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Super-resolution imaging using the 
spatial-frequency filtered intensity 
fluctuation correlation
Jane Sprigg, Tao Peng & Yanhua Shih

We report an experimental demonstration of a nonclassical imaging mechanism with super-resolving 
power beyond the Rayleigh limit. When the classical image is completely blurred out due to the use 
of a small imaging lens, by taking advantage of the intensity fluctuation correlation of thermal light, 
the demonstrated camera recovered the image of the resolution testing gauge. This method could be 
adapted to long distance imaging, such as satellite imaging, which requires large diameter camera 
lenses to achieve high image resolution.

Improving the resolution of optical imaging has been a popular research topic in recent years1–6. A commonly 
used simple approach is to measure the autocorrelation of two identical classical images, effectively squaring the 
classical image, 〈 I1(ρ1)〉  〈 I1(ρ1)〉 , where ρ1 is the transverse coordinate of the detector. This autocorrelation pro-
duces a maximum 2 gain of the spatial resolution. However, the imaging resolution of such a setup can be fur-
ther improved by changing the measurement from 〈 I1(ρ1)〉  〈 I1(ρ1)〉 , in terms of intensity, or 〈 n1(ρ1)〉  〈 n1(ρ1)〉 , in 
terms of photon number counting, to the intensity fluctuation correlation 〈 Δ I1(ρ1)Δ I2(ρ2)〉 , or 〈 Δ n1(ρ1)Δ n2(ρ2)〉 ,  
where ρ1 and ρ2 are the transverse coordinates of two spatially separated detectors. Then, if only those fluctuation 
correlations due to the higher spatial frequencies from Δ I2(ρ2) are selected, a super-resolving image can be 
observed from the joint detection of the intensity fluctuations at the two detectors. The physics behind this 
super-resolution is similar to the original thermal light ghost imaging7,8, and is quite different from an autocorre-
lation measurement. It should be emphasized that the reported result is also different than that of Oh et al.6; while 
the authors measured the intensity fluctuations, it was the intensity fluctuation autocorrelation 〈 Δ I1(ρ1)2〉 , which 
was still limited by the 2  resolution improvement of an autocorrelation measurement.

In this Report, we demonstrate a camera with resolution beyond the classical Rayleigh limit. Similar to the 
original thermal ghost imaging experiments7,8, the camera produces an image by the measurement of 〈 Δ I1(ρ1)
Δ I2(ρ2)〉 ; the camera consists of a typical imaging setup, except it has two sets of independent and spatially sep-
arated detectors: D1 placed on the image plane, and D2 placed on the Fourier transform plane. Crucially, D2 inte-
grates (sums) only the higher spatial frequencies, or transverse wavevectors, by blocking the central area of the 
Fourier transform plane. The image is calculated from the intensity fluctuations of D1, at each transverse position 
ρ1, and the bucket detector D2. The measurement can be formulated as Δ Rc(ρ1) =  〈 Δ I1(ρ1) ∫ dκ2F(κ2)Δ I2(κ2)〉 , 
where F(κ2) is a filter function which selects the higher spatial frequencies.

Experimental setup
Figure 1 illustrates the laboratory-demonstrated camera setup. We used a standard narrow spectral bandwidth 
pseudo-thermal light source consisting of a 10 mm diameter 532 nm wavelength laser beam scattered by millions 
of tiny diffusers on the surface of a rotating ground glass. The object imaged was the 5–3 element of a 1951 USAF 
Resolution Testing Gauge. Like a traditional camera, the imaging lens, LI, had an aperture limited by an adjust-
able pinhole to approximately 1.36 mm diameter. However, this imaging device has two optical arms behind its 
imaging lens LI. The light transmitted by the object falls on a single-mode 0.005 mm diameter fiber tip that scans 
the image plane of arm one and is then interfaced with a photon counting detector D1. The combination of the 
scanning fiber tip, D1, and photon counting detector acts as a CCD array. In arm two, the second lens LB is placed 
behind the image plane and performs a Fourier transform of the field distribution of the image plane of arm two. 
D2, a scannable multimode 0.105 mm diameter fiber interfaced with a photon counting detector, is placed in 
the Fourier transform plane of LB and integrates only the higher spatial frequencies while filtering out the lower 
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spatial frequency modes; we emphasize that the placement of this “spatial filter” does not depend on knowledge 
of the Fourier transform of the image.

The intensity fluctuations in this experiment were recorded by a Photon Number Fluctuation Correlation 
(PNFC) circuit9,10, which independently records the arrival time of each photo-detection event at D1 or D2. The 
intensity, measured by the number of photons detected per second, is divided into a sequence of short time win-
dows, each of which needs to be less than the second-order coherence time of the light; it is important that the 
width of the time window not be too long. The software first calculates the average intensity per short time win-
dow, ns, where s =  1, 2 indicates the detector, and then the difference or fluctuation term for each time window: 
∆ = −n n nj s j s s, , . The corresponding statistical average of 〈 Δ n1Δ n2〉  is thus

∑∆ ∆ =
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.n n

N
n n1 ( )

(1)j
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It should be emphasized that when the fluctuation correlation is calculated between the two detectors, Δ n1 
and Δ n2 have not yet been time-averaged. The time averaging is performed after the correlation, as indicated by 
the multiplication appearing inside the sum over j.

Experimental results
Typical experimental results are presented in Fig. 2. In this measurement, the 5–3 element of a 1951 USAF 
Resolution Test Target was imaged in one dimension by scanning D1 in the x-direction along the slits. Figure 2(a) 
shows a completely unresolved classical image of the three slits, I1(x1), that was directly measured by the scanning 
detector D1. For reference the gray shading indicates the location of the slits. Figure 2(b) shows two results: the 
black dots plot the autocorrelation [I1(x1)]2, while the blue triangles show the fluctuation autocorrelation 〈 [Δ 
I1(x1)]2〉  at each point. 〈 [Δ I1(x1)]2〉  was calculated from the intensity fluctuation autocorrelation of D1. The meas-
urements in Fig. 2(b) have a 2  resolution gain, similar to that of Oh et al.6. Using the Rayleigh limit11,12 
δx =  1.22λsI/D11,12, where sI is the distance from lens LI to the image plane and λ is the wavelength of illumination, 
the expected resolution of the autocorrelation in the image plane is approximately δ = .x/ 2 0 13 mm which, as 
seen in 2(b), is not enough to resolve the three slits which have a slit-to-slit separation of about 0.13 mm. However, 
by spatially filtering arm two, the three slits of the 5–3 element of the gauge were clearly separated when correlated 
with arm 1, as seen in Fig. 2(c). The error bars in Fig. 2(a) and (b) are quite small, especially when compared to 
those in Fig. 2(c). This is a typical negative feature of second-order measurements; compared to first-order classi-
cal imaging, in order to achieve the same level of statistics the reported imaging mechanism needs a longer expo-
sure time. How much longer the measurement takes depends on the power of the light source and other 
experimental parameters.

Figure 2(c) is the sum of two measurements obtained by placing the bucket fiber tip at two points in the 
Fourier transform plane: x2+ =  0.22 mm and x2− =  − 0.24 mm; this selects the higher spatial frequency modes 
which fall onto the two fiber tips and “blocks” all other spatial frequency modes. We represent this mathemati-
cally with the filter function F(x2) =  Π (x2 −  x2+, DF) +  Π (x2 −  x2−, DF) to simulate the physical “spatial filtering”, 
where Π (x, w) is a rectangle function of width w, DF =  0.105 mm is the fiber diameter, and x2 is measured from 
the central maximum. Then in one dimension for κ ∝  kx2/fB, where fB is the focal length of the bucket lens,  
Δ Rc(x1) =  〈 Δ I1(x1)∫ dx2F(x2)Δ I2(x2)〉 , and only integrates the higher spatial frequencies collected by the bucket 

Figure 1. Experimental setup: a 10 mm diameter 532 nm wavelength laser beam scatters from a rotating ground 
glass (i) and strikes a 1951 USAF Resolution Testing Gauge (ii), then the imaging lens LI (iii) and a pinhole  
of ≈1.36 mm diameter (iv). The light splits to arm one, where it is collected by a scanning point detector D1, and 
arm two, where it is collected by a spatially filtered bucket detector, consisting of a lens LB located on the image 
plane and a multimode fiber tip in the Fourier transform plane. The image is then calculated using the Photon 
Number Fluctuation Correlation (PNFC) circuit.
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detector in the neighborhood of x2 =  x2+, x2−. Again, this “spatial filtering” does not require any knowledge of the 
object or its Fourier transform function.

One way to improve these results is to replace D2 with a CCD array; the CCD would still be in the Fourier 
transform plane, but with the central pixels blocked. This would allow D2 to collect more light of higher spatial 
frequencies. Although the limits of our equipment, software data storage, and time constraints prevented the 
authors from making such improvements, in this reported measurement all three slits of the resolution gauge are 
certainly well-resolved, while both the classical imaging and the autocorrelation mechanisms could not resolve it.

Discussion and theory
In the experiment, we use the spatial correlation of the noise, 〈 Δ I1(r1, t1)Δ I2 (r2, t2)〉 , to produce an image from 
the joint photo-detection of two independent and spatially separated photodetectors, D1 and D2. In the following, 
we outline the theory behind our experiment. First we briefly consider how a first-order or classical camera pro-
duces an image in its image plane, 〈 I1(ρ1)〉 .

The experiment was performed using a pseudothermal light source, created by placing a rotating ground glass 
in the path of a laser beam. The ground glass contains a large number of tiny scattering diffusers which act as 
sub-sources. The wavepackets of scattered light play the role of subfields; each diffuser scatters a subfield to all 
possible directions, resulting in the subfields acquiring random phases. Each sub-field propagates from the source 
plane to the image plane by means of a propagator or Green’s function, Em(ρ1) =  Emgm(ρ1), where Em is the initial 
phase and amplitude of the field emitted by sub-source m and gm(ρ1) is the Green’s function which propagates the 
light from the mth sub-source located at ρm to the point ρ1 at some distance z from the source plane. To simplify 
the problem, we assume the fields are monochromatic and ignore the temporal part of the propagator. Then the 
light measured at coordinate (r, t) is the result of the superposition of a large number of subfields, ∑ =

∞ E tr( , )m m1 , 
each emitted from a point sub-source,

∑ ∑ ∑ ∑= = + = + ∆
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where 〈 I(r, t)〉 , the mean intensity, is the result of the mth subfield interfering with itself; Δ I(r, t), the intensity 
fluctuation, is the result of the mth subfield interfering with the nth subfield, m ≠  n, and is usually considered 
noise because 〈 Δ I(r, t)〉  =  0 when taking into account all possible random phases of the subfields.

A classical imaging system measures the mean intensity distribution on the image plane, 〈 I1(ρ1)〉 , where we 
have assumed a point detector D1 is placed at coordinate ρ1, the transverse coordinate of the image plane. In an 
ideal imaging system, the self-interference of subfields produces a perfect point-to-point image-forming func-
tion. The ideal classical image assuming an infinite lens is the convolution between the aperture function of the 
object |A(ρO)|2 and the image-forming δ-function which characterizes the point-to-point relationship between 
the object plane and the image plane11–13.
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where μ =  sI/sO is the magnification factor, gm(ρO) is a Green’s function propagating the mth subfield from the 
source plane to the object plane over a distance z. and gO(ρ1) is a function propagating the subfield from the object 
plane to the detection plane over a distance sO +  sI, and including the imaging lens. A(ρO) is an arbitrary function 
describing the object aperture.

In reality, due to the finite size of the imaging system, we rarely have a perfect point-to-point correspond-
ence. Incomplete constructive-destructive interference blurs the point-to-point correspondence to point-to-spot 
correspondence. The δ-function in the convolution of Eq. 3 is then replaced by a point-to-spot image-forming 
function, or a point-spread function which is determined by the shape and size of the lens. For a lens with a finite 
diameter, one common model describes the shape or pupil of the lens as a disk of diameter D:

Figure 2. Resolution comparison for different imaging methods of three 0.01241 mm wide slits imaged by a 
10 mm diameter source: (a) unresolved first-order classical image, where the gray shading marks the location of 
the slits; (b) unresolved images from the fluctuation autocorrelation. The black dots indicates [I1(x1)]2 and the 
blue triangles show [Δ I1(x1)]2, as seen in Oh et al.6; (c) completely resolved image observed from Δ Rc(x1) where 
the solid line is a Gaussian data fitting.
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where the sombrero-like point-spread function is defined as somb(x) ≡  2J1(x)/x; J1(x) is the first-order Bessel 
function. The image resolution is determined by the width of the somb-function: the narrower the higher. A 
larger diameter lens results in a narrower somb-function and thus produces images with higher spatial resolution.

To simplify the mathematics, it is common to approximate a finite lens as a Gaussian ρ−e D( /( /2) )L
2
 with diame-

ter D, but a smoother falloff than the disk approximation. This leads to a Gaussian imaging-forming function:
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This Gaussian version of the imaging equation will be used later in numerical calculations to simplify the 
mathematical evaluation.

It is clear from Eqs 4 and 5 that for a chosen value of distance sO, a larger imaging lens and shorter wavelength 
will result in a narrower point-spread function, and thus a higher spatial resolution of the image.

Now we consider the noise produced image that is observed from the measurement of Fig. 1 by means of  
〈 Δ I1(ρ1)Δ I2(ρ2)〉 . To make the explanation of the experimental results easier to follow, first we examine the case 
where two point scanning detectors D1 and D2 are placed in the image planes of arm one and arm two:
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The calculation of ρ ρ∑ ⁎E E( ) ( )m m m1 2  is straightforward:
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Next, we complete the summation over m in terms of the subfields, or the sub-sources, by means of an integral 
over the entire source plane. This integral results in the well-known Hanbury-Brown Twiss (HBT) correlation: 
somb2[(πΔ θ)/λ|ρO −  ρO′|], where Δ θ is the angular diameter of the light source relative to the object plane. To 
simplify further calculations, we assume a large value of Δ θ and approximate the somb-function to a δ-function 
evaluated at ρO =  ρO′, κ =  κ′ . 〈 Δ I1(ρ1)Δ I2(ρ2)〉  is therefore approximately equal to:
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It is clear that when ρ1 =  ρ2 in Eq. 8, the measurement of 〈 Δ I1(ρ1)Δ I2(ρ1)〉  produces an image with a 2  res-
olution gain, with an imaging resolution due to the image-forming somb-functions, i.e., ρ ρ ρµ=  O1 2 . When 
the lens is large enough to resolve the object, the result is a point-to-point reproduction of the image only when 
ρ1 =  ρ2; otherwise for small lens apertures Eq. 8 forms a point-to-spot image when |ρO +  ρ1/μ| <  λsO/D and 
|ρO +  ρ2/μ| <  λsO/D.

Now we move D2 to the Fourier transform plane of LB of arm two, i.e., to its focal plane, effectively performing 
a Fourier transform of the field distribution of the image plane. In addition, D2 is placed off-center relative to the 
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optic axis of the lens to select part of the spatial frequencies on the Fourier transform plane, acting as a spatial 
frequency filter. Mathematically,
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As a result of the spatial filter function F(κ2), the imaging resolution of Eq. 9 is much narrower than that of a 
first-order image; however, it is difficult to simplify this equation further in this form.

To get a better understanding of the physics behind Eq. 9, instead of modeling the finite radius of the lens as a 
disk, which results in the somb-function, we approximate the finite radius of the lens as the Gaussian function 
−e x D/( /2)L

2 2
 with a half-width D/2, and evaluate in one dimension. This leads to a Gaussian imaging-forming func-

tion instead of the somb-function. Working in one dimension, we change ρO to xO; ρ1 to x1; ρ2 to x2, etc. Then  
Δ Rc(x1) simplifies to:
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Corresponding to the experimental measurement, where D2 was placed at two off-center points in the Fourier 
transform plane, we model the filter function in one dimension by two rectangle functions: F(κ2) =  Π (xF −  x2+, 
DF) +  Π (xF −  x2−, DF), where κ = kx

f2
F

B
, while A(xO) =  Π (xO, w) +  Π (xO −  2w, w) +  Π (xO +  2w, w); assuming x2, xO, 

and κ2(xF) are integrated from ±∞ , the resulting equation is an analytic expression. Define
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which contains the imaging equation in Gaussian form for x1 and x2, in addition to some phase terms which are 
not observable in a first-order image, and
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Then Eq. 10 is, after evaluating the κ2 and x2 integrals,
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Then it is easy to see that restricting the allowed spatial frequencies of the Erfi functions constrains the val-
ues xO is allowed to take, which, together with f(x1, xO), improves the ability to resolve different points on the 
object plane. However, without evaluation Eq. 13 may still not be clear enough to show exactly how the reso-
lution is affected, so we have included the following figures which plot some informative values to support our 
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experimental observation. Figure 3(a) compares the theoretical first-order unresolved image of three slits with 
the second-order fluctuation correlation image calculated using Eq. 13. The filter function is calculated for a 
fiber diameter DF of 0.105 mm and varying distances xF from the center of the Fourier transform plane. Note that 
the plot for xF =  0.18 mm demonstrates similar behavior to the observed experimental data, including the shift 
of the left and right peaks away from center. It is clear that, for a lens diameter of 1.36 mm, the gold transparent 
plot is completely unresolved. However, as the cutoff frequency κ2 =  kxF/fB increases, the second-order resolu-
tion also increases as seen in the increasing separation of the peaks in Fig. 3. This is more clearly illustrated in 
Fig. 3(b) and (c); in (b) the imaging function of the first-order image (black) is plotted with the second-order 
imaging function (teal) for xF =  0.18 mm. It is clear that the second-order imaging function is much narrower. In 
(c) the half-width of the imaging function in Eq. 13 is calculated at x1 =  0 for increasing values of xF. Using the 
estimated experimental parameters, the second-order imaging resolution starts equal to the first order at xF =  0 
and increases to the experimental setup’s limit of about 0.002 mm.

It is evident from the experiment and theoretical calculations that the increase in spatial resolution is strongly 
dependent on the chosen spatial filter. It is, in effect, applying a high-pass spatial filter to one arm, producing an 
edge-sharpening effect11,12. The interesting part is that the correlation of the spatially filtered intensity fluctuations 
with arm one produces a resolved image, especially since neither arm “sees” a resolved image. This correlation 
filters out the lower spatial frequencies of the unresolved image of arm one, yielding a resolved image in the inten-
sity fluctuation correlation rather than the intensity.

Conclusion
In summary, by using a high-pass spatial filter in the non-resolving side of a two-arm camera, the measurement 
of the intensity fluctuation correlation 〈 Δ I1(ρ1)Δ I2(ρ2)〉  was able to resolve an object that could not be resolved 
by a traditional camera. This imaging method would be particularly useful for long-distance imaging in situations 
where it is impractical to have large lenses but high resolution is still desired, as it could take advantage of the 
large angular size of the sun, 0.5° relative to the earth, and the correspondingly small coherence length, on the 
order of 0.2 mm. In addition, since the thermal light image in 〈 Δ I1(ρ1)Δ I2(ρ2)〉  is in general turbulence-free14, 
this method would be particularly attractive for satellite cameras taking high resolution images of objects on 
the ground. Technically more complicated optics or electronics for practical sunlight imaging will be discussed 
separately.
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