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ABSTRACT

Mistranslation can follow two events during protein
synthesis: production of non-cognate amino
acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA
synthetases (aaRSs) and inaccurate selection of
aminoacyl-tRNAs by the ribosome. Many aaRSs
actively edit non-cognate amino acids, but editing
mechanisms are not evolutionarily conserved, and
their physiological significance remains unclear. To
address the connection between aaRSs and mis-
translation, the evolutionary divergence of tyrosine
editing by phenylalanyl-tRNA synthetase (PheRS)
was used as a model. Certain PheRSs are naturally
error prone, most notably a Mycoplasma example
that displayed a low level of specificity consistent
with elevated mistranslation of the proteome.
Mycoplasma PheRS was found to lack canonical
editing activity, relying instead on discrimination
against the non-cognate amino acid by kinetic
proofreading. This mechanism of discrimination is
inadequate for organisms where translation is
more accurate, as Mycoplasma PheRS failed to
support Escherichia coli growth. However, minor
changes in the defunct editing domain of the
Mycoplasma enzyme were sufficient to restore
E. coli growth, indicating that translational
accuracy is an evolutionarily selectable trait.

INTRODUCTION

Accurate transfer of genetic information is critical for
cellular maintenance and integrity, with each stage of
gene expression requiring different levels of fidelity (1).
DNA replication is an extremely accurate process with
an error rate of 1 in 108 (2), whereas messenger RNA
transcription and translation are relatively less accurate

with misincorporation rates of 10�5 and 10�4, respectively
(3–5). Fidelity in translation is dependent on several steps
including synthesis of cognate aminoacyl transfer RNAs
(aa-tRNAs) by aminoacyl tRNA synthetases (aaRSs),
binding of aa-tRNAs by elongation factor Tu (EF-Tu),
and accurate selection of aa-tRNAs by the ribosome
(6–8). The aaRS family is composed of 23 distinct
enzymes, each of which is responsible for ligating a
single amino acid to a subset of tRNAs with specific anti-
codon sequences. Aminoacylation of tRNA by aaRSs is a
two-step reaction, consisting of adenosine triphosphate
(ATP)-dependent amino acid activation followed by
ligation of amino acid to the 30-end of tRNA forming an
aminoacyl ester bond (9). During the activation step,
approximately half of the aaRSs display a level of specifi-
city of 3000:1 or greater for cognate versus non-cognate
amino acids, which is similar to overall error rates typic-
ally observed during protein synthesis (10). For the other
aaRSs, the existence of closely related near-cognate sub-
strates precludes a high level of cognate amino acid dis-
crimination, and these enzymes depend on an additional
proofreading function called ‘editing’ for quality control
(11). Editing is categorized as pre- or post-transfer
depending on whether products of the first or second
step of the aminoacylation reaction are hydrolyzed,
respectively (6,12,13). AaRS editing contributes to
quality control as part of a ‘double sieve’ mechanism
(14,15). The first sieve is the synthetic active site of the
aaRS, which determines the specificity for cognate sub-
strate. The second sieve is an editing or proofreading
activity to clear either near-cognate amino acids or
mischarged tRNAs.

The aaRSs are an essential family of enzymes, but their
corresponding editing activities are not required for cell
viability under standard laboratory growth conditions [re-
viewed in (16)]. Although not lethal, defects in aaRS
editing lead to mistranslation that results in stress
responses because of the accumulation of misfolded
proteins in eukaryotic cells, and increased susceptibility
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to some antibiotics and induction of the SOS mechanism
in bacteria (17–22). Specific mechanisms actively reduce
aaRS quality control and elevate misacylation under
certain growth conditions, which can be beneficial for
cell survival (23–26). The finding that aaRS-dependent
mistranslation can be detrimental or advantageous de-
pending on growth conditions suggests that accuracy
may be a variable, selectable, trait rather than an
absolute requirement for viable translation (27,28). To
further investigate the evolution of aaRS quality control
mechanisms and their role in regulating the accuracy of
translation, we examined the discrimination of near-
cognate tyrosine by phenylalanyl-tRNA synthetase
(PheRS) from Mycoplasma mobile. Previous studies have
shown that PheRS proofreading mechanisms display con-
siderable structural and functional diversity between dif-
ferent organisms and cellular compartments, suggesting
they have adapted to divergent cellular requirements for
translation quality control (27). M. mobile provides an
ideal model system to investigate the evolution of PheRS
quality control, as the extensive mistranslation observed in
the proteome of this organism was recently proposed to be
directly linked to the absence of canonical editing domains
in several aaRSs, including PheRS (28). Here, we show
that M. mobile PheRS (MmPheRS) has lost post-transfer
editing activity against misaminoacylated tRNA, and has
acquired an alternative, albeit less efficient, quality control
pathway dependent on kinetic proofreading. Sequence
alignment-based single amino acid replacements in
MmPheRS substantially increased proofreading activity
in vivo and in vitro, suggesting that the mechanistic
changes observed in the enzyme reflect divergent selection
pressures on the translation quality control machinery
during evolution. The possible advantages to proteome
integrity of regulating translation accuracy via aaRS
quality control mechanisms are discussed.

MATERIALS AND METHODS

General methods

Site-directed mutagenesis was performed by polymerase
chain reaction using primers obtained from Sigma.
Aminoacylation, ATP consumption, deacylation and
steady state kinetic assays were performed as described
previously (17,29).

Preparation of MmPheRS

GeneIDs for M. mobile pheS encoding the a subunit and
pheT encoding the b subunit are MMOB3170 and
MMOB5160, respectively. M. mobile gene sequences
were codon optimized for expression in Escherichia coli;
specifically, TGA codons were substituted with TGG
codons, and the modified operon was synthesized
(GenScript). The intergenic sequence between pheS and
pheT genes was replaced with the sequence from that in
E. coli to ensure efficient transcription and translation of
the two subunits in E. coli. TheMmPheRS-encoding genes
were subcloned into pQE31 vector (Qiagen) at SacI and
HindIII restriction sites. The resulting plasmid
pQE31-His6-MmPheRS was used to transform E. coli

BL21(DE3)pLysS cells. Cells were grown to an optical
density at 600 nM (OD600) of 0.4 at 37�C, 250 r.p.m.,
and then grown until an OD600 of 0.7 at 22�C,
250 r.p.m. Isopropyl-b-D-thiogalactoside (IPTG) was
then added to a final concentration of 0.5mM, and cells
were grown overnight at 22�C, 250 r.p.m. Cells were har-
vested; the pellet was resuspended in a buffer containing
25mM Tris–HCl (pH 8.0), 300mM NaCl, 10% glycerol
and 5mM imidazole, and flash frozen using liquid N2

before storage at �80�C. The frozen cells were thawed
at 37�C for 10 min and sonicated, and supernatant was
collected after centrifugation at 50 000 r.p.m. for 1 h. The
supernatant was applied to a pre-equilibrated 3ml
TALON� resin metal affinity column (Clontech)
followed by washing, and the protein was eluted with
Tris–HCl (pH 8.0), 300mM NaCl, 250mM imidazole
and 10% glycerol. Fractions containing MmPheRS were
checked for electrophoretic purity by sodium dodecyl
sulphate–polyacrylamide gel electrophoresis, pooled and
dialyzed overnight at 4�C into buffer containing 10mM
Tris–HCl (pH 8.0), 200mM NaCl, 5mM NaH2PO4 and
10% glycerol, after which the protein was aliquoted and
stored at �20�C in the same buffer with 50% glycerol.

Cloning and in vitro transcription of M. mobile tRNAPhe

The gene for M. mobile tRNAPhe
GAA (GeneID:

MMOB9150) was synthesized using synthetic DNA oligo-
mers according to standard procedures (30) and cloned
into pUC19 vector using BamHI and HindIII restriction
sites to yield pUC19-MmtRNAPhe. This plasmid (200mg)
was digested with BstNI to generate 30 CCA and used as a
template for run-off transcription using T7 RNA polymer-
ase. The tRNA transcript was purified on denaturing 12%
polyacrylamide gel and extracted by electrodialysis in
90mM Tris-borate/2mM ethylenediaminetetraacetic acid
(EDTA) (pH 8.0). The tRNA was phenol and chloroform
extracted, ethanol precipitated and resuspended in
diethylpyrocarbonate (DEPC)-treated ddH2O. Refolding
was carried out by heating the tRNA at 70�C for 2min,
followed by addition of MgCl2 to a concentration of
2mM and subsequent slow cooling to room temperature.

Tyr-tRNA
Phe

preparation and hydrolysis assays

Wild-type MmPheRS (1 mM) was used to aminoacylate
5 mM tRNAPhe to produce Tyr-tRNAPhe, which was
then purified, and reactions were performed as described
previously (17). Reaction mixture contained 1mM
Tyr-tRNAPhe and 100–500 nM wild-type or mutant
PheRS. Bovine serum albumin was used as a negative
control and 0.1M NaOH as a positive control.

Steady-state kinetics

Steady-state kinetic assays were carried out at 37�C as
previously described (17,29). For ATP-PPi exchange
assays, concentrations of substrates were varied from 0.5
to 200 mM for Phe, and 0.1 to 9mM for Tyr. Enzymes
were added to a final concentration of 100–150 nM. For
steady-state aminoacylation assays, concentrations of sub-
strates were varied from 0.5 to 100 mM for Phe, 20 to
400 mM for Tyr and 0.5 to 40 mM for tRNAPhe. For
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cognate and non-cognate charging reactions, final PheRS
concentrations used were 100 and 500 nM, respectively.
Kinetic parameters were determined as averages from
three independent reactions, and their standard errors
are shown.

Single-turnover kinetics

Experiments were performed at 22�C on a quench flow
RQF-3 KinTek instrument, using the constant quench
option. The buffer for PheRS contained 100mM Na-
Hepes (pH 7.2), 30mM KCl, 10mM MgCl2 and 10mM
dithiothreitol (DTT), whereas the quench solution
contained 3M sodium acetate (pH 4.5). The PheRS-
aminoacyl-AMP complex is not stable following purifica-
tion, so the complex was formed in situ in the first syringe
as described previously (31). The sample was then mixed
rapidly with tRNAPhe in the second syringe and quenched
at various time intervals. In syringe A, enzyme-aminoacyl-
adenylate complex was formed in situ by incubating
6–8mM PheRS, 40 mM [14C]-Phe (215 cpm/pmol) or
80 mM [14C]-Tyr (360 cpm/pmol), 4mM ATP and
2 units/mL of inorganic pyrophosphatase. Syringe B con-
tained 2–4 mM tRNAPhe. Reaction aliquots of 36 ml (18ml
in each syringe) were quenched and precipitated in 5%
trichloroacetic acid. The radiolabeled aa-tRNA products
were quantified by scintillation counting. Amount of
aa-tRNA formed was plotted versus time and fitted to
the single exponential equation, y=C+A*[1�
exp(� ktrans� t)], where C is the y intercept, A is the amp-
litude, ktrans is the rate of aminoacyl transfer and t is time
in seconds. Phe and Tyr transfer rate constants were
determined by single-turnover kinetics using 6–8 mM
PheRS and 3–4 mM MmtRNAPhe or EctRNAPhe. For
EcPheRS, the aA294G bG318W editing-defective
variant was used to prevent significant hydrolysis of
Tyr-tRNAPhe during the assay. Data represent averages
of three independent experiments and the corresponding
standard errors.

E. coli NP37 pheSts complementation

The E. coli NP37 strain [pheSts, (32)] was co-transformed
with plasmids pQE31-MmPheRS (ampr) and pREP4

(kanr, Qiagen) to ensure tight transcriptional regulation
of plasmid-encoded PheRS. The transformants were
plated on Luria broth (LB) supplemented with 100 mg/ml
ampicillin and 50 mg/ml kanamycin and incubated at
30�C. Individual colonies were then streaked and grown
on the same media as aforementioned at both 30�C and
42�C for 24–48 h. To ensure the colonies appearing at
42�C were not revertants, the presence of the pheSts

mutation in E. coli NP37 was confirmed by sequencing.

RESULTS

MmPheRS lacks canonical quality control activities

Previous analyses of components of the M. mobile
proteome showed mistranslation of up to 0.7% of Phe
codons, as Tyr and preliminary sequence analyses sug-
gested this was, in part, because of PheRS-specific
editing defects (28). In E. coli PheRS (EcPheRS), the
highly conserved residues bR244, bH265, bG318, bE334,
bT354 and bA356 are all involved in editing (33). bR244,
which interacts with the tRNA backbone primarily at
C75, is replaced by Lys in most Mycoplasma species.
Although MmPheRS retains the well-conserved His
residue in the signature motif QPxHxFD, other key
residues are not well conserved, including the second sig-
nature motif, GVMGGxxS/T, which aligns poorly
because of extensive sequence changes, possibly indicative
of changes in the editing activity of the M. mobile enzyme
(Figure 1). For the cognate amino acid Phe, some differ-
ences were observed between MmPheRS and EcPheRS,
with the M. mobile enzyme having a 2-fold higher
kcat/KM in ATP-PPi exchange and the E. coli enzyme a
9-fold higher kcat/KM for aminoacylation [Tables 1 and
2; (35)]. For non-cognate Tyr, MmPheRS showed negli-
gible post-transfer editing of Tyr-tRNAPhe compared with
either wild-type EcPheRS or the aA294G bG318W
variant, which has �80-fold reduced activity compared
with wild-type [Figure 2A; (33)]. The absence of
post-transfer editing rendered MmPheRS considerably
more error prone than its E. coli counterpart, as shown
by its ability to synthesize and accumulate Tyr-tRNAPhe

Figure 1. Editing site sequence alignments for bacterial PheRSs. Sequences are from the first (top) and second (bottom) signature motifs using E. coli
numbering. See main text for details. Inset is the structure of the Thermus thermophilus editing site in complex with Tyr, with E. coli numbering in
parentheses (34).
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(Figure 2B). The level of mischarging by MmPheRS was
comparable with that of the aA294G bG318W
editing-deficient E. coli variant and is in contrast to WT
EcPheRS, which does not produce any detectable
mischarged Tyr-tRNAPhe. These results indicate that
MmPheRS lacks post-transfer editing activity and is in-
herently error prone.

In the absence of post-transfer editing activity, it is
possible that MmPheRS relies instead for quality control
on highly stringent Phe recognition and Tyr discrimin-
ation. This mechanism is also used by yeast mitochondrial
PheRS to compensate for its inability to edit Tyr-tRNAPhe

(27). Steady-state kinetic analyses ofMmPheRS revealed a
Phe:Tyr specificity ratio during aminoacylation of 440:1
(Table 1). Examination of amino acid specificity during
ATP-dependent activation indicated that the MmPheRS
active site displays specificity for Phe over Tyr of 480:1
(Table 2). The specificity for Phe over Tyr of MmPheRS is
14-fold lower than that of EcPheRS, demonstrating a sub-
stantial reduction in discrimination against the
near-cognate amino acid.

Pre-transfer editing provides a potential additional
quality control mechanism to prevent usage of near-
cognate Tyr by PheRS. To investigate possible
pre-transfer editing by MmPheRS, ATP consumption
assays were performed using either cognate Phe or near-
cognate Tyr, in the presence or absence of tRNAPhe. The
level of ATP consumption in the presence of Tyr was
similar to that in the presence of Phe. ATP consumption
increased on addition of tRNA in the presence of Tyr, but
not Phe, suggesting weak tRNA-dependent editing
activity (Figure 3A). To distinguish between cis-
post-transfer editing and tRNA-dependent pre-transfer
editing, we used a non-chargeable substrate, 20-deoxy
EctRNAPhe (17). In the presence of Tyr and 20-deoxy
EctRNAPhe, the ATP consumption rate was similar to
that found in the presence of Tyr and chargeable tRNA
(Figure 3B). These data indicate that MmPheRS exhibits

tRNA-dependent pre-transfer hydrolysis activity, which
provides a modest, �2-fold, discrimination between Phe
and Tyr (Figure 3A). The relatively low substrate specifi-
city of amino acid activation, weak pre-transfer-editing
and absence of post-transfer editing together show that
MmPheRS lacks all of the canonical quality control mech-
anisms normally used by aaRS enzymes to prevent
non-cognate aa-tRNA synthesis.

Kinetic proofreading during amino acid transfer by
MmPheRS

Steady-state amino acid activation rates (kcat) for
MmPheRS were similar with both Phe and Tyr, whereas
the overall rate of tRNA charging with Tyr was �10-fold
lower than that with Phe. This finding suggests MmPheRS
may kinetically discriminate against near-cognate Tyr at a
step subsequent to activation, either aminoacyl transfer to
tRNA or release of aminoacyl-tRNA. Previous studies
showed that aminoacyl-tRNA release is not the
rate-determining step during aminoacylation by
EcPheRS (36–38), and this was also found to be the case
for MmPheRS (Figure 4). Using aA294G and aA294S
EcPheRS variants, which can accommodate unnatural
Phe analogs such as p-chlorophenylalanine (p-Cl Phe),
aminoacyl transfer rate constants were previously
measured for cognate Phe and p-Cl Phe (38). p-Cl Phe
transferred to tRNAPhe at a faster rate than Phe,
indicating that near- or non-cognate aminoacyl-AMP
intermediates form less stable complexes with EcPheRS
than their cognate counterparts. Using rapid quench
assays under single-turnover conditions, ktrans was
measured for Tyr and Phe. An EcPheRS editing-deficient
mutant (aA294G bG318W) was used to prevent hydroly-
sis of mischarged Tyr-tRNAPhe during the timescale of the
reaction. The observed ktrans for Tyr was �2-fold higher
(30±2 s�1) than that for Phe (16±3 s�1), consistent with
previous studies (38). In contrast, for MmPheRS, the rate

Table 2. Steady-state kinetic constants for ATP-[32P]PPi exchange by wild-type and MmPheRS variants

Phe Tyr

MmPheRS kcat (s
�1) KM (mM) kcat/KM (s�1mM�1) kcat (s

�1) KM (mM) kcat/KM (s�1mM�1) Specificitya

(Phe/Tyr)

WT 10.0±0.2 10±1 1.0±0.2 8.0±0.4 3900± 540 0.0021±0.0003 �500
(T305A 24±4 11±1 2.3±0.5 3.4±0.8 2060±40 0.0017±0.0004 �1350
bQ306A 18±3 10±4 2.1±0.6 5±1 3850±1590 0.0014±0.0002 �1500
(T305A/Q306A 15±4 9.0±0.1 1.7±0.4 ND ND 0.0006±0.000b �3000

aSpecificity (Phe/Tyr)= (kcat/KM)Phe/(kcat/KM)Tyr.
bkcat/KM was estimated using sub-saturating Tyr concentrations from the slope of the equation, V= kcat [E][S]/KM.

ND, not determined.

Table 1. Steady-state kinetic constants for tRNA aminoacylation by MmPheRS

Amino acid kcat (s
�1) KM (mM) kcat/KM (s�1mM�1) Specificity (kcat/KM)

Phe/(kcat/KM) Tyr

Phe 0.10±0.03 3.3±0.5 0.040±0.003
Tyr 0.0100±0.0005 130±40 9� 10�5±0.3� 10�5 440
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of Phe transfer (16±2 s�1) was 5-fold faster than the rate
of Tyr transfer (3±0.4 s�1). These data reveal that
MmPheRS, unlike its E. coli counterpart, uses a distinct
mechanism to discriminate cognate from near-cognate
substrates based on kinetic proofreading of
aminoacyl-adenylates during the transfer step of the
aminoacylation reaction.

Restoring canonical quality control in MmPheRS

In vitro studies (see earlier) showed that MmPheRS lacks
canonical quality control mechanisms and suggest that the
enzyme may not be able to support growth of organisms,
such as E. coli, where translation is predicted to be more
accurate than in M. mobile. The in vivo activity of
MmPheRS in a comparatively accurate cellular context

was investigated using the E. coli strain NP37, which
contains a temperature-sensitive (ts) chromosomal pheS
allele that restricts growth at 42�C. Wild-type EcPheRS
displayed robust complementation, while MmPheRS was
unable to rescue growth of E. coli NP37 at 42�C
(Figure 5A). E. coli tRNAPhe is highly homologous to
M. mobile tRNAPhe, and both EcPheRS and MmPheRS
can cross-aminoacylate either tRNA (Supplementary
Figure S1), suggesting the lack of complementation by
MmPheRS does not result from a tRNA recognition
defect. Cross-species tRNA recognition was further sup-
ported by the ability of PheRS M. mobile a-subunits and
E. coli b-subunits produced together in vivo to rescue
growth (Supplementary Figure S2). To investigate
whether the absence of complementation in vivo
stemmed from the relatively poor quality control
observed in vitro with MmPheRS, sequence alignment-
based variants of MmPheRS were constructed in an
attempt to restore proofreading activity. Replacements
were confined to the second editing motif of the
b-subunit (G315VMGGxxS/T, E. coli numbering), which
is considerably diverged inM. mobile when compared with
the canonical, conserved, bacterial signature sequence
(Figure 1). In the second editing motif of MmPheRS, all
three Gly residues have been replaced by relatively bulkier
residues (bY302, bT305 and bQ306), which may occlude
Tyr from the editing active site. The impact of these
changes on the quality control activities of MmPheRS
was investigated by making Ala and Gly substitutions of
bY302, bT305 and bQ306. bY302A/G, bT305A/G and
bQ306A/G MmPheRS-encoding genes were then
screened for their in vitro activities and ability to rescue
the ts phenotype of E. coli NP37 (Table 3). Only genes
encoding bT305A and bQ306A MmPheRS rescued
growth at 42�C, as did the bT305A/Q306A variant,
albeit poorly (Figure 5A).

The ability of the sequence alignment-based MmPheRS
variants to synthesize Phe-tRNAPhe and Tyr-tRNAPhe

was examined in vitro. bT305A, bQ306A and bT305A/
Q306A MmPheRS all showed normal levels of Phe-
tRNAPhe and reduced Tyr-tRNAPhe synthesis compared
with wild-type, indicative of elevated quality control and
consistent with the complementation activities of the cor-
responding genes (Table 3; Figures 5B and 5C). Trans-
editing assays showed that the Ala substitutions at
T305A and Q306A had not restored post-transfer
editing activity, nor did ATP consumption assays show
an increased rate of AMP production, indicating that
none of the three MmPheRS variants had acquired
editing function. Amino acid activation kinetics showed
that the bT305A and bQ306A replacements all increased
specificity for Phe over Tyr by 3- to 6- fold compared with
wild-type, consistent with the observed reduction in
Tyr-tRNAPhe synthesis (Table 2). These data indicate
that the sequence alignment-based replacements in the
second editing motif support E. coli growth by partially
restoring a canonical quality control activity normally
absent from MmPheRS. Despite all the MmPheRS
variants being at residues in the defunct editing domain,
increased quality control resulted from improved amino
acid discrimination at the active site in the a-subunit

Figure 2. Aminoacylation and editing activities of MmPheRS. (A)
Post-transfer editing of preformed Tyr-tRNAPhe by MmPheRS. WT
EcPheRS and 0.1M NaOH serve as positive controls and
editing-deficient aA294G bG318W E. coli PheRS as a negative
control. (B) Tyrosylation of MmtRNAPhe by MmPheRS, EcPheRS
and the aA294G bG318W E. coli PheRS editing-deficient mutant.
Data represent averages of three independent experiments and the cor-
responding standard errors.
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rather than restoration of editing activity in the b-subunit.
This suggests communication between the editing and syn-
thetic active sites, analogous to the recent observation that
fusion of a CP1 editing domain to M. mobile leucyl-tRNA
synthetase (LeuRS) leads to enhancement of amino acid
discrimination during the activation step in addition to
conferring post-transfer editing activity (39).

DISCUSSION

Structural and functional divergence of PheRS

The proteome of the obligate intracellular pathogen
M. mobile contains significant amino acid ambiguities,

with misincorporation rates at Leu and Phe codons
estimated to be as high as 1 in 200 (28). The absence of
the canonical CP1 domain, and the accompanying loss of
editing activity, in M. mobile LeuRS suggested that mis-
translation of Leu codons resulted from elevated levels of
mischarged tRNALeu. Our data suggests that the same is
true for mistranslation of Phe codons in M. mobile, which
likely results from elevated levels of mischarged tRNAPhe.
Detailed in vitro analyses showed that the relatively low
accuracy of MmPheRS aminoacylation results from
changes at all steps in the reaction rather than loss of a
single quality control step. Previous studies have shown
that PheRS displays considerable divergence in quality
control; some organisms, such as E. coli, retain multiple
quality control steps while others, such as yeast, depend
on single steps to maintain cellular viability (27,29). In
addition, even when only a single quality control mechan-
ism is retained, as in both yeast PheRSs, this is still not
essential for cellular viability (27). These findings suggest
that, under appropriate growth conditions, PheRS could
evolve to dispense entirely with canonical quality control
and still maintain cellular viability. This was confirmed by
the in vitro and in vivo data presented here for MmPheRS.
In addition to losing canonical quality control pathways,
MmPheRS has acquired the ability to kinetically discrim-
inate against non-cognate intermediates during the
aminoacyl transfer step. Kinetic proofreading provides a
mechanism to increase fidelity at lower time and energy
costs compared with recycling reactions such as
post-transfer editing (40,41), but its capacity to maintain
adequately fast and accurate aa-tRNA synthesis during
translation has been questioned (14). Analysis of
MmPheRS aminoacylation shows that kinetic proofread-
ing alone can support viable translation, but only in
cellular systems with relatively low requirements for trans-
lational accuracy.

Figure 3. ATP hydrolysis by MmPheRS. (A) ATP hydrolysis activity in the presence of cognate Phe (1mM) or noncognate Tyr (5mM), with or
without MmtRNAPhe (10 mM). (B) tRNA-dependent ATP hydrolysis in the presence of non-cognate Tyr (5mM) with MmtRNAPhe (5mM), 20-deoxy
EctRNAPhe (5mM) or no tRNA. ATP hydrolysis was monitored in the absence of enzyme during each experiment and subtracted from data points.
Data represent averages of three independent experiments and the corresponding standard errors.

Figure 4. Transient kinetics of MmPheRS. Time course of
aminoacylation in pre-steady-state burst conditions (0.5 mM PheRS
and 20 mM tRNAPhe). The absence of a burst of product formation
indicates that product release is not rate limiting, in contrast to
aaRSs where product release is rate limiting (31).
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The functional divergence of MmPheRS may also have
been facilitated by the expected effect on the proteome of
the high AT content of Mycoplasma genomes (42,43).
Bioinformatic analyses have shown that organisms con-
taining AT-rich genomes possess a greater bias to
AT-rich codons encoding the amino acids Phe, Tyr,
Met, Ile, Asn and Lys rather than GC-rich codons
coding for Gly, Ala, Arg and Pro (44). Comparison of
the sequences of MmPheRS and EcPheRS shows a
strong tendency toward the amino acid substitutions pre-
dicted from changes in nucleotide bias (Figure 6). This
trend away from certain amino acids would be expected
to favor substitutions at various key synthetic and editing
site residues (Figure 1). Therefore, nucleotide bias appears
to have acted as a non-specific factor facilitating a shift in
the amino acid composition and functional properties of
MmPheRS.

Figure 5. Activity of MmPheRS quality control variants. (A) Rescue of growth phenotype of E. coli NP37 (pheSts). E. coli NP37 was transformed
with plasmids producing WT MmPheRS, MmPheRS variants bT305A, bQ306A and bT305A/Q306A and WT EcPheRS as positive and empty vector
as negative controls, respectively. (B) Phenylalanylation and (C) tyrosylation by WT MmPheRS and variants bT305A, bQ306A and bT305A/Q306A.
Data represent averages of three independent experiments and the corresponding standard errors.

Table 3. Properties of MmPheRS quality control variants

MmPheRS Phe-tRNAPhe

(Relative)a
Tyr-tRNAPhe

(Relative)b
Viabilityc

WT 1 1 No
bP301G 0.2 0.1 No
bY302G 1 2 No
bT305G 1 2.5 No
bQ306G 1 1 No
bT305G/bQ306G NDd ND No
bY302G/bT305G/bQ306G ND ND No
bT305A 1 0.4 Yes
bQ306A 1 0.4 Yes
bT305A/bQ306A 1 0.4 Yes

aSteady-state aminoacylation level after 12min compared with WT.
bSteady-state aminoacylation level after 15 (Gly substitutions) or
30min (Ala substitutions) compared to WT.
cAbility to rescue growth of E. coli NP37 at 42�C.
dND, no detectable activity.
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Relaxation of aaRS quality control confines mistranslation
to structurally related amino acid pairs

The Mycoplasma proteome contains a substantially higher
level of ambiguous decoding than routinely observed in
other bacteria such as E. coli (28). Translational ambiguity
can arise via different mechanisms. For instance, riboso-
mal ambiguity (ram) mutations cause miscoding by
increasing the affinity of ribosomes for non-cognate
aa-tRNA in a non-specific codon-independent manner
(45). Another general mechanism of mistranslation
involves mismethionylation of several tRNA species by
MetRS in bacteria, as well as mammalian cells, which is
believed to protect against oxidative stress (24,25). In
contrast to these general mechanisms that lead to mis-
translation, variability in the M. mobile proteome is
confined to specific amino acid substitutions. In particu-
lar, decoding of Leu and Phe codons is highly erroneous
with rates of �1 in 200 versus an error rate of �1 in 3000
for translation of other codons. Data presented here,
together with recent studies on MmLeuRS (25), suggest
that functional divergence of aaRSs allows for error
modulation by restricting mistranslation to a subset of
codons rather than causing a global defect. Reducing the
stringency of the quality control steps used by M. mobile
aaRSs targets translation errors to near-cognate amino
acids, ensuring that any changes in the composition of
the proteome following mistranslation are structurally
and functionally conservative. While modulating
aaRS-quality control has less impact on the overall integ-
rity of the proteome than non-specific mistranslation, the
selective advantage of reducing the accuracy of translation
is unclear. One potential advantage, as proposed by Li
et al. (28), is that mistranslation may protect M. mobile
from host defenses by increasing antigen diversity. This is
analogous to some mechanisms proposed to promote the
diversity of peptides presented by major histocompa-
tibility complex molecules (46). Our studies now show
that modulating aaRS amino acid specificity may
provide a potential mechanism to adapt to different
stresses, and further studies of the divergence of quality

control mechanisms may provide new insights into the
physiology of the corresponding organisms.
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