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Abstract

Animal behavior is dynamic, evolving over multiple timescales from milliseconds to days and even across a
lifetime. To understand the mechanisms governing these dynamics, it is necessary to capture multi-timescale
structure from behavioral data. Here, we develop computational tools and study the behavior of hundreds of
larval zebrafish tracked continuously across multiple 24-h day/night cycles. We extracted millions of move-
ments and pauses, termed bouts, and used unsupervised learning to reduce each larva’s behavior to an alter-
nating sequence of active and inactive bout types, termed modules. Through hierarchical compression, we
identified recurrent behavioral patterns, termed motifs. Module and motif usage varied across the day/night
cycle, revealing structure at sub-second to day-long timescales. We further demonstrate that module and
motif analysis can uncover novel pharmacological and genetic mutant phenotypes. Overall, our work reveals
the organization of larval zebrafish behavior at multiple timescales and provides tools to identify structure from
large-scale behavioral datasets.
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Significance Statement

Behavior is dynamic and not only can change from one second to the next but also can unfold over many
hours or even days. Understanding how behavior is organized on these different timescales is a critical task
in neuroscience, because the constraints on and patterns of behavior offer important clues about the under-
lying computations being performed in the brain. The analysis tools we develop in this manuscript and
apply from sub-second to day-long larval zebrafish behavior expands our understanding of how behavioral
patterns change at multiple timescales. The computational metrics we describe can now be used to under-
stand the behavioral consequences of psychotropic drugs or genetic lesions associated with neurodevelop-
mental and neuropsychiatric disorders.

Introduction
To survive, animals must coordinate patterns of action

and inaction in response to their environment. These actions
and inactions, which together we will define as behavior, re-
sult from some function incorporating internal (e.g., tran-
scriptional, hormonal, or neuronal activity) and external (e.g.,
time of day or temperature) state. Thus, behavioral descrip-
tions provide insight into the underlying mechanisms that
control behavior and are a necessary step in understanding
these systems (Krakauer et al., 2017).

Animal behavior, however, typically has many degrees
of freedom and evolves over multiple timescales from
milliseconds (Wiltschko et al., 2015) to days (Proekt et al.,
2012; Fulcher and Jones, 2017) and even across an ani-
mal’s entire lifespan (Jordan et al., 2013; Stern et al.,
2017). As such, quantitatively describing behavior re-
mains both conceptually and technically challenging
(Berman, 2018; Brown and de Bivort, 2018). Inspired by
early ideas from ethology (Lashley, 1951; Tinbergen,
2010), one approach is to describe behavior in terms of
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simple modules that are arranged into more complex mo-
tifs. Behavioral modules are often defined from postural
data as stereotyped movements, such as walking in
Drosophila (Berman et al., 2014; Vogelstein et al., 2014;
Robie et al., 2017) and mice (Wiltschko et al., 2015), while
behavioral motifs are defined as sequences of modules,
which capture the patterns inherent to animal behavior,
such as grooming in Drosophila (Berman et al., 2014,
2016).
Zebrafish larvae have emerged as a powerful model or-

ganism in neuroscience, owing to their genetic tractability
(Howe et al., 2013), translucency (Vanwalleghem et al.,
2018), and amenability to pharmacological screening (Rihel
and Ghosh, 2015). In terms of behavior, larvae exhibit an
alternating sequence of movements and pauses, termed
bouts. This structure is particularly suited to modular de-
scription as individual bouts can be easily segmented and
it is relatively easy to acquire many examples from even a
single animal due to the high frequency of their movement
(Kim et al., 2017). Leveraging these advantages, recent
work used unsupervised learning to uncover a locomotor
repertoire of 13 swim types in larval zebrafish, including
slow forward swims and faster escape swims (Marques et
al., 2018). However, the inactive periods between swim
bouts were not considered, despite reflecting behavioral
states such as passivity in the face of adversity (Mu et al.,
2019) or even sleep (Prober et al., 2006).
To explore an animal’s full behavioral repertoire, from

fast movements to sleep, it is necessary to study behavior
over long timescales. To date, however, module and motif
descriptions of behavior have been developed from vid-
eos 15 min (Vogelstein et al., 2014; Wiltschko et al., 2015;
Robie et al., 2017) to 2 h (Marques et al., 2018) in length.
Consequently, most identified behavioral structure has
been on the order of milliseconds, and the existence of
longer-timescale structure, on the order of minutes to
hours has remained largely unexplored. The development
of methods to extract multi-timescale structure from long-
timescale recordings would open avenues to explore
questions about how behavior varies across the day/night
cycle and develops across an animal’s lifespan.
Furthermore, as pharmacologically or genetically induced
behavioral phenotypes can differ at different times of the
day/night cycle in zebrafish larvae (Rihel et al., 2010a;
Hoffman et al., 2016), a long-timescale approach would
provide valuable phenotyping information.
Currently, the limiting factor in scaling these methods is

the volume of data, owing to the high framerates and

dimensionality required to estimate animal posture. Here,
we present an alternative approach in which we trade
dimensionality for scale by building a module and motif
description of larval zebrafish behavior from a one-dimen-
sional behavioral parameter recorded over time. Specifically,
we used a high-throughput behavioral set-up (Rihel et al.,
2010b) to continuously monitor the activity of hundreds of
zebrafish larvae across multiple days and nights. To identify
multi-timescale behavioral structure, we developed a three-
step computational approach. First, we used unsupervised
learning to identify a set of 10 behavioral modules that de-
scribe both active and inactive bout structure. Second, we
applied a compression algorithm (Nevill-Manning and
Witten, 2000) to our module data to compile a library of al-
most 50,000 motifs, revealing behavioral patterns organ-
ized across sub-second to minute timescales. Finally, we
used a supervised learning algorithm (Peng et al., 2005) to
identify motifs from the library used at particular times of
the day/night cycle. To test the ability of our approach to
detect biologically relevant phenotypes, we also studied
the behavior of larvae exposed to the seizure-inducing
drug, pentylenetetrazol (PTZ; Baraban et al., 2005), the se-
dating drug, melatonin (Zhdanova et al., 2001), and mu-
tants of the hypocretin receptor (hcrtr; Yokogawa et al.,
2007), the loss of which is associated with narcolepsy in
humans (Lin et al., 1999) and altered bout structure in ze-
brafish (Yokogawa et al., 2007; Elbaz et al., 2012). We
found that our computational approach could readily de-
tect both compound dose and mutant specific differences
in module and motif usage, demonstrating the biological
relevance of our behavioral description.
Ultimately, our work reveals the organization of larval

zebrafish behavior at sub-second to day-long timescales
and provides new computational tools to identify struc-
ture from large-scale behavioral datasets.

Materials and Methods
Animal husbandry
Adult zebrafish were reared by University College

London (UCL) Fish Facility on a 14/10 h light/dark cycle
(lights on: 9 A.M. to 11 P.M.). To obtain embryos, pairs of
adult males and females were isolated overnight with a di-
vider that was removed at 9 A.M. the following morning.
After a few hours, fertile embryos were collected and
sorted under a bright-field microscope into groups of 50
embryos per 10-cm Petri dish filled with fresh fish water
(0.3 g/l Instant Ocean). Plates were kept in an incubator at
28.5°C on a 14/10 h light/dark cycle. Using a Pasteur
pipet under a bright-field microscope, debris was re-
moved from the plates and the fish water replaced each
day. All work was in accordance with the United Kingdom
Animal Experimental Procedures Act (1986) under Home
Office Project License 70/7612 awarded to J.R.

Behavioral setup
For all behavioral experiments a Pasteur pipet was used

to transfer single zebrafish larvae [aged 4–5d post fertil-
ization (dpf)] into the individual wells of a clear 96-square
well plate (7701-1651; Whatman); then each well was
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filled with 650ml of fish water. For experiments longer than
24 h, larvae were plated at 4 dpf and tracking was started
the same day. For the duration of these experiments,
evaporated fish water was replaced each morning be-
tween 9 and 9:30 A.M. For the wild-type experiments,
each plate was covered with a plastic lid (4311971; Applied
Biosystems) to prevent evaporation and to negate the
need to replenish the fish water. For the 24-h small mole-
cule experiments (melatonin and PTZ), larvae were plated
at 5dpf and the plates were left overnight in a 28.5°C 14 h/
10 h light/dark incubator. The following morning each plate
was transferred to a behavior setup where larvae were
dosed, between 9 and 10 A.M., immediately after which
behavioral recordings were started and run for 24 h.
Following two control rows, each row was dosed with a
successively higher concentration of test compound.
Larvae were not fed either before or during experiments.
To record each animal’s behavior, each plate was placed

into a Zebrabox (ViewPoint Life Sciences) running quantiza-
tion mode with the following settings: detection sensitivity,
15; burst, 50; and freezing, 4. All experiments were con-
ducted on a 14/10 h light/dark cycle (lights on at 9 A.M. to
11 P.M.) with constant infrared illumination. All experiments
were recorded at 25Hz. Larvae were tracked continuously
for 24–73 h, after which all larvae unresponsive to touch
with a 10-ml pipette tip were presumed sick or dead and ex-
cluded from subsequent analysis. In the wild-type experi-
ments we additionally excluded wells in which a bubble had
formed under the plastic lid. The number of larvae ex-
cluded/used for each set of experiments is as follows: wild
type, 164/288 (all exclusions were due to bubble artefacts);
hypocretin, 0/180; melatonin, 0/96; PTZ, 44/96 (doses of
10, 15, and 30 mM were lethal to all tested larvae over 24 h).
Following each experiment, larvae were euthanized with an
overdose of 2-phenoxyethanol (Acros Organics).

Fish lines
The term wild type refers to the AB x TUP LF zebrafish

strain. This line was used for the wild-type experiments,
as well as the melatonin and PTZ dose-response curves.
hcrtr (ZFIN ID: hu2098; Yokogawa et al., 2007) experi-
ments were conducted on embryos collected from heter-
ozygous in-crosses, with larvae genotyped using KASP
primers (LGC Genomics) post-tracking. KASP results
were validated by comparison to PCR-based genotyping
of samples from each KASP classified genotype.

hcrtr genotyping
DNA extraction
Following each hcrtr experiment, each larva was eutha-

nized in its well (as above) and DNA was extracted using
HotSHOT DNA preparation (Truett et al., 2000). Larval
samples were transferred to the individual wells of a 96-
well PCR plate. Excess liquid was pipetted from each well
before applying 50ml of 1� base solution (1.25 M KOH
and 10 mM EDTA in water). Plates were heat sealed and
incubated at 95°C for 30min, then cooled to room tem-
perature before the addition of 50ml of 1� neutralization
solution (2 M Tris-HCl in water).

PCR
The following reaction mixture per sample was pre-

pared on ice in a 96-well PCR plate: 18.3 ml PCR mix (2
mM MgCl2, 14 mM, pH 8.4, Tris-HCl, 68 mM KCl, 0.14%
gelatin in water, autoclaved for 20min, cooled to room
temperature, chilled on ice, then we added: 1.8% 100mg/
ml BSA and 0.14% 100 mM d [A, C, G, T] TP), 0.5 ml of for-
ward and reverse primers (20 mM), 5.5 ml water, 0.2 ml of
Taq polymerase, and 3.0 ml of DNA. Next, each plate was
heat sealed and placed into a thermocycler, set with the
following program: 95°C, 5min; 44 cycles: 95°C, 30 s; 57°
C, 30 s; and 72°C, 45 s; then 72°C, 10min and 10°C until
collection. Finally, samples were mixed with 6� loading
buffer [colorless buffer: Ficoll-400, 12.5 g, Tris-HCl (1 M,
pH 7.4) – 5 ml, EDTA (0.5 M) – 10 ml, to 50 ml in pure
water; heated to 65°C to dissolve, per 10 ml of colorless
buffer 25mg of both xylene cyanol and orange G were
added, then diluted to 6�] and run on agarose gels (1% –

2%) with 4% GelRed (Biotium).
hcrtr forward primer: 59-CCACCCGCTAAAATTCAAA

AGCACTGCTAAC-39; hcrtr reverse primer: 59-CATCA
CAGACGGTGAACAGG-39.

PCR information
PCR products were digested with Ddel at 37°C to pro-

duce a 170-bp band in the wild-type animals and 140-
and 30-bp bands in hcrtrmutants.

KASP
KASP genotyping was conducted in white, low profile

PCR plates on ice with six wells allocated 50:50 for posi-
tive and negative controls. The following reaction mixture
was prepared per sample: 3.89 ml of 2� KASP reaction
mix, 0.11 ml KASP primers, 1.0 ml water, and 3.0 ml DNA.
Plates were then heat sealed and placed into a thermocy-
cler with the following thermal cycling program: 94°C,
15min; 10 cycles: 94°C, 20 s; 61–53°C (dropping 0.8°C
per cycle), 60 s; 26 cycles: 94°C, 20 s; 53°C, 60 s, then
10°C until collection.
Following thermal cycling we used a fluorescence

reader (Bio-Rad CFX96 Real-Time System) and Bio-Rad
CFX Manager software (version 3.1) to automatically de-
termine each sample’s genotype from a 2D scatter plot of
fluorescence in each channel. From this scatter plot, out-
lying samples of unclear genotype were manually ex-
cluded from subsequent analysis.

KASP assay ID: 554-0090.1
KASP Flanking Sequence (alternative allele shown in

square brackets, with a forward slash indicating a deletion
in the alternative allele): 59-ACCGCTGGTATGCGATCTG
CCACCCGCTAAAATTCAAAAGCACTGCTAAA[A/T]GAGC
CCGCAAGAGCATC GTGCTGATCTGGCTGGTGTCCT
GCATCATGATG-39.

Pharmacology
0.15 M melatonin and 1 M PTZ (M5250 and P6500;

Sigma) stock solutions were made in DMSO and sterile
water, respectively. Behavioral testing concentrations for
each compound were selected based on Rihel et al.
(2010a). For behavior experiments, each animal in a well
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with 650ml of fish water was dosed with 1.3 ml of either ve-
hicle control or compound at 500� concentration, result-
ing in a 1 in 500 dilution and thus the desired testing
concentration.

Computing
Hardware
A desktop computer with 16 GB of RAM was used for

most data analysis, figure production, and writing. For two-
time intensive steps, hierarchical compression of full module
sequences (Batch_Compress.m) and normalizing the be-
havioral motif counts (Batch_Grammar_Freq.m), data were
run in parallel, with a worker for every animal, on the UCL
Legion Cluster (Research Computing Services, UCL).

Software
All software used for data handling, analysis, and the

production of figures is available at https://github.com/
ghoshm/Structure_Paper. The codes are also available as
Extended Data 1 and Extended Data 2.

Processing behavioral data
See Extended Data Figure 1-3 for a flow diagram describ-

ing behavioral data acquisition and analysis. All custom be-
havioral analysis software was written and run in MATLAB
2016b-2018a (MathWorks). The suffixes .m and .mat denote
MATLAB code andMATLAB data files, respectively.
Behavioral data were recorded by subtracting subse-

quent pairs of frames from each other and determining
the number of pixels that changed intensity within each
well between each pair of frames, termed D pixels. To ac-
quire behavior data, each Zebrabox was setup using
ViewPoint’s ZEBRALAB software (version 3.22), which
outputs a .xls and a .raw file (ViewPoint specific format)
per experiment. Each behavior .xls file was reorganized
into a .txt file using the function perl_batch_192.m (Jason
Rihel). For each experiment a .txt metadata file assigning
each animal to an experimental group, for example geno-
type, was manually produced. To replicate the previous
analysis methodology, as in Extended Data Figure 1-1D,
behavior and metadata .txt files were input to the function
sleep_analysis2.m (Jason Rihel).
To assess data on a frame by frame basis, each experi-

ment's .raw file, which was output from Viewpoint’s
Zebrabox, was exported within the ZEBRALAB software to
thousands of .xls files. Each .xls file contained 50,000 rows
and 21 columns, with data from any given well listed ap-
proximately every 192 rows, as the setup always assumes
recordings are from two 96-well plates. This formatting is,
however, only approximate as infrequently the well order is
erroneously non-sequential; these rows were termed or-
dering errors. Each .xls file is formatted with 21 columns, of
which three contain useful data: type, notes when
ViewPoint defined data acquisition errors occurred; loca-
tion, denotes which well the data came from; and data1,
records the D pixel value from that well for that time point.
The function Vp_Extract.m was used to reformat the

.xls files from each experiment to single frame by fish mat-
rices, from which each animal’s behavior was quantified.
Vp_Extract.m requires three inputs to be selected: a folder

containing the .xls files; a .txt behavior file output from
perl_batch_192.m; and a .txt metadata file. To ensure that
each animal has the same number of frames, frames with
ViewPoint defined errors or ordering errors (which are au-
tomatically detected by Vp_Extract.m) are discarded. A
maximum D pixels value can be set and active bouts con-
taining even a single frame with a higher D pixels value
than this are set to zero for the entire duration of the bout.
Here a maximum D pixels threshold of 200 was set. This
value was determined frommanual inspection of the data-
set as well as by comparisons of these data to data re-
corded from plates with no animals in. Following this step,
the maximum D pixels value observed was 165. Most D
pixels values were between 3 (minimum observed value)
and 30 (Extended Data Fig. 1-2A). Time periods during
which water is being replenished are automatically de-
tected and set to a D pixels value of zero. These time peri-
ods are noted and excluded from later analysis. The
function outputs .mat files for subsequent analysis. Either
single or multiple .mat files output from Vp_Extract.m
were input to Vp_Analyse.m and Bout_Clustering.m.
Vp_Analyse.m was used to compare general activity

levels and bout features across time and between groups.
The function has two options. The first allows for specific
days and nights of interest to be cropped from the data.
The second determines how experimental repeats are
handled, treating the data as either a single merged dataset
or as separate datasets. In the latter case, each experimen-
tal repeat is plotted with the same color scheme as the first
experiment, with progressive shading for each repeat.
Additionally, the N-way ANOVA comparisons include a re-
peat factor, which can be used to determine whether results
are consistent across experimental repeats. Vp_Analyse.m
outputs two statistics results structures: twa,N-way ANOVA
comparison results; and kw, two-sample Kolmogorov–
Smirnov test results. Vp_Analyse.m outputs figures
showing each group’s activity (Fig. 1D,E) and bout fea-
tures (Extended Data Fig. 1-2) over time.
The script Bout_Clustering.m was used to cluster all active

and inactive bouts into behavioral modules, as well as to
compare the resultant modules. To cluster the data an evi-
dence accumulation approach is used (Fred and Jain, 2002,
2005) implemented by the custom MATLAB function gmm_
sample_ea.m. Bout_Clustering.m produces figures (Extended
Data Fig. 2-1) and statistically compares the modules. The
MATLAB workspace output from Bout_Clustering.m can
be input to either Bout_Transitions.m or Bout_Transitions_
Hours.m.
The function gmm_sample_ea.m clusters data using an

evidence accumulation approach (Fred and Jain, 2002,
2005) through which the results of multiple Gaussian mix-
ture models are combined to generate an aggregate solu-
tion. This process is executed through the following six
steps. First, a sample of “probe points” are randomly
sampled from the data. The number of probe points to
sample is user defined. Second, values of K and sample
sizes are uniformly sampled from user set ranges. The val-
ues of K are used to set the number of mixture compo-
nents for each mixture model. The sample sizes
determine the number of points, randomly sampled from
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the data that each mixture model is fit to. Third, a
Gaussian mixture model is iteratively fit to the sampled
data with K components. Each probe point is assigned to
the component with the highest corresponding posterior
probability and evidence is accumulated on the probe
points; evidence is defined as pairwise co-occurrences
in the same component. Fourthly, the evidence accumu-
lation matrix is hierarchically clustered, and the final
number of clusters is determined by using the maximum
differentiated linkage distance to cut the resultant den-
drogram. The linkage metric used is a user-defined op-
tion. Fifthly, the clusters are normalized for size by
randomly sampling the number of points in the smallest
cluster, from each cluster. Finally, all data points are as-
signed to these final size normalized clusters using the
mode cluster assignment of the k-nearest neighbors,
with k being user defined.
The script Bout_Transitions.m takes the MATLAB work-

space output from Bout_Clustering.m as an input and com-
presses each animal’s full module sequence to generate a
library of behavioral motifs. The number of occurrences of
each motif are counted and normalized by comparison to
paired shuffled data. Finally, a supervised learning algorithm
is applied to identify context specific behavioral motifs. For
two-time intensive steps, hierarchical compression of full
module sequences (Batch_Compress.m) and normalizing
the behavioral motif counts (Batch_Grammar_Freq.m), data
were manually copied (via MobaXterm, Personal Edition
v10.5) to UCL Legion Cluster (Research Computing Services,
UCL) and processed in parallel with a worker for every fish.
MATLAB code for hierarchical compression is described in
Gomez-Marin et al. (2016). MATLAB code for submitting
these jobs to Legion, analyzing data and retrieving results
is available at https://github.com/ghoshm/Legion_Code.
Ultimately, Bout_Transitions.m outputs a library of behavioral
motifs andmotif-related figures (Fig. 3).
The script Bout_Transitions_Hours.m compresses blocks

of 500 modules for statistical comparisons, uses the motif li-
brary from Bout_Transitions.m to count the occurrence of
each motif every hour, normalizes these counts to paired
shuffled data and finally uses supervised learning to identify
hour specific behavioral motifs. As with Bout_Transitions.m
behavioral motifs are normalized, via Batch_Grammar_Freq.
m, using UCL Legion Cluster. Bout_Transitions_Hours.m
outputs figures (Fig. 4D) and statistics.
Processed behavioral data are available at: https://

zenodo.org/record/3344770#.XYYwYyhKiUk. Raw data
are available upon request.

Behavioral data analysis
D Pixels
At the acquisition stage, D pixels data were filtered by

the software (ViewPoint) such that each frame for a given
well was scored as either zero or higher. In the absence
of movement within a well, and hence no pixels changing
intensity, D pixels values of zero were recorded. These
periods were termed inactive bouts and were defined as
any single or consecutive frames with D pixels values
equal to zero. The length of each inactive bout was used
as a descriptive feature. When there were movements

within a well, D pixels values greater than zero were re-
corded. These periods were termed active bouts and
were defined as any single or consecutive frames with D
pixels values greater than zero. Six features were used to
describe each active bout: length, mean, SD, total, mini-
mum, and maximum. These features, as well as the num-
ber of active bouts, percentage of time spent active and
total D pixels activity, were compared between condi-
tions, e.g., day and night and dose of drug, in two ways
using the function Vp_Analyse.m.
To compare the distribution of values for each feature

between conditions, a probability density function (pdf)
was fit to each animal’s data and the mean shape of
each condition’s pdf was compared using a two-sample
Kolmogorov–Smirnov test (Extended Data Fig. 1-2A). To
compare each feature’s average values between condi-
tions, mean values were taken from each animal, and N-
way ANOVA was computed. The following factors, when
relevant, were included and full interaction terms were
calculated: condition, e.g., mutant and wild type; time, e.
g., day and night; development, defined as a consecutive
day and night; and experimental repeat, i.e., which ex-
perimental repeat a datapoint came from. For experi-
ments with multiple repeats, the lack of an interaction
effect between the comparison of interest and experi-
mental repeat factor was considered as evidence of a
consistent result.
Note that our analysis relies on periods of inactivity

registering D pixels values of zero. Consequently, to be
compatible with our analysis code, other data may require
post-recording filtering.

Clustering
To cluster the bouts, the script Bout_Clustering.m was

used. First, matrices of bouts by features were con-
structed (active matrix, 30,900,018� 6; inactive matrix,
30,900,418� 1). To prepare the active data for clustering,
each animal’s data were individually normalized by calcu-
lating z scores using Equation 1, which illustrates how
every bout (i) from each animal (f) was normalized by first
subtracting the mean of this animal’s bout features (�xf )
from the bout and then dividing by the SD of each bout
feature for this animal s f:

Zi ¼ xi � �xf

s f
: (1)

Active bout features across all animals were then cen-
tered by subtracting each feature’s mean value from
every bout, and principal component analysis (PCA) was
used to reduce the data to three dimensions, the knee
point of the scree plot, which together explain 97.5% of
the variance (Extended Data Fig. 2-1A).
Next, the active and inactive bouts were separately

clustered using an evidence accumulation-based ap-
proach (Fred and Jain, 2002, 2005) implemented by the
function gmm_sample_ea.m. First, 40,000 probe points
were randomly sampled from the data. Next, for 200 itera-
tions, another group of points were randomly sampled
and fit with a Gaussian mixture model with a random num-
ber of clusters. For each iteration, these two parameters

Research Article: New Research 5 of 21

July/August 2020, 7(4) ENEURO.0408-19.2020 eNeuro.org

https://github.com/ghoshm/Legion_Code
https://zenodo.org/record/3344770#.XYYwYyhKiUk
https://zenodo.org/record/3344770#.XYYwYyhKiUk
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f2-1


varied uniformly in the following ranges: the number of
points sampled, 40,000–100,000; the number of clusters
fit, 2–20. Each mixture model was fit using MATLAB’s
fitgmdist function (MATLAB, Statistics and Machine
Learning Toolbox) with full, regularized, independent co-
variance matrices and initialized using the k-means11 al-
gorithm (Arthur and Vassilvitskii, 2007). Each mixture
model was fit five times and the one with the largest log-
likelihood was retained. Once each model had been fit,
each probe point was assigned to the component with
the largest posterior probability, and evidence in the form
of pairwise occurrence in the same cluster was accumu-
lated on the probe points. Once the 200 mixture models
had been fit, average link clustering was applied to the
evidence accumulation matrix and the final number of
clusters determined based on maximum cluster lifetime.
Next, the resultant clusters were normalized for size by
randomly selecting the number of points in the smallest
cluster from each cluster (5983 active, 614 inactive
bouts). Finally, all points were assigned to the size nor-
malized clusters using the mode cluster assignment of
the 50 nearest neighbors for every point.

Hierarchical compression
Clustering reduced each animal’s behavior to a non-re-

petitive sequence of active and inactive bouts, termed
modules. On average this reduced each wild-type se-
quence length by 96%, from 6,308,514 frames to 236,636
modules, easing the computational demands of com-
pressing these sequences.
To compress modular sequences, an offline compres-

sive heuristic (Nevill-Manning and Witten, 2000) was used
(Eq. 2). At each iteration (i) of the algorithm, the most com-
pressive motif was defined as the motif which made the
most savings, a balance between the length of the motif
(W) and the number of times it occurred in the sequence
(N), which also considered the combined cost of adding a
new motif to the dictionary (W1 1) and of introducing a
new symbol into the sequence (1N) at every occurrence
of this motif in the sequence:

Savingsi ¼ WN� ðW111NÞ: (2)

The overall compressibility of a given input sequence was
calculated by summing these savings across all iterations
and dividing this total by the length of the original input se-
quence (in modules). This process resulted in a compressibil-
ity metric that ranged from 0 to 1 (low-high compressibility).
To reduce computational time, motifs of a maximum of 10
modules long were sought, although the hierarchical nature
of the algorithm enabled the identification of longer motifs
through nesting. To generate the common motif library, the
motifs obtained from compression of every animal’s full mod-
ule sequence (Batch_Compress.m) were merged, and then
all unique motifs were kept (Bout_Transitions.m). To generate
sets of paired control sequences for every animal, each ani-
mal’s module sequence was divided into sequential day and
night or hourly segments and the modules within each
of these windows was shuffled 10 times, maintaining the ac-
tive/inactive transition structure (Bout_Transitions.m). As
compressibility varies non-linearly with uncompressed

sequence length (Extended Data Fig. 3-1B), to enable com-
parisons between samples with different numbers of mod-
ules, non-overlapping blocks 500 modules long were
compressed (Bout_Transitions_Hours.m).

Supervised motif selection
To identify both which and how many motifs were re-

quired to distinguish between behavioral contexts (e.g.,
day and night), the following approach was executed by
the function Batch_Grammar_Freq.m. First, the number
of occurrences of every motif from the common motif li-
brary was counted in every real and shuffled modular se-
quence. Next, to calculate enrichment/constraint scores
for every motif, the deviation of the real from shuffled
counts, as well as the deviation of each shuffle from the
other shuffles, was calculated (Eq. 3). For a given animal
and time window, e.g., day or night, the mean number of
times motif (i) was counted in the shuffled data (�si) was
subtracted from the real number of counts (xi) and divided
by the SD of the shuffled counts (s si):

Zi ¼ xi � �si

s si
: (3)

For example, for a given animal and time window, if a
motif was used 10 times in the real data and a mean of 4.5
times in the 10 sets of paired shuffled data (SD 1.58), en-
richment/constraint would equal 3.48:

3:48 ¼ 10� 4:5
1:58

:

When comparing the shuffled data to itself, each shuffle
(now xi) was excluded from �si and s si. Infinite values oc-
curred when there was no SD in the s si counts and thus
s si equaled zero. To facilitate subsequent working, infinite
values were replaced with a constant value of H
(11 number of shuffled counts) = H(11) = 63.32. Note
that in the real data, infinite values constituted only 2.2%
of all enrichment/constraint scores.
For any given comparison, motif library enrichment/

constraint scores for the relevant animals were formatted
into a matrix of samples by motifs (Fig. 4B). Scores for
each motif (column) were normalized by subtracting each
column’s mean score and dividing by each column’s SD.
A supervised feature selection algorithm (Peng et al.,
2005) was applied to these matrices to select the top 250
maximally relevant and minimally redundant (mRMR) mo-
tifs. For each comparison we defined the first motif cho-
sen by mRMR as the best motif. To determine the best
motifs among test conditions, we excluded control data.
For example, to determine the best 0.01 mM melatonin
motif, we compared this group’s data to all larvae dosed
with melatonin at other doses (Fig. 5A). For completeness,
we still plot the control enrichment/constraint scores for
these motifs.
To determine how many of the 250 motifs chosen by

mRMR were necessary for accurate classification, linear
discriminant analysis classifiers were trained on data
using 10-fold cross validation as sequential mRMR motifs
were added, and classification error mean and SD were
calculated. The MATLAB function fitcdiscr (Statistics and
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Machine Learning Toolbox) was used to implement these
steps. Finally, to determine how many motifs were neces-
sary for a given comparison, classification error curves
were smoothed with a running average three motifs wide
and the number of motifs at which the minimum classifi-
cation error occurred was identified (Extended Data Fig.
4-1A). To evaluate classifier performance, the results of
each classifier were compared with a majority class clas-
sifier whose performance depended on the ratio of sam-
ples of each class. For example, in a dataset with two
labels at a ratio of 0.1:0.9, the majority class classifier
would consistently assign the latter label and achieve a
classification error of 10% (6SE of proportion). Additionally,
we compared each classifiers performance to a set of 10
classifiers built using the same number of motifs, although
randomly selected. For example, for a classifier which
achieved its minimal classification error using 15 motifs, we
randomly selected 15 motifs and trained classifiers as
above. We repeated this process 10 times per classifier and
report the error and SD across these 10 repeats.

Results
Behavior at scale
Larval zebrafish behavior consists of an alternating se-

quence of movements and pauses, termed bouts, that are
organized at sub-second timescales. To capture this
structure from high-throughput, long-timescale experi-
ments, we used a 96-well plate set-up with a single larva
housed in each well (Extended Data Fig. 1-1A) and as a
proxy for movement recorded the number of pixels that
changed intensity within each well between successive
pairs of frames, a metric we term D pixels. We built on
previous work using this set-up (for review, see Barlow
and Rihel, 2017; Oikonomou and Prober, 2017) by analyz-
ing D pixels data at 25Hz, rather than in 1-min bins. When
recorded in this way, D pixels data are an alternating se-
quence of positive values representing movement magni-
tude and zeros representing periods of inactivity (Fig. 1A;
Movie 1). We defined active bouts as any single or con-
secutive frames with non-zero D pixels values and de-
scribed each bout using several features including the
mean and SD of D pixels values across the bout (Fig. 1A).
We defined inactive bouts as any single or consecutive
frames with zero D pixels values and described each inac-
tive bout using its length (Fig. 1A). We found no correla-
tion of active bout initiation between larvae in adjacent
wells of the 96-well plate (Extended Data Fig. 1-1B), sug-
gesting no interactions among larvae.
Using this approach, we first assessed the behavior of

wild-type larvae across a 14/10 h day/night cycle
(Extended Data Fig. 1-2A). During the day, wild-type lar-
vae initiated bouts at a mean frequency of 0.89Hz (Fig.
1B), a rate consistent with other assays (Kim et al., 2017),
and tended to use short, sub-second long inactive bouts
(Fig. 1C). During the night, larvae displayed a mean bout
frequency of only 0.07Hz (Fig. 1B) and used longer inac-
tive bouts, on the order of seconds to minutes (Fig. 1C).
Together, these differences resulted in a diurnal pattern of
activity (Fig. 1D). These results are broadly consistent

with those from analysis of binned D pixels data (Barlow
and Rihel, 2017; Oikonomou and Prober, 2017), with the
addition of sub-second resolution and an increase in ac-
curacy, as determined by intra-fish comparisons between
the methods (Extended Data Fig. 1-1C,D).
Next, we extended our approach to examine the behav-

ioral effects of pharmacological and genetic manipula-
tions. Melatonin, which is strongly hypnotic in zebrafish
(Rihel et al., 2010a), dose dependently decreased larval
activity (Fig. 1E) by decreasing the number, magnitude,
and length of active bouts and by inducing longer inactive
bouts (Extended Data Fig. 1-2B). The epileptogenic drug
PTZ (Extended Data Fig. 1-1E) altered both active and in-
active bout parameters (Extended Data Fig. 1-2C), elicit-
ing on average longer, lower amplitude active bouts and
longer inactive bouts during the day. Finally, homozygous
hcrtr�/� mutants had only subtle differences in active
bout structure, with shorter mean active bout length and
lower active bout total and SD, compared with both wild-
type hcrtr1/1 and heterozygous hcrtr-/1 siblings, which
did not differ from one another by any metrics (Extended
Data Fig. 1-2D).
Collectively, these results quantitatively demonstrate

the advantages of assessing D pixels data on a frame
by frame basis and provide insight into the behavior of
wild-type zebrafish larvae across the day/night cycle as
well as those subject to pharmacological or genetic
manipulations.

Module usage varies with behavioral context
Recent work has demonstrated that larval activity can

be classified using unsupervised learning into 13 distinct
bout types that represent different swimming movements
(Marques et al., 2018). A full description of larval behavior,
however, requires quantification of both the movements
and pauses that they execute. Thus, we sought to deter-
mine whether distinct active or inactive bout types, which
we termed modules, were identifiable from our data, and
if module usage depended on behavioral context.
To address these questions, we separately clustered

the active and inactive bouts (combined across experi-
ments a total of 30,900,018 active and 30,900,418 inac-
tive bouts) using an evidence accumulation-based
clustering algorithm (see Materials and Methods). In brief,
200 Gaussian mixture models were built from each data
set, then the results of these models were combined to
generate aggregate solutions. This clustering method
identified five active and five inactive modules (Fig. 2A,B;
Extended Data Fig. 2-1), which we separately labeled
from 1 to 5 from the shortest to longest mean bout length.
The active modules, which formed discrete peaks in bout
feature space (Extended Data Fig. 2-1B), corresponded to
different shapes of D pixel changes in terms of amplitude
and length (Fig. 2A; Extended Data Fig. 2-2A), while the
inactive modules consisted of different lengths of inactiv-
ity (Fig. 2B; Extended Data Fig. 2-2A). The shortest inac-
tive module (module 1) had a mean length of 0.06 s and
ranged from a minimum of 0.04 s (our sampling limit) to a
maximum of 0.12 s. In contrast, the longest inactive mod-
ule (module 5) had a mean length of 96 s and covered a

Research Article: New Research 7 of 21

July/August 2020, 7(4) ENEURO.0408-19.2020 eNeuro.org

https://doi.org/10.1523/ENEURO.0408-19.2020.f4-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f4-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-1
https://doi.org/10.1523/ENEURO.0408-19.2020.video.1
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f1-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0408-19.2020.f2-2
https://doi.org/10.1523/ENEURO.0408-19.2020.f2-2


Research Article: New Research 8 of 21

July/August 2020, 7(4) ENEURO.0408-19.2020 eNeuro.org



huge range of values from a minimum of 20 s to a maxi-
mum of 8.8 h.
To examine how module usage varied across time, we

represented each larva’s behavior as an alternating se-
quence of active and inactive modules (Fig. 2C; Movie 2).
In the wild-type data, module usage varied with time of
day (Fig. 2D). For example, the probability of observing in-
active module 2, which consists of typical day pause
lengths (0.16–1.16 s), was on average 0.6 during the day
and only 0.24 during the night, when inactive modules 1,
4, and 5 became more likely (Fig. 2D). To reveal finer-grain
temporal dynamics, we also examined each module’s
mean frequency over time (Fig. 2E). In general, both the
active and the short inactive modules had high frequen-
cies during the day, peaking at the light/dark transition as
the larvae responded to the sudden change in illumina-
tion. In contrast, the only module with a peak in frequency
at the dark-to-light transition was inactive module 4
(3.72–20 s), which also had an increased frequency ap-
proaching the light-to-dark transition. Together, these re-
sults reveal that zebrafish employ different bout types in a
time of day/night dependent manner.
Next, we examined the impact of pharmacological and

genetic manipulations on bout type usage. Larvae dosed
with melatonin showed a shift toward using shorter active
modules and longer inactive modules (Extended Data Fig.
2-2B). In PTZ-dosed larvae, there were also shifts in ac-
tive module probability. Particularly notable was the com-
plete exclusion of active module 1 in 27 of the 28 (96.4%)
PTZ-dosed larvae, while control larvae used this module

with 0.12 probability during the day and 0.22 during the
night (Extended Data Fig. 2-2C). These shifts likely reflect
the chaotic, seizure-like swimming observed in PTZ-
treated larvae (Baraban et al., 2005), although no single
active module clearly captured these behavioral seizures.
PTZ also increased the probability of the shortest inactive
(module 1) as well as the two longest inactive modules
(modules 4 and 5), the latter of which are likely to corre-
spond to the interictal bouts of inactivity associated with
seizures (Extended Data Fig. 2-2C). Conversely, hcrtr mu-
tants exhibited no differences in either active or inactive
module probabilities compared with their wild-type sib-
lings (Extended Data Fig. 2-2D), demonstrating that bout
type usage is similar between these mutants and wild-
type animals across the day/night cycle.
Collectively, these results reveal that zebrafish behavior

in this assay can be described by five types of active and
five types of inactive modules, the usage of which varies
with behavioral context. Interestingly, in many contexts,
both active and inactive module probabilities were
shifted, suggesting that these module types may co-vary,
perhaps by being arranged into recurrent sequences.

Hierarchical compression reveals structure in
zebrafish behavior
From a set of behavioral modules, an animal could

structure their behavior in a range of ways. At one end of
this spectrum, successive modules could be organized
completely randomly, such that prior modules exert no in-
fluence on future module selection. At the other end,

continued
Figure 1. Behavior at scale. A, top panel, Five consecutive frames from an individual well of a 96-well plate as a 6 dpf zebrafish
larva performs a swim bout. Blue highlights pixels that change intensity between frames (D pixels). Lower panel. A D pixels time se-
ries from the larva above. Highlighted are the features that describe each active and inactive bout. B, Mean bout frequency (Hz) re-
corded from individual larvae at 5 and 6 dpf during the day (light blue) and the night (dark blue). Each dot is 1 of 124 wild-type
larvae. The orange crosses mark the population means. C, The probability of observing different lengths of inactivity during the day
(light blue) or the night (dark blue) at 5 and 6 dpf. Each larva’s data were fit by a pdf. Shown is a mean pdf (bold line) and SD
(shaded surround) with a log scale on the x-axis cropped to 10 s. Inset, The total probability of inactive bout lengths longer than 10
s, per animal. D, The mean activity of 124 wild-type larvae from 4 to 7 dpf, on a 14/10 h light/dark cycle. Data for each larva was
summed into seconds and then smoothed with a 15-min running average. Shown is a summed and smoothed mean D pixels trace
(bold line) and SEM (shaded surround). E, Average activity across one day (white background) and night (dark background) for lar-
vae dosed with either DMSO (control) or a range of melatonin doses immediately before tracking at 6 dpf. Data were summed and
smoothed as in D. The number of animals per condition is denoted as n. Extended Data Figures 1-1, 1-2, 1-3 support Figure 1.

Movie 1. High-throughput behavioral tracking. A video of 96, 6 dpf zebrafish larvae swimming in our rig. The last 1 s of each larva’s
D pixels data is plotted over each well. This video was filmed at 25 Hz and is played back in real time. [View online]
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Figure 2. Unsupervised learning identifies contextual behavioral modules. A, Average D pixels changes for each active module.
Shown is the mean (bold line) and SEM (shaded surround) of 100 bouts randomly sampled from each module from one representa-
tive larva. Modules are numbered and colored by average module length across all animals, from shortest (1) to longest (5). B, A
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module selection could be fully deterministic with a par-
ticular module always following another. Rather than
being fixed, however, it is likely that animals adapt their
behavioral structure in response to changing internal or
external states. We sought to map the structure of zebra-
fish behavior in different contexts by examining the pres-
ence and organization of module sequences, which
could provide insight into the mechanisms governing be-
havior. To do this, we used a compression algorithm
(Nevill-Manning and Witten, 2000) as Gomez-Marin et al.
(2016) used to discover structure in Caenorhabditis ele-
gans postural data. When applied to our dataset (Fig.
3A), this algorithm iteratively identified motifs from each
larva’s modular sequence and returned two outputs,
compressibility, a measure of each larva’s behavioral
structure, and a library of identified recurrent module se-
quences, termed motifs.
To quantify the structure of zebrafish behavior, we first

compressed every animal’s full modular sequence, which
in wild-type animals were on average 236,636 modules
long across 70 h. To determine whether the resultant
compression values indicated more structure than would
be expected based on either the distribution or the transi-
tion structure of the active-to-inactive modules, we com-
pared each larva’s compressibility to that of 10 sets of
paired shuffled data. All wild-type larvae were more com-
pressive than their paired shuffled data, demonstrating
that their behavior is more structured than expected from
modular probabilities alone (Extended Data Fig. 3-1A).
Compressibility, however, varies non-linearly with input

sequence length, as longer sequences will be more likely
to contain motifs (Extended Data Fig. 3-1B). Thus, to ena-
ble comparisons between samples with different num-
bers of modules, we compressed non-overlapping 500
module blocks of sequence per larva. This approach re-
vealed that compressibility was higher during the day
than the night (Fig. 3B). To determine whether these differ-
ences were primarily due to the presence of behavioral mo-
tifs or instead were a consequence of differences in
module distribution, we also compared the difference in
compressibility (D compressibility) between each animal’s
real and shuffled data. This approach revealed that the
compressibility difference between the day and the night is
predominantly due to differences in module distribution
(Extended Data Fig. 3-1E). To reveal finer-grain temporal
changes in compressibility, we plotted D compressibility
across time (Extended Data Fig. 3-1F). This approach re-
vealed peaks at the light-to-dark transitions in the eve-
nings, consistent with this stimulus eliciting stereotyped
behavioral sequences (Burgess and Granato, 2007; Emran
et al., 2010).
Next, we used compressibility to assess how our pharma-

cological and genetic manipulations altered the structure of
larval behavior. We found that melatonin decreased day
compressibility to night-time levels (Fig. 3B), a difference
primarily due to shifts in module distribution (Extended Data
Fig. 3-1E). PTZ increased compressibility to a constant day/
night value (Fig. 3B). PTZ, however, reduced D compressi-
bility (Extended Data Fig. 3-1E), indicating that changes
in module distribution, rather than motif usage, are the

continued
probability density curve showing the distribution of inactive bout lengths in seconds, on a log x-axis cropped to 60 s. Modules are
numbered and colored from shortest (1) to longest (5) mean length (see legend for each module’s minimum and maximum bout
length). C, Matrices showing the active (left) or inactive (right) module assignment of every frame (x-axis) for each of 124 wild-type
larvae (y-axis) across the 14-h days (light blue underlines) and 10-h nights (dark blue underlines) from 5 to 6 dpf. Larvae were sorted
by total number of active modules from highest (top) to lowest (bottom). Modules are colored according to the adjacent colormaps.
D, Average active (upper) and inactive (lower) module probability during day (light blue) and night (dark blue) 5 and 6 of develop-
ment. Each of 124 wild-type animals is shown as a dot and orange crosses mark the population means. Active modules are sorted
by mean day probability from highest to lowest (left to right). Inactive modules are sorted by mean length from shortest to longest
(left to right). The blobs correspond to the color used for each module in other figures. E, The mean frequency of each active (left)
and inactive (right) module across days 5 and 6 of development. Shown is a mean smoothed with a 15-min running average, re-
scaled to 0–1. Days are shown with a white background, nights with a dark background. Modules are sorted from shortest to lon-
gest (lower to upper panels). Extended Data Figures 2-1, 2-2 support Figure 2.

Movie 2. Behavioral modules. A video of 96, 6 dpf zebrafish larvae swimming in our rig. The last 1 s of each larva’s D pixels data is
plotted over each well, with each active and inactive bout colored according to its module assignment. This video was filmed at 25
Hz and is played back in real time. [View online]
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Figure 3. Hierarchical compression reveals structure in zebrafish behavior. A, Compression explained using fictive data. Top to bot-
tom, From D pixels data (black trace), we classified both active and inactive behaviors into modules (colored circles). From modular
behavioral sequences, we identified motifs (sequences of modules) using a compression algorithm. Compression iteratively
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dominant driver of PTZ-induced behavioral changes.
Importantly, these drug-induced changes in compressibility
do not simply reflect overall activity levels. For example,
PTZ-exposed larvae are less active than controls during the
day and more active during the night (Extended Data Fig. 1-
1E) but have consistently higher compressibility (Fig. 3B).
Finally, in hcrtr mutants, we found no differences in either
compressibility or D compressibility, suggesting that hcrtr
mutant behavior is structured similarly to wild-type animals
(Fig. 3B).
Overall, our compressibility results demonstrate that

larval zebrafish behavior is structured and that the amount
of structure varies with behavioral context. Our D com-
pressibility results suggest that such variation predomi-
nantly arises from altered module, rather than motif,
usage.
To gain insight into the behavioral sequences larvae de-

ploy, we then studied the motifs identified by the com-
pression algorithm. Compression of the real modular
sequences identified a mean of 1901 motifs per animal
(Extended Data Fig. 3-1C). Interestingly, compression of
the real data almost always identified slightly fewer motifs
than the shuffled data (Extended Data Fig. 3-1C). This
suggests that the motifs identified from the real data were
used more frequently than those in the shuffled data and
therefore likely reflect enriched behavioral sequences.
Merging the motifs identified across all animals generated
a library of 46,554 unique behavioral motifs (Fig. 3C). In
terms of raw D pixels data, each motif represented an ap-
proximately repeated pattern of movements and pauses
of varying length (Fig. 3D). Motifs in the library ranged
from two to 20 modules long with a median length of eight
modules and spanned timescales from approximately 0.1
s to 11.3min with a median length of 3.84 s. In the real
data, longer motifs tended to be used more frequently
than in the shuffled data (Extended Data Fig. 3-1D), dem-
onstrating the likely behavioral relevance of these sequen-
ces. Motifs of different module lengths used distinct sub-
sets of modules (Fig. 3C). For example, motifs comprised
of longer module sequences had a lower probability of
using long inactive modules. Together, these results re-
veal the varied timescales at which zebrafish larvae or-
ganize their behavior and suggest the presence of
structure governing the arrangement of modules into
motifs.

Behavioral motif usage is time dependent
The large number of motifs in our library led us to hy-

pothesize that each may be used in specific behavioral
contexts. To test this hypothesis, we counted the number
of times each larva or set of paired shuffled data used
each motif within each time frame (e.g., day or night) and
then normalized these counts by calculating the deviation
of the real from shuffled counts as well as the deviation of
each shuffle from the other shuffles, a metric we termed
enrichment/constraint. Overall, we found that enrichment/
constraint scores from our real data were more prone to
extreme positive (enriched) and negative (constrained)
values than the shuffled data (Fig. 4A), suggesting that a
minority of behavioral motifs were used more or less fre-
quently than would be expected by chance.
To test whether these extremes occurred in particular

contexts, we first compared motif usage between the day
and the night in wild-type larvae by generating a matrix of
enrichment/constraint scores (Fig. 4B). To distil the most
salient motifs from this and other contextual matrices, we
used a three-step approach. First, we used the mRMR al-
gorithm (Peng et al., 2005) to rank the motifs from most to
least salient. Second, we trained linear discriminant analy-
sis classifiers using 10-fold cross validation as we itera-
tively increased the number of input motifs from most to
least salient (e.g., motif 1, motif 1 and 2, motif 1 – n).
Finally, we selected the subset of motifs which achieved
the lowest classification error between groups in each
context. To determine how accurately these motif subsets
could distinguish between behavioral contexts, we com-
pared each classifier’s performance to that of a majority
class classifier, which performed as well as the ratio of
samples between the two contexts. For example, in the
day versus night classification, a majority class classifier
would have an error rate of 50% (6SE of proportion), as
each larva contributes an equal number of days and
nights to the enrichment/constraint matrix. Additionally,
to demonstrate the salience of the motifs selected by the
mRMR algorithm, we compared each classifier’s perform-
ance to a set of 10 classifiers built using the same number
of motifs, although randomly selected. For example, for a
classifier that achieved its minimal classification error
using 50 motifs, we randomly selected 50 motifs from the
library and built a classifier. For each comparison we re-
peated this process 10 times.

continued
identifies motifs (shown as boxes) by replacing them with new symbols until no more motifs can be identified and the sequence is
maximally compressed. B, Each panel shows how compressibility, calculated from 500 module blocks, varies in different behavioral
contexts. Each pale line shows an individual fish’s mean compressibility during the day and the night. The darker overlay shows a
population day and night mean 6 SD. In the wild-type data, compressibility is higher during the day than the night (p, 10�158) and
increases from day/night 5–6 (p,10�4), findings consistent across triplicate experiments. Melatonin decreases (p, 10�10),
while PTZ increases compressibility (p, 10�8). There is no effect of hcrtr genotype on compressibility. Statistics are two-way
or four-way ANOVA. C, All 46,554 unique motifs (y-axis) identified by compressing data from all animals. Each motif’s module
sequence is shown, with the modules colored according to the colormap on the right. Motifs are sorted by length and then se-
quentially by module. Motifs range in length from 2 to 20 modules long. Inset, For each motif length, the probability of observ-
ing each inactive or active module. D, Each motif in the library consists of an alternating sequence of D pixels changes and
pauses (active and inactive modules). A representative motif of each module length is shown with each module colored accord-
ing to the colormap in C. Representative motifs were chosen by determining every motif’s distribution of modules and then for
each observed module length, selecting the motif closest to the average module distribution (see C, inset). Extended Data
Figure 3-1 supports Figure 3.
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Figure 4. Supervised learning identifies contextual behavioral motifs. A, pdfs showing the probability of observing motifs at different
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Applying this algorithm to wild-type data revealed
changes in motif usage across multiple timescales
(Extended Data Fig. 4-1B). We found that only 15 motifs
were required to classify day-specific and night-specific
behavior with only a 0.2% (60.63% SD) classification
error, compared with a majority class classifier with 50%
error and random 15-motif subsets with a mean error of
9.25% (Fig. 4C; Table 1). The day-enriched motifs con-
sisted of high amplitude movements interspersed with
short pauses, while the night enriched motifs contained
low amplitude movements and long pauses (Fig. 4C).
Next, we examined how motif usage changed over time
by comparing consecutive days and nights (5–6 dpf). In
both day 5 versus day 6 and night 5 versus night 6 com-
parisons, the classifiers achieved roughly 20% error using
93 and 85 motifs, respectively (Table 1). Thus, motif
usage shifted over just 24 h, although these changes were
far less prominent than those between the day and night.
To study whether motif usage varied at finer timescales,
we first divided the day into morning/evening and the
night into early/late periods. In each case, the mRMR algo-
rithm performed better than the control classifiers (morn-
ing/evening: 33%, early/late night: 36%) although the
relatively high classification errors suggest that motif selec-
tion did not vary strongly across each day or night (Table
1). Consistent with this conclusion, classifiers attempting
to delineate each hour from every other mostly failed to
outperform their control classifiers (Table 1). The two nota-
ble exceptions were the hour following each lighting transi-
tion, where this approach achieved good classification
performance (Table 1) and identified startle-like motifs. We
interpret these motifs as startle-like as they consist of long
pauses interrupted by high-amplitude movements and pri-
marily occur at the lighting transitions (Fig. 4D), stimuli
known to elicit startle behaviors in larval zebrafish (Burgess
and Granato, 2007; Emran et al., 2010).
Together, these results demonstrate that motif usage

varied between the day and the night, but aside from the
lighting transitions, was relatively consistent within these
periods.

Dose-dependent and dose-specific behavioral motifs
Finally, we hypothesized that behavioral motif usage

would vary dose dependently across concentrations of

melatonin and PTZ, providing insight into the mechanisms
by which these compounds exert their behavioral effects.
Motif dose dependency would suggest a continuously
modulated underlying process, which might arise for ex-
ample if the fraction of bound receptors relates to neuro-
nal activity modulation. Alternatively, motifs enriched at
only specific doses would suggest discrete effects on
neuronal circuitry.
Applying the mRMR algorithm to our pharmacological

data revealed both dose-dependent and dose-specific
modulation of motif usage. We found that each melatonin
dose could be separated from the others using 40–250
motifs with only 0–2.78% classification error (Fig. 5A;
Table 2). Focusing on just the best motif for each compari-
son, we observed both dose dependency as well as dose
specificity. For example, comparing controls to all melato-
nin-dosed larvae identified a dose-dependent motif that
consisted of large magnitude movements and short pauses,
whose enrichment/constraint score decreased with increas-
ing melatonin concentration (Fig. 5A). Conversely, the best
10 mMmotif, two long pauses broken by a small active bout
sequence, showed dose specificity being enriched at only 3
and 10 mM doses (Fig. 5A). When applied to the PTZ data,
our approach performed even more accurately, achieving
perfect classification (0% error) between all conditions (Fig.
5B; Table 2). Furthermore, in PTZ-dosed larvae we observed
enrichment for motifs highly constrained in wild-type larvae,
highlighting the usage of motifs beyond the normal wild-
type repertoire, such as those corresponding to behavioral
seizures (Fig. 5B).
Next, we tested whether our motif subset approach

could detect hcrtrmutant phenotypes that were not easily
captured by other methods. For example, based on
human and rodent literature, where loss of hypocretin is
associated with narcolepsy (Lin et al., 1999) and prior ze-
brafish literature (Elbaz et al., 2012), we expected abnor-
mal transitions between active and inactive bouts. We
found reasonable performance when discriminating be-
tween hcrtr1/1 and hcrtr�/� during both the day (16.76
7.5% error with 195 motifs) and night (12.86 9.6% error
with 53 motifs) but weaker performance when distinguish-
ing between hcrtr1/1 and hcrtr�/1, as expected for a hap-
losufficient gene (Extended Data Fig. 4-1C; Table 2).
Thus, homozygous loss of hcrtr impacts motif usage

continued
enrichment/constraint scores rounded to whole numbers and summed at values above or below64 for ease of visualization. Each
wild-type animal is depicted by a single pale blue (real data) and 10 black (shuffled data) lines; overlaid in bold are mean pdfs. The
inset shows that the kurtosis of the real data are higher than the shuffled data (p, 10�271; two-way ANOVA, real vs shuffled data,
no significant interaction with experimental repeat factor). Each larva is shown as a pale line; overlaid is a population mean and SD.
B, Enrichment/constraint scores for all 46,554 motifs (x-axis) for each fish during day/night 5 and 6 of development (y-axis). To em-
phasize structure, motifs are sorted in both axes, first by their average day/night difference (from day to night enriched left to right),
then separately day and night by larva. Finally, each motif’s enrichment/constraint score is Z-scored to aid visualization. C, left, The
15day/night mRMR motifs module sequences are shown numbered by the order in which they were selected by the algorithm.
Motifs are sorted by day minus night enrichment/constraint score (middle). The long pauses at the end of motifs 5 and 14 are
cropped at 10 s (arrows). Middle, For each selected motif (y-axis), ordered as in the left panel, each wild-type animal’s (124 in total)
day minus night enrichment/constraint score (x-axis) is shown as a dot. Values above zero are colored light blue; below zero are
dark blue. Overlaid is a population mean and SD per motif. Right, A tSNE embedding of the 15-dimensional motif data (middle) into
a two-dimensional space. Each circle represents a single day (light blue) or night (dark blue) sample. D, Representative motif tempo-
ral dynamics; shown are motifs 1 (day) and 2 (night) from C, as well as a startle-like motif. Left, Each motif’s module sequence.
Right, Each motif’s mean enrichment/constraint score each hour, rescaled to 0–1. Extended Data Figure 4-1 supports Figure 4.
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enough to allow for successful classification of hcrtr�/�

mutants, although no single hcrtr�/� motifs with large dif-
ferences in enrichment/constraint scores compared with
wild-type siblings were particularly evident.
Collectively, these results demonstrate that behavioral

motifs are used context dependently and reveal how
motif subsets can parse subtle differences in motif usage
between behavioral contexts. However, does motif analy-
sis provide additional discriminatory power over module
selection, which also varies between behavioral contexts?
To assess this, we compared the performance of each
motif classifier to paired module classifiers built from mat-
rices of module probabilities. All of the motif classifiers
achieved better performance than their module pairs (Fig.
5C; Table 3), demonstrating both the phenotyping value
of the motifs and their importance in the structure of larval
behavior.

Discussion
Here, we developed and applied computational tools to

describe high-throughput, long-timescale behavioral data
in terms of behavioral units (modules) and sequences of
modules (motifs) organized across sub-second to day-
long timescales.

Low-dimensional representations of behavior
Low-dimensional representations of behavior, such as

the D pixels metric employed here, result in a loss of infor-
mation, for example, direction of movement or posture.
However, such metrics do facilitate screening approaches
and/or long-timescale tracking and in these contexts
have provided biological insight into the molecular targets
of small molecules (Rihel et al., 2010a) and genetics of
aging (Churgin et al., 2017). Our work builds on previous
long-timescale studies of behavior by assessing sub-sec-
ond resolution D pixels data across multiple days and
nights. This improved resolution enabled the segmenta-
tion and parameterization of individual active and inactive
bouts from our data, revealing how larvae adapt their be-
havior across the day/night cycle and how behavior is im-
pacted by small molecules.
Future work should aim to extend our assay by record-

ing more detailed behavioral measures. Indeed, a recent
study using centroid tracking in 96-well plates revealed
that larvae show a day/night location preference within
the well and furthermore uncovered a mutant with a differ-
ence in this metric (Thyme et al., 2019), demonstrating
that even within the confined space of a 96-well plate, lo-
cation is an informative metric to record. It is likely that

Table 1: Wild-type motif classifier performance Download Figure 4-1, TIF file.

Comparison Motifs (number) Cv error (%) Cv error Std Mc error (%) Mc EP RM error (%) RM error Std
Wild type
Day/night 15 0.20 0.63 50.0 2.25 9.25 2.50
Day 5/day 6 93 20.2 9.60 50.0 3.18 45.8 4.09
Night 5/night 6 85 19.8 8.09 50.0 3.18 48.3 6.00
Day hours
• 09-10 102 6.39 1.23 7.14 0.44 7.67 0.26
• 10-11 1 7.37 0.31 7.14 0.44 7.18 0.10
• 11-12 5 7.20 0.23 7.14 0.44 7.15 0.03
• 12-13 9 7.06 0.34 7.14 0.44 7.19 0.08
• 13-14 1 7.14 0.12 7.14 0.44 7.14 0
• 14-15 1 7.14 0.12 7.14 0.44 7.14 0
• 15-16 1 7.11 0.14 7.14 0.44 7.14 0
• 16-17 1 7.09 0.15 7.14 0.44 7.14 0
• 17-18 1 7.14 0.12 7.14 0.44 7.14 0
• 18-19 1 7.14 0.12 7.14 0.44 7.14 0
• 19-20 1 7.14 0.12 7.14 0.44 7.14 0
• 20-21 3 7.11 0.27 7.14 0.44 7.15 0.01
• 21-22 1 7.14 0.12 7.14 0.44 7.14 0
• 22-23 1 7.14 0.12 7.14 0.44 7.15 0.03
Night hours
• 23-24 23 0.69 0.47 10.0 0.60 6.57 1.23
• 24–01 177 9.84 1.83 10.0 0.60 11.6 0.78
• 01–02 5 9.92 0.51 10.0 0.60 10.0 0.05
• 02-03 88 9.72 1.18 10.0 0.60 10.4 0.31
• 03-04 1 10.0 0.17 10.0 0.60 10.0 0.04
• 04-05 22 9.92 0.47 10.0 0.60 10.1 0.07
• 05-06 1 10.0 0.17 10.0 0.60 10.0 0
• 06-07 1 10.0 0.17 10.0 0.60 10.0 0.02
• 07-08 3 9.84 0.34 10.0 0.60 10.0 0.01
• 08-09 1 10.0 0.17 10.0 0.60 10.0 0.01
Morning/evening 229 33.2 2.32 50.0 0.85 44.7 0.96
Early/late night 26 36.4 2.18 50.0 1.00 43.4 1.55

A table showing the performance of each wild-type motif classifier. Each classifier sought to separate the data shown in the comparison column, e.g., day/night.
For the hourly comparisons, each hour was compared with data from all other hours grouped together. For each comparison, 250 motifs were chosen by mRMR,
then a smaller number were retained (see motifs column) based on classification error curves (Extended Data Fig. 4-1A). Cv, 10-fold cross validated; Std, SD
across the 10 folds; Mc, majority class classifier; EP, SE of proportion; RM, classifiers built from random motif subsets.
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Figure 5. Pharmacological behavioral motifs. A, left, Module sequences for the single best motif for each melatonin comparison.
Modules are colored as elsewhere. Middle: for each dose’s single best motif, see left panel y-axis for dose, enrichment/constraint
scores are shown for every dose on a log x-axis. Each animal is shown as a dot, with a mean 6 std overlaid per dose. Right, A two-
dimensional tSNE embedding from a space of 912 unique motifs. Each animal is shown as a single dot underlaid by a shaded
boundary encompassing all animals in each condition. B, left, Module sequences for the single best motif for each PTZ comparison.
To highlight a seizure specific motif, the control motif and corresponding enrichment/constraint score shown is mRMR motif 2, not
1, for this comparison. Modules are colored as elsewhere. Middle, For each dose’s single best motif, enrichment/constraint scores
are shown for every dose on a linear x-axis. Each animal is shown as a dot, with a mean and SD overlaid per dose. Right, A two-
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even more detailed behavioral measures, like eye and tail
angles, will yield additional insights, for example enabling
the exploration of rapid-eye-movement sleep in zebrafish
larvae, as done in reptiles (Shein-Idelson et al., 2016).
Such metrics could be extracted by skeletonization or even
through the use of an autoencoder applied to the raw video
frames from each well (Johnson et al., 2016). Once such
high dimensional data had been assigned to modules, our
compression and motif enrichment/constraint approach
could be applied in the samemanner as here.

Modular descriptions of behavior
A key idea in ethology is that behavior consists of ster-

eotyped modules arranged into motifs (Lashley, 1951;
Tinbergen, 2010). While early studies described behavior
in this manner through manual observations (Dawkins and
Dawkins, 1976), recent advances in machine vision and
learning have automated these processes (Todd et al.,
2017). For example, in zebrafish larvae, recent work used
unsupervised learning to uncover a locomotor repertoire

of 13 swim types including slow forward swims and faster
escape swims (Marques et al., 2018), although inactive
bouts were not considered. From our dataset, we identi-
fied five active and five inactive modules, which, respec-
tively, describe swim bouts of different amplitudes (Fig.
2A) and periods of inactivity of varied length (Fig. 2B).
Interestingly, all modules were used with reasonably high
and similar probability by all wild-type animals (Fig. 2D),
demonstrating that these modules represent a set of
common larval behaviors. Furthermore, the temporal (Fig.
2E) and pharmacological (Extended Data Fig. 2-2B,C)
shifts in these probabilities illustrates that module usage
can be flexibly reorganized depending on behavioral con-
text (Wiltschko et al., 2015).
To discretize our bouts into modules, we first extracted

hand-engineered features from each bout (Fig. 1A) and
then applied an evidence accumulation-based clustering
algorithm (Fred and Jain, 2002, 2005). While our results
demonstrate the relevance and utility of these modules in
describing larval behavior, it is possible that our approach
missed rare bout types. Consequently, future work should

continued
dimensional tSNE embedding from a space of 338 unique motifs. Each animal is shown as a single dot underlaid by a shaded
boundary encompassing all animals in each condition. C, Each classifier’s classification error (%) is shown in terms of modules (x-
axis) and motifs (y-axis). Data are shown as mean and SD from 10-fold cross validation. Classifiers are colored by experimental da-
taset (see Legend). For reference, y = x is shown as a broken black line. Data below this line demonstrates superior performance of
the motif classifiers.

Table 2: hcrtr and pharmacological classifier performance Download Figure 4-1, TIF file.

Comparison Motifs (number) Cv error (%) Cv error Std Mc error (%) Mc EP RM error (%) RM error Std
hcrtr
Day and night
• WT/Het 173 25.5 6.77 27.7 1.88 39.0 1.93
• WT/Hom 83 24.7 6.07 50.0 2.83 47.8 3.66
• Het/Hom 235 24.7 3.76 27.7 1.88 38.6 1.83
Day
• WT/Het 80 19.5 9.60 27.7 2.66 37.9 1.08
• WT/Hom 195 16.7 7.50 50.0 4.00 48.7 4.22
• Het/Hom 55 22.7 7.02 27.7 2.66 33.8 2.01
Night
• WT/Het 79 16.3 6.38 27.7 2.66 37.1 7.17
• WT/Hom 53 12.8 9.58 50.0 4.00 52.3 6.16
• Het/Hom 76 16.0 7.27 27.7 2.66 36.0 5.05
Melatonin (day)
• Control 40 0 0 25.0 4.42 16.4 3.67
• 0.01mM 89 1.39 4.52 16.7 4.39 30.0 15.2
• 0.1mM 192 1.39 4.52 16.7 4.39 20.5 18.0
• 1mM 132 2.78 6.02 16.7 4.39 29.5 8.67
• 3mM 97 0 0 16.7 4.39 48.6 11.2
• 10mM 250 2.78 6.02 16.7 4.39 20.0 9.40
• 30mM 133 0 0 16.7 4.39 32.2 7.89
PTZ (day)
• Control 26 0 0 46.2 6.91 15.8 6.43
• 2.5 mM 55 0 0 35.7 9.06 42.1 11.4
• 5 mM 162 0 0 32.1 8.83 34.3 18.0
• 7.5 mM 104 0 0 32.1 8.83 49.9 14.7

A table showing the performance of each classifier. Each classifier sought to separate the data shown in the comparison column, e.g., hcrtr1/1 (WT) and hcrtr�/1

(Het). For the pharmacological comparisons, each condition was compared with the rest of the conditions grouped together, aside from the control data which
was excluded. For each comparison, 250 motifs were chosen by mRMR, then a smaller number were retained (see motifs column) based on classification error
curves (see Extended Data Fig. 4-1A). Cv, 10-fold cross validated; Std, SD across the 10 folds; Mc, majority class classifier; EP, SE of proportion; RM, classifiers
built from random motif subsets; WT, hcrtr1/1; Het, hcrtr�/1; Hom, hcrtr�/�.
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build on our bout classification by exploring the benefits
of including additional features, the use of alternative
clustering algorithms and our assumption of stereotypy,
i.e., that all bouts can be fit into a module (Berman, 2018).
An alternative direction would be to produce a mapping
between our active modules and those identified from
analysis of larval posture (Marques et al., 2018). Bridging
this gap could facilitate behavioral screening approaches,
for example, by using data from our set-up to prioritize
pharmacological compounds or mutants for postural
analysis.

Quantifying structure in behavior
In some contexts, it is beneficial for animals to execute

coordinated patterns of behavior. For example, to effi-
ciently search an environment zebrafish larvae will exe-
cute organized sequences of left and right turns (Dunn et
al., 2016). In other contexts, more random behavior will be
advantageous, such as when escaping from a predator
(Maye et al., 2007). Quantifying structure in behavior thus
provides insight into the overarching strategy being em-
ployed in particular contexts. Alterations in behavioral
structure can also manifest clinically, for example in
Autism Spectrum Disorder, a defining feature of which is
increased behavioral stereotypy (American Psychiatric
Association, 2013). Consequently, compression would be

a relevant and likely informative metric to record in animal
models or even human cases for such conditions.
To quantify structure in larval zebrafish behavior in dif-

ferent contexts, we inputted each larva’s modular se-
quence to a compression algorithm. We found that wild-
type behavior was more compressive during the day than
the night (Fig. 3B). This echoes recent work in Drosophila
that revealed higher temporal predictability during the day
than the night as well as in females (Fulcher and Jones,
2017). A likely explanation for these findings comes from
work in C. elegans (Gomez-Marin et al., 2016) that dem-
onstrated that animals who transition slowly between
modules, as both zebrafish (Fig. 1B) and Drosophila do at
night (Geissmann et al., 2019), tend to be less compres-
sive. This may suggest that the underlying mechanisms
controlling longer-timescale behaviors are less precise
than those controlling fast behavioral sequences.
For future efforts applying compression to behavioral

data, there are two avenues left to explore, what com-
pression heuristic to use and how to compress data from
multiple animals. Following the work of Gomez-Marin et
al. (2016), we defined the best motif at any iteration as the
most compressive, which represents a balance between
the motif’s length and frequency. While this metric gener-
ally leads to the best compression (Nevill-Manning and
Witten, 2000), alternative measures, such as frequency or
length may capture other aspects of behavior. The

Table 3: Module classifier performance Download Figure 4-1, TIF file.

Comparison Modules (number) Cv error (%) Cv error Std Mc error (%) Mc EP
Wild type
• Day/Night 10 1.61 1.29 50.0 2.25
• Day 5/Day 6 8 21.0 6.53 50.0 3.18
• Night 5/Night 6 1 35.5 9.71 50.0 3.18
hcrtr
Day and night
• WT/Het 1 27.7 0.77 27.7 1.88
• WT/Hom 10 45.8 10.9 50.0 2.83
• Het/Hom 8 27.5 1.12 27.7 1.88
Day
• WT/Het 1 27.7 1.46 27.7 2.66
• WT/Hom 1 40.4 12.5 50.0 4.00
• Het/Hom 3 27.3 2.35 27.7 2.66
Night
• WT/Het 1 27.7 1.46 27.7 2.66
• WT/Hom 1 47.4 10.9 50.0 4.00
• Het/Hom 10 27.0 1.72 27.7 2.66
Melatonin (day)
• Control 3 8.33 8.69 25.0 4.42
• 0.01mM 10 2.78 6.02 16.7 4.39
• 0.1mM 2 16.7 4.52 16.7 4.39
• 1mM 1 18.1 7.74 16.7 4.39
• 3mM 1 16.8 8.67 16.7 4.39
• 10mM 1 16.8 4.52 16.7 4.39
• 30mM 1 16.8 4.52 16.7 4.39
PTZ (day)
• Control 1 1.92 5.27 46.2 6.91
• 2.5 mM 1 17.9 17.6 35.7 9.06
• 5 mM 1 28.6 22.3 32.1 8.83
• 7.5 mM 10 20.0 26.1 32.1 8.83

A table showing the performance of each module classifier. Each classifier sought to separate the data shown in the comparison column, e.g., wild type, day/
night. For each comparison, all 10 modules were sequentially chosen by the mRMR algorithm, then a smaller subset was retained (see module column) based on
classification error curves. Cv, 10-fold cross validated; Std, SD across the 10 folds; Mc, majority class classifier; EP, SE of proportion.
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second avenue relates to comparisons between animals.
Here, each animal was compressed individually, identify-
ing motifs that were later grouped into a common library.
While computationally tractable, this approach prevents
certain comparisons across animals, for example identify-
ing the most compressive motif across all larvae. This
issue could be solved by compressing a single sequence
containing all of the animals’ modular sequences joined
end to end, with spacers to prevent interanimal motifs.
Compressing this long sequence would, however, be
computationally demanding.
Compressing and merging the identified motifs across

all animals generated a library of 46,554 unique motifs
(Fig. 3C), each of which described an alternating se-
quence of movements and pauses (Fig. 3D). Motifs
ranged from 0.1 s to 11.3min in length, revealing the
range of timescales at which larval behavior is organized.
We cannot, however, rule out the existence of longer
timescale motifs in larval behavior as computational de-
mands limited our search to motifs 10 modules long
(although the algorithm’s hierarchical approach enabled
the identification of motifs up to 20 modules long). Thus,
future work should aim to extend our approach to explore
the full range of timescales at which larval behavior is or-
ganized by systematically varying this parameter.

Contextual behavioral motifs
Finally, by distilling salient subsets of motifs from our li-

brary, we demonstrated that motif usage was context de-
pendent and highlighted the discriminatory power of motif
subsets, which were capable of distinguishing between
day/night behavior and even between small changes in
compound dose. Comparing motif usage across the day/
night cycle identified a set of highly night specific motifs
(Fig. 4C), which may represent sleep behaviors. One way
in which future studies could address this possibility
would be to deprive larvae of these motifs throughout the
night, for example, by using a closed-loop paradigm
(Geissmann et al., 2019), and observing the impact on
larval behavior the following day. In relation to the PTZ
data, comparing seizure motifs across epileptogenic
compounds and mutants with spontaneous seizures
could suggest clues as to their underlying mechanism
(Kokel et al., 2010; Rihel et al., 2010a). For example, seiz-
ures with similar motif usage patterns may originate in
the same brain area or impact awareness in the same
manner. This hypothesis could be tested by generating
whole-brain activity maps (Randlett et al., 2015) across
conditions, with the aim of identifying common and
unique neuronal correlates.
Given the amenability of larval zebrafish to high-

throughput behavioral screening (Rihel and Ghosh, 2015)
future work should leverage our approach to large-scale
genetic (Thyme et al., 2019) or pharmacological datasets
(Rihel et al., 2010a). Individually, these datasets would
provide information on the genetic and molecular basis of
behavior across multiple timescales, encompassing proc-
esses from sleep to aging. In combination, by identifying
mutant and drug-induced phenotypes that cancel each
other out (Lamb et al., 2006; Hoffman et al., 2016), these

datasets could be used to identify phenotypic suppres-
sors in genetic disease models, an outcome with potential
clinical relevance.
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