score Pjk is simply 1 minus the P-value of Zjk. Specifically,

the P-score is given by twice the cumulative distribution function

of N(0,1) (i.e. the normal distribution with a mean of zero and

standard deviation of one), from zero to the absolute value of Zjk.

The null hypothesis is that the samples giving Ak and Gjk are drawn

from Gaussian distributions with different means. Therefore P-

score approaching one indicates a high probability that the change

in gene expression signifies a real change in the mean expression

and is not due to noise.

Information score. Ideally, to quantify the change in activity

of a signaling component, we are looking for genes whose expression

change following perturbation to only that signaling component, and

not to other components in the network. The information score

quantifies how close a gene is to that ideal. It is inspired by the

Shannon entropy function [41], which is a measure of the average

information contents in a message. The Shannon entropy function is

originally applied to a set of probabilities, and so we must normalize

the expression results across perturbations so that they will be non-

negative and their sum will equal unity. To this end we take the set of

Z-scores for each gene, square them to make them non-negative, and

divide them by their sum. The normalized Z-score for gene k takes

the form ẐZ2
jk~Z2

jk

.P
Z2

jk, where the sum is over j = 1..n . The

information score function for gene k is then

Hk~ln nz
Xn

j~1

ẐZ2
jkln ẐZ2

jk

Due to the properties of the Shannon entropy function, a gene can get

an information score of zero if (and only if) it changes equally

significantly across all perturbations, and will get the highest score (of

lnn) if it has a Z-value of zero for all the perturbations except one.

Inferring Signaling Networks from Gene Expression
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Other methods can be constructed to quantify the specificity of

a gene, e.g. based on the maximal and minimal absolute values of

the Z-scores. Such quantifications, however, will not scale with

the number of perturbations (unless some heuristics are used),

and will therefore limit the mathematical efficiency of the

algorithm.

Estimate signaling component activity matrix. To obtain

the final weight matrix determining the linear connection between

the activity of an early gene and the activity of a signaling

component, we multiply the activity score, the P-score, and the

information score of each gene. As stated earlier, this assumes that

the three scores are independent from each other, which is a

restrictive assumption. To estimate the activity level of signaling

component i, the gene expression level of each gene k is multiplied

by the weight coefficient Wik, and all such terms are summed.

Note, that although the scores themselves are not biased towards

highly or weakly expressed genes, the multiplication process causes

the results to be driven by highly expressed genes. Therefore, we

divide the multiplied scores of each gene by its unperturbed

activity level, giving

Wik~ ĈCikPikHk

� �.
Ak:

Using this notation, the activity of signaling component i after

the perturbation of signaling component j is given in matrix

notation by S = WGT, or specifically by

Sij~
Xm

k~1

WikGjk:

Similarly, the activity of signaling component i under normal

conditions is given by

Figure 3. Weight Matrix Derivation – choosing good predictors of signaling activity. A. The expression levels (in arbitrary units) of four
genes under five perturbations (red bars), and their levels without any perturbation (green bars); B. The Z-values for each gene under each
perturbation. High Z-values are obtained for genes with statistically significant change (red bars), and low Z-values are obtained when the change
can be attributed to noise (blue bars); C. The information score of each gene. When the change in gene activity is specific to one perturbation the
information score is high (red bars), and otherwise it is low (blue bars); D. The final weight attributed to each gene for each perturbation. A gene can
only get a high weight (red bars) if it has both a high Z-value and a high information score. The values used for the gene expression are not drawn
from any experiment and were generated merely to illustrate the methodology.
doi:10.1371/journal.pcbi.1000828.g003
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S0i~
Xm

k~1

WikAk:

Reverse Engineering the Network
To this point we have outlined a method to estimate the activity

levels of signaling components under perturbation of each

individual component, as well as under normal conditions, without

measuring the signaling components themselves. Our goal is to use

this knowledge to reverse engineer the interaction network

between the signaling components. Any number of reverse

engineering methods can be applied at this point, but we give

several reasons that make a technique called modular response

analysis (MRA) [19,20] the most suitable one.

To apply MRA requires measuring the change in activity level

of a representative of each component in the system, after each

component is perturbed in turn. Therefore, the acquired estimated

data set is a suitable input for MRA. In contrast, methods based on

Bayesian learning require sufficient statistics to provide likelihood

estimates, thus requiring additional experimental results [24–28].

Furthermore, such methods require a prior probability distribution

that represents our belief or knowledge of the architecture of the

network. Other approaches require integrating a large set of

experimental data, either from literature or by manufacturing that

data [32–34], and are therefore only appropriate for well studied

systems.

In the context of PLACA, the change in activity of each

signaling component after each perturbation is given by

Rij = Sij2S0i. Given this matrix, MRA provides the interaction

strengths between the signaling components, which is given by

r = 2[dg(R21)]21R21 [19,20], where dg(R) is a diagonal matrix

with a diagonal equal to that of R. rij is the linear approximation of

the effect component j has on the steady state value of component

i. In its original context, matrix r holds the interaction coefficients

between the signaling components, and represents the reverse

engineered network. The meaning of these interaction coefficients

in the context of PLACA is discussed below.

One disadvantage of MRA is that it inherently returns an

interaction coefficient between every component in the network.

Normally, this results in a need to set an arbitrary cutoff to

determine which interactions to consider and which to ignore. A

difficulty in setting such a cutoff when using PLACA arises from

the fact that the activity levels are only estimated, and the

contribution to the estimated activity from each gene is multiplied

by an unknown constant. Thus, the significance of the actual

coefficient values is uncertain apart for their sign, and a single

cutoff cannot be set. This problem can be solved using data re-

sampling (each time considering data from a subset of early genes),

keeping only interactions that show the same sign for a significant

number of the re-sampled data. Specifically, we used a jack-knifing

technique, in which we ignored each gene sequentially and applied

PLACA to the remaining data, obtaining a set of interaction

coefficients for every pair of signaling components. For larger

data-set, however, other re-sampling methods such as boot-

strapping or random cross-validation may be more appropriate

[42]. Using the mean and standard deviation of each coefficient

and assuming a normal distribution, we keep only interactions that

have a consistent sign with a 95% confidence level.

We emphasize that since PLACA relies on estimating the

activity level of signaling components using downstream genes, the

interactions that are deduced using PLACA do not necessarily

indicate a biochemical interaction between those signaling

components. Rather, inferred interactions between components

indicate that they affect a shared set of genes, meaning that they

share a biological function in the cell. For this reason we refer to

these as functional interactions, where the two signaling components

affect each other’s function, although they may not affect each

other directly. Conventional diagrams of interaction networks

include nodes and arrows, where the nodes represent signaling

components, and the arrows represent direct interaction between

the two signaling components. To avoid confusion, we introduce a

new notation, in which functional interactions are indicated by an

arrow with a diamond in it.

Neuroendocrine LbT2 Cells Experimental Methods
LbT2 cells obtained from Prof. Pamela Mellon (University of

California, San Diego) were maintained at 37C/5% CO2 in

humidified air in DMEM (Mediatech, Herndon, VA) supple-

mented with 10% fetal bovine serum (FBS) (Gemini, Calabasas,

CA) and L-glutamine. Cells were grown in 10% charcoal-treated

FBS (CT-FBS) (Hyclone Laboratories, Inc., Logan, UT) 18 hours

before treatment with hormones or growth factor. GnRH was

obtained from Bachem (Torrence, CA). The chemical inhibitors

PD98059, JNK Inhibitor II (SP600125), Bisindolylmaleimide I,

PP2, KN62, and AG1478 were obtained from Calbiochem. The

antibodies used were anti-phospho p42/44 MAPK (Cell Signaling

Technology, Beverly, MA, #9106), anti-p42/44 ERK (Cell

Signaling Technology #9102).

For the western blots cells were lysed in NP-40 buffer (20mM

Tris-HCl, 1%NP-40, 150mM NaCl) and protein measurements

were performed with protein assay reagent (BIO RAD, Hercules,

CA). 50mg of extract was separated on 10% Tris-HCl SDS-PAGE

gels (BIO RAD), and transferred to PVDF membranes (Amer-

sham, Buckinghamshire, UK). Blocking was performed for

60 minutes with 5% nonfat dry milk in Tris-buffered saline,

0.1% Tween-20 and followed by incubation with the primary

antibody at 4uC overnight. Signal was visualized with goat anti-

rabbit or goat anti-mouse IgG-HRP (Santa Cruz Biotechnology)

using the ECL system (Amersham).

To determine the phosphorylation level of ERK with different

concentrations of GnRH stimulation, pERK ELISA (Cell

Signaling Technology #7177 ) and total ERK ELISA kits (Cell

signaling technology #7050 ) were used according to manufac-

turer’s instruction. LbT2 cells were stimulated with GnRH (0, 0.1,

0.3, 1, 3, 10, 100, 1000 nM) for 5 minutes, and cells were

harvested. For normalization, cell lysate was divided in half; one

used for pERK ELISA and another half used for total ERK

ELISA. The acquired absorbance of pERK at OD450 was divided

by that of total ERK providing normalized pERK activity.

Quantitative real time PCR was performed and analyzed as

follows. LbT2 cells were cultured and total RNA was prepared as

described in a previous study [43]. RNA was isolated using

Absolutely RNA 96 well Microprep Kit (Stratagene). Approxi-

mately 2mg of the RNA was then reverse transcribed with

Stratascript (Stratagene) according to manufacturer. For each

reaction 1/800 of the RT reaction volume was utilized for 40 cycle

three-step PCR in an ABI Prism 7900 (Applied Biosystems, Foster

City, CA) in 20mM Tris pH 8.4, 50mM KCl, 5mM MgCl2,

200mM dNTPs, .56 SYBR Green I (Molecular Probes, Eugene,

OR), 200nM each primer and 0.5U Platinum Taq (Invitrogen).

Results

Inferring a Synthetic Interaction Network
We first tested PLACA by attempting to reverse engineer a

functional network using early gene expression and perturbation

experiments generated by a simulation using an arbitrary network

Inferring Signaling Networks from Gene Expression
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model (Fig. 4A). The network was constructed by using well-

known network motifs such as feed forward loops, bi-fans, and

master regulators [3,4,6], and by adding a few genes that are

regulated by a single signaling component. Each signaling

component was assigned a characteristic activity (inhibition or

activation), but exceptions were allowed and introduced to the

model. A detailed description of the network model, which has

four signaling components and 10 early genes, and of the

simulation methods appear in the Supporting Text S1. The

functional interaction network derived using PLACA is shown in

Fig. 4B.

Overall, the functional reverse engineered network shows high

similarity to the model that produced the early gene expression

data. To explain how the various interactions were identified,

consider the heat-map representing the change in gene expression

following perturbations of each signaling component (Fig. 4C).

First, let us consider the bi-directional positive interaction between

signaling components S1 and S2. Perturbations of either S1 and

S2 cause similar changes in expression in genes G1, G2, G4, and

G6, which are also genes that are chosen as good estimates of both

S1 and S2 expression. Genes G7, G8 and G10 also show similar

behavior, further implying the bi-directional activation between S1

and S2 that is identified by PLACA. Next, genes G6, G7, G8, and

G9, which are indicators of S3 activity, change in opposite ways

following perturbations to S2 and S3. However, among these

genes only G6 is a good indicator for S2, and thus PLACA infers

that S2 inhibits S3, but not the other way around. Similarly,

PLACA infers S1 inhibition of S4 through the genes G3 and G5

(which are good indicators for S4 but not for S1), and the

inhibition of S4 by S2 through the genes G4 and G7.

The aim of PLACA is to reconstruct the functional interaction

network from experimental data, which is often quite noisy. To

test robustness to noise, we applied PLACA to the synthetic

network with varying levels of noise and analyzed the similarity

between the reconstructed networks. It was found that when

considering only results obtained by a majority of several

experiments, PLACA remains robust with noise levels of up to

20% of the mean (Supporting Fig. S1). A complete description of

the methods used in this analysis is given in Supporting Text S1.

Applying PLACA to Experimental Data
Reverse engineering the gonadotrope signaling

network. As an example of how PLACA can be used to

uncover functional interactions from experimental results, we next

used PLACA in order to uncover de-novo part of the signaling network

in the pituitary gonadotrope cell, a crucial component of the

reproductive axis. Gonadotropes are endocrine cells that respond to

the neuropeptide gonadotropin-releasing hormone (GnRH), by

increasing the biosynthesis of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). GnRH activates a G protein-coupled

receptor on the surface of the gonadotrope, resulting in rapid

activation of multiple kinases and signaling proteins. These kinases

modulate the activity and localization of transcription factors,

resulting in the induction of an early gene program. The early gene

program has been investigated in considerable detail using GnRH-

stimulated LbT2 gonadotropes [44,45].

Figure 4. Synthetic interaction network. A. The biochemical interaction network for the synthetic network, including the four signaling
components (S1–S4), and the 10 early genes they affect (G1–G10); B. The network of functional interactions between the four signaling components
in the synthetic network, as inferred by PLACA. The inferred functional interactions convey the correct biochemical network; C. The heat map of the
change in gene activity in all genes (X axis), as obtained from a set of simulations where each signaling component (Y axis) was perturbed. The heat
map reveals which genes were involved in inferring each functional interaction.
doi:10.1371/journal.pcbi.1000828.g004
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The connectivity between the kinases, transcription factors, and

other signaling proteins in gonadotropes has been extensively

studied but remains incompletely understood. To address this

problem, we assayed the early gene activity after individual

perturbation of six different kinases using chemical inhibitors

(Supporting Table S1). These kinases were chosen because they

are known to affect the signaling pathway, and because they are

believed to only affect a single component in the pathway. In these

experiments, LbT2 gonadotropes were treated with 100nM

GnRH for 45 minutes in the absence or presence of individual

inhibitors.

This time point represents the peak of induction for a majority

of the genes assayed, and represents a time point in which early

genes are highly expressed, while genes that require de-novo

transcriptions (e.g. genes that are activated by the early genes) can

only begin synthesizing significant amounts of mRNA. This

conclusion was reached both by analysis of estimated rate

constants, as well as by experimental data. Significant early gene

mRNA accumulation can be detected approximately 20 minutes

following stimulus (data not shown). It follows that for significant

amounts of protein to be produced and affect mRNA accumu-

lation of additional genes would require an additional 30 minutes

at least. Additionally, blocking new protein synthesis, using

cycloheximide, does not change the rate of accumulation at the

45 minute time point (data not shown), showing that at this early

time these genes are not affected by other genes that were not

measured.

We chose to assay a group of early genes based on their high

response to GnRH in previous studies [44,45]. Measurement of

transcript levels were performed by SYBR green quantitative real

time PCR [43]. This experiment was performed five independent

times. Fig. 5A shows the clustered heat map of the measured

activity in log-scale, as obtained from a single experiment, where

the clustering is performed both on the genes and on the

perturbations. The raw data for all five experiments is available as

Supporting Dataset S1.

Analysis using PLACA produced the functional interaction

network shown in Fig. 5B, in which we consider only interactions

that were predicted by at least four out of the five independent

experiments. This filtering is done in order to minimize the

number of false interactions detected, using the post-processing

procedure explained in the Supporting text S1. The resulting

network has 11 interactions, out of 30 possible interactions. 8

interactions are positive and 3 are negative. 10 of the interactions

are involved in bi-directional functional interactions, where the

two components have a similar functional effect on each other.

The probability of obtaining 11 such interactions or more in

random networks is less than 0.002.

Application of PLACA to the gonadotrope cell identified the

positive bi-directional interaction between Src and JNK. Studies in

the similar aT3-1 cells have demonstrated that JNK is activated in

a pathway downstream of Src [46]. Additionally, we performed

experiments based on this reverse-engineered network that show

that JNK inhibition attenuates Pyk2 activation (Supporting Fig.

S2). Additionally, Src is known to activate Pyk2 [46], thus

completing the bi-directional functional interaction.

PLACA also identified a strong positive bi-directional interaction

between ERK and PKC, which was seen in all five experiments. It is

known that PKC activation is crucial for ERK pathway activity in

many G-protein coupled receptor cell systems [47,48], and it was

also shown that pharmacological inhibitors of PKC lead to partial

inhibition of ERK activity in LbT2 cells [49], supporting the

inferred positive interaction. We tried to ascertain if the interaction

is the results of direct biochemical interaction, and found no effect of

PKC inhibition on ERK activation after a 15 minutes exposure

(Supporting Fig. S3). This result suggests that the functional

interaction is likely due to a convergence of these two pathways.

This is supported by data showing that PKC inhibition blocks the

translocation of active ERK to the nucleus [49].

A positive functional interaction between CaMKII and EGFR

is also predicted by PLACA. This interaction is corroborated by

previous studies in other cell lines. These reports have shown that

EGFR activation increases CaMKII activity through a calcium-

Calmodulin dependent mechanism [50,51].

Experimental confirmation of PLACA prediction. One

interesting novel interaction that was identified by PLACA is the

functional inhibition of EGFR by JNK. This interaction appeared

in four experiments, and was significant in three. This putative

functional interaction allows testing the limits of PLACA’s

predictive power since we consider this prediction not to be

highly robust.

A convenient method to identify the genes that contribute most

to a specific interaction is to consider the individual contribution of

each gene to the activity estimate of the affected signaling

component given by bijk~Wik Gjk{Ak

� �
, where Rij~

P
k

bijk. For

this interaction, we looked for genes that contributed a positive

term to the estimate of EGFR (j) activity after the negative

perturbation of JNK (i) in every experiment. The gene that

contributed the largest term in all experiments was klf4. In the

original experiments, it was seen that klf4 is indeed hyper-induced

by GnRH after inhibition of JNK, and is attenuated following

inhibition of EGFR (see Fig. 5A). PLACA predicted an inhibitory

functional interaction, where JNK inhibits EGFR.

We proceeded to experimentally test this interaction when the

EGFR is directly activated by its ligand (Fig. 5B, Fig. 6B). Notably,

this is a non-trivial prediction test, since the PLACA analysis was

based on GnRH activation of its receptor and inhibition of EGFR

and JNK separately. The prediction that JNK suppresses the

functional effects of EGRF is now tested by using an activator of

EGFR and a JNK inhibitor jointly. The network predicts that

inhibition of JNK will augment the functional response to EGFR

activation, with that response being activation of klf4. Fig. 6 shows

the levels of klf4, as measured by quantitative PCR, after treatment

of LbT2 cells with a JNK inhibitor and varying levels of EGF,

alone and together. These data indicate that JNK inhibits the

effects of EGF receptor signaling, a result that is consonant with

the predictions made by PLACA.

Discussion

In this manuscript we introduced an algorithm that uses

changes in the level of early gene induction in order to estimate the

activity of unmeasured upstream signaling components, and then

infer the functional interactions between the signaling compo-

nents. The algorithm is useful for translating recent advances in

technology that utilize high throughput measurement of gene

activity into novel insights of cellular network design and signal

processing. Despite the introduction of methods that allow to

obtain high throughput data of the levels of protein activity state

(multiplexed ELISA, DNA binding assays), in some cases such

measurements may be impractical as in the case of scaffold

proteins, some transcription factors, and kinases with an unknown

number of active states. As gene expression assays and RNAi

component perturbations are both sequence dependent, they are

readily performed for any target and PLACA is suitable for

systematic large scale reverse engineering of any signaling network.

The experiments suggested by PLACA are easy to design and

feasible to perform.

Inferring Signaling Networks from Gene Expression
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In addition to the problem of measuring the signaling

components themselves, in some biological setups, such as the

one discussed here, measuring steady state values is not applicable,

since the system becomes desensitized when exposed to a

prolonged stimulus. Conventional reverse engineering techniques

that rely on steady state analysis will not be able to reverse

engineer such systems. Early gene analysis can help solve this

problem, and PLACA can be applied in these cases to reverse

engineer the network.

PLACA provides a mathematically efficient algorithm that

scales linearly with the number of genes and polynomially (O(n3))

with the number of signaling components. Large gene expression

data-set, however, tend to display data-degeneracy, where multiple

genes behave similarly under various experimental conditions.

This problem is likely to become worse when the analysis is limited

to early gene expression. However, as long as the number of sets of

similarly behaving genes is larger than the number of perturbed

signaling components PLACA will treat the genes in each set as

one, and thus still be applicable.

It should be noted that like many reverse engineering methods, the

output of PLACA is the network of functional interactions between the

signaling components, and not direct biochemical interactions. Such

interactions, however, indicate that both signaling components affect

a mutual set of genes, and thus provide a useful level of abstraction

Figure 5. Applying PLACA to experimental results in the gonadotrope. A. The clustered heat map of the log fold change in gene activity for
21 genes (X axis), as obtained from a single experiment (experiment #6), where LbT2 gonadotropes were treated with one of six chemical inhibitors
acting on signaling components (Y axis). The fold change is the gene activity in the presence of both inhibitor and GnRH divided by the gene activity
with GnRH alone; B. The inferred functional network in the Gonadotrope. PLACA was applied to the experimental data from five independent
experiments. The functional network represents signaling components that present a statistically significant functional interaction. The interactions
between ERK and PKC, between JNK and Src, and between EGFR and CaMKII were previously seen experimentally, and we have found experimental
evidence for the validity of the functional inhibition of EGFR by JNK.
doi:10.1371/journal.pcbi.1000828.g005
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that gives an indication to which pathways interact in a non-trivial

way. Further experiments are needed in order to identify the

molecular mechanisms underlying the functional interactions. Still,

PLACA provides a list of the genes that are most likely involved in

each interaction, further reducing the ambiguity in the meaning of

the functional interaction, and suggesting a means to perform follow-

up experiments to validate the interaction.

A potential problem may arise from using gene activity levels as

linear estimates. The activity of some early genes was shown to

follow a linear response curve for a large range of signaling activity

[36] (see also Fig. 1), and the assumption that many pathways

work within the linear range of stimulus response is a classical

pharmacological concept. On the other hand, in cases where

linearity was not observed, this assumption is only valid when the

changes in activity levels are small. However, experiments are

normally designed to produce statistically significant results, and

the changes in activity levels are therefore large. This is a problem

that arises in most reverse engineering method relying on

perturbations, and may skew the results.

Another disadvantage of the proposed algorithm involves the

inability to compare the inferred network to other possible

networks, in a similar way to statistical learning algorithms.

However, as mentioned in the methods section, after obtaining the

estimated activity of the signaling components it is possible to

apply a different reverse engineering algorithm such as a Bayesian

learning algorithm. Such a methodology will require further

experiments, but will also reveal more information about the

regulatory network.

The experimental results shown here were shown as an example

of the ease of use of PLACA, and its applicability to experimental

data. PLACA uncovered much of the known interaction network

of the subsystem that was tested, and uncovered several novel

interactions. These interactions must be further explored in order

to understand the biochemical interactions underlying them, and

in order to understand their biological significance.

PLACA offers a method to exploit the growing amounts of data

that are produced by high-throughput experiments. At the same

time PLACA also offers a new level of abstraction that is

manifested by functional interactions. This level of abstraction can

be extremely useful in the experimental, pharmacological, and

theoretical levels. It can extend our understanding of emergent

phenomena in regulatory networks, and offer new insights into the

effects of drugs, hormones and pathogens on cells.

Supporting Information

Dataset S1 Gene expression results of GnRH-induced early

genes in LbT2 cells. Five experiments were performed, measuring

18 to 24 early genes. The data set contains the gene expression

values with GnRH treatment, and with a combination treratment

of GnRH and an additional chemical inhibitior, as well as the

standard deviation of the measurements.

Figure 6. JNK represses EGF-Stimulation of klf4. A. Experimental results showing that JNK repression enhances EGF-stimulation of klf4. LbT2
cells were pre-incubated with SP600125 (JNK Inhibitor) for 30 minutes and treated with different concentration of EGF for 45 minutes. The levels of
klf4 were measured by quantitative PCR and rps11 was used for normalization. EGF alone causes a slight induction of klf4, and inhibition of JNK
results in a more significant induction. With concurrent JNK inhibition and EGF stimulation, a synergistic effect can be seen; B. The proposed
biochemical interaction network involving JNK, EGF, EGFR, and klf4 that mediates the functional repression of EGFR by JNK.
doi:10.1371/journal.pcbi.1000828.g006
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Found at: doi:10.1371/journal.pcbi.1000828.s001 (0.11 MB XLS)

Figure S1 Network similarity score vs. signal to noise ratio. A.

Functional networks were inferred either from a single simulation

of the synthetic network (circles) or by at least three out of five

simulations (squares). The similarity scores were computed using

the interaction coefficients values (open symbols), or using the sign

of the interaction coefficients (full symbols). Using multiple

experiments, PLACA is robust up to signal to noise ratios (SNRs)

of 5; B–E. The inferred functional interaction network obtained

from majority rule (three out of five experiments) with varying

values of SNRs. As noise levels increase, fewer interactions are

identified, but erroneous interactions are seldom introduced.

Found at: doi:10.1371/journal.pcbi.1000828.s002 (0.59 MB TIF)

Figure S2 Potential Biochemical Interaction between the Src

and JNK Pathways. LbT2 cells were either pretreated with 50mM

SP600125 (JNK inhibitor) for 30 minutes or left untreated. They

were then treated with 100nM GnRH for 0, 15, or 30 minutes. A.

Pyk2 tyrosine phosphorylation was measured by western blotting

with an anti-phosphotyrosine antibody. B. Tyrosine phosphoryla-

tion was quantified as fold change relative to vehicle treated

samples for cells treated with GnRH alone (solid line), and for cells

treated with SP600125 and GnRH (dotted line). Pyk2 is a known

substrate of Src. Inhibition of JNK attenuates the Pyk2 response to

GnRH, suggesting that JNK activates this response and is

functionally linked to Src, as identified by PLACA.

Found at: doi:10.1371/journal.pcbi.1000828.s003 (0.62 MB TIF)

Figure S3 GnRH Activates the ERK and PKC Pathways in

Parallel. LbT2 cells were incubated with either the chemical

inhibitor PD98059 (ERK inhibitor, 50mM), SP600125 (JNK

inhibitor, 50mM), or BIM I (PKC inhibitor, 10mM) for 30 minutes.

Cells were then treated with 100nM GnRH for 15 minutes and

lysed. The activation of ERK, PKC, and JNK was measured by

Western Blot using phospho-ERK, phospho-JNK, and phospho-

PKD antibodies. The phospho-PKD site is a direct PKC

phosphorylation substrate site. Each chemical inhibitor inhibits

one kinase, suggesting that there is no direct interaction between

the kinases. This experiment was performed three times with

similar results. The asterisk signifies a non-specific band.

Found at: doi:10.1371/journal.pcbi.1000828.s004 (1.07 MB TIF)

Table S1 The chemical inhibitors used in the experiments and

the kinases they inhibit

Found at: doi:10.1371/journal.pcbi.1000828.s005 (0.02 MB XLS)

Text S1 Detailed description and methods. Describes the post-

processing stage of the algorithm, the synthetic model equations

and methods, the parameters used in the simulations, and the

details of the noise analysis methods.

Found at: doi:10.1371/journal.pcbi.1000828.s006 (0.06 MB PDF)
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