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N6-methyladenosine (m6A) is regarded as the most abundant, prevalent and conserved
internal mRNA modification in mammalian cells. M6A can be catalyzed by m6A
methyltransferases METTL3, METTL14 and WTAP (writers), reverted by demethylases
ALKBH5 and FTO (erasers), and recognized by m6A -binding proteins such as
YTHDF1/2/3, IGF2BP1/2/3 and HNRNPA2B1 (readers). Emerging evidence suggests
that m6A modification is significant for regulating many biological and cellular processes
and participates in the pathological development of various diseases, including tumors.
This article reviews recent studies on the biological function of m6A modification and the
methylation modification of m6A in urological tumors.
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INTRODUCTION

In past decades, epigenetic modification has been identified to be involved in diverse biological
processes and disease progression, attracting more and more attention. Epigenetics is a study
of reversible, inheritable phenotypes that do not involve changes in nuclear DNA sequences
(Mohammad et al., 2019), and primarily includes RNA interference, histone modification,
chromatin rearrangement, DNA methylation and RNA modification (Arguello et al., 2019; McGee
and Hargreaves, 2019).

RNA modification was previously regarded as occurring in high-abundance RNA species,
while emerging evidence indicates that it is characterized in lowly abundant species of RNA
such as non-coding RNAs and Mrna (Dominissini, 2014; Li X. et al., 2016). Among them, RNA
methylation has attracted accumulating attention in recent years and N6-methyladenosine (m6A)
is the most prevalent RNA methylation sites (Pan, 2013). M6A modification was firstly reported to
be interrelated to the regulation of gene expression, growth and development in 1970s (Desrosiers
et al., 1974; Perry et al., 1975; Chandola et al., 2015; Hsu et al., 2017), and it has been regarded as
one of the most common mRNA modifications recently. Many researches have revealed that m6A
modification mainly occured in the consensus sequence RRACH sequence (R = A, G; H = A, C, U)
(Li L. J. et al., 2018), which is enriched in stop codons, 3′ untranslated region (UTR) and the last
exon in non-coding RNA (Dominissini et al., 2012; Meyer et al., 2012). Besides, m6A is widespread
in RNA of bacteria, viruses and eukaryotes (Desrosiers et al., 1974; Wang Y. et al., 2014; Deng et al.,
2015; Fu et al., 2015; Greer et al., 2015; Zhang et al., 2015; Liu J. et al., 2016; Zhu et al., 2018).

M6A modification is reversible and catalyzed by many relevant enzymes (Batista, 2017;
Dai et al., 2018). Studies have shown that m6A is involved in various biological and disease
processes via regulating target gene expression (Chen X.Y. et al., 2019; Lan et al., 2019). M6A
modification is associated with various diseases, such as neurological diseases (Liu E. Y et al., 2017;
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Salta and De Strooper, 2017) and cancers. In this review, we
provide a broad overview of the relationship between RNA
m6A methylation and urological tumors. We further highlight
the possible uses in diagnostic, prognostic and therapeutic
applications of m6A modifications for urological tumors.

REGULATORS OF M6A

Similar to histone modification and DNA methylation, m6A
modification is reversible and dynamic, and influences biological
functions that are primarily mediated by three types of
regulators: methyltransferases (“writers”), demethylases
(“erasers”) and m6A binding proteins (“readers”). The
methyltransferase complex (MTC) can catalyze m6A,
demethylase can remove m6A, while RNA reader proteins
can recognize m6A and bind to the RNA. These proteins
play an essential biological role in m6A modifications
(Table 1, Figure 1). Cross-talk among writers, erasers
and readers of m6A is involved in the development and
progression of tumors (Deng et al., 2018; Panneerdoss et al.,
2018).

Methyltransferases (“Writers”)
MTC has been identified to regulate the installation of m6A
and Methyltransferase-like 3 (METTL3), METTL14, and Wilms
tumor 1-associated protein (WTAP) have been proved as the core
components of this complex (Ping et al., 2014; Schwartz et al.,
2014; Zhou J. et al., 2015). METTL3 is an Sadenosyl methionine
(SAM)-binding protein and regarded as a major catalytic enzyme
with functions reminiscent of the N6-adenine methyltransferase
system (Barbieri et al., 2017). Besides, METTL3 is highly
conserved in eukaryotes from yeast to humans (Bokar et al.,
1997). WTAP can also increase the binding ability of METTL3,
thus regulating recruitment of the complex to mRNA targets
(Ping et al., 2014). METTL14 could form a stable complex
with METTL3 and both of them contain a SAM-binding motif.
With the help of WTAP, METTL3-METTL14 could colocalize
in nuclear speckles and form a heterodimer, so as to participate
in catalytic activity (Liu J. et al., 2014; Zhao X. et al., 2014).
Besides, VIRMA, RBM15, ZC3H13 and KIAA1429 are the new
components of the m6A “writer” complex (Moindrot et al., 2015;
Wang X. et al., 2016; Deng et al., 2018; Wen et al., 2018).

METTL3

The writer METTL3 has been identified to be involved in
various biological processes. METTL3 can enhance the BAT-
mediated adaptive thermogenesis and suppress obesity and
systemic insulin resistance via targeting the 3′ UTR of the
PRDM16, PPARG, and UCP1 transcript to install the m6A
modification (Wang Y. et al., 2020). The ablation of METTL3
in germ cells severely inhibited spermatogonial differentiation
and blocked the initiation of meiosis (Xu et al., 2017). Besides,
METTL3 was also shown to be upregulated in various solid
tumors and associated with poor prognosis. In oral squamous

cell carcinoma (OSCC), METTL3 can facilitate tumor growth and
metastasis through making an increment in m6A modification
and expression of c-Myc transcript (Zhao W. et al., 2020). In
colorectal cancer (CRC), METTL3 stabilizes HK2 and GLUT1
expression via a m6A -IGF2BP2/3-dependent mechanism (Shen
et al., 2020). Additionally, METTL3 might affect tumor metastasis
through promoting the maturation of pri-miR-1246 (Peng
et al., 2019). METTL3 enhances the splicing of precursor
miR-143-3p and facilitates its biogenesis, thereby promoting
the brain metastasis of lung cancer (LC) (Wang H. et al.,
2019). Moreover, METTL3 induces non-small cell lung cancer
(NSCLC) drug resistance and metastasis by promoting Yes-
associated protein (YAP) mRNA translation via a m6A -
YTHDF1/3/eIF3b-dependent mechanism (Jin D. et al., 2019). In
gastric cancer (GC), overexpression of METTL3 can promote the
stability of ZMYM1, thereby enhancing epithelial mesenchymal
transformation (EMT) process and tumor metastasis (Yue et al.,
2019). In addition, upregulated METTL3 facilitates GC growth
and liver metastasis through installing m6A modifications of
HDGF transcript (Wang Q. et al., 2020).

METTL14

Studies have demonstrated that METTL14 is associated
with a lower risk for development of neoplasms. In CRC,
METTL14 acts as a tumor-suppressor to inhibit cell growth and
metastasis in vitro and in vivo. Mechanistical study demonstrated
that downregulated METTL14 substantially abolishes m6A
modifications of XIST and augments XIST expression (Yang X.
et al., 2020). In addition, METTL14 can inhibit CRC cell
proliferation, migration and invasion via the miR-375-YAP1/SP1
signal axis (Chen X. et al., 2020). Although both of METTL3 and
METTL14 could act as m6A “writer”, METTL3 might promote
the progression of CRC, while METTL14 functions as a tumor
suppressor in CRC. METTL14 can also assume an oncogenic
role in triple-negative breast cancer (TNBC) (Shi et al., 2020),
pancreatic cancer (Kong et al., 2020) and leukemia (Weng
et al., 2018). Moreover, METTL14 is significantly upregulated
in Epstein–Barr virus (EBV) latently infected cells. METTL14
can lead to oncogenesis via increasing m6A modifications of the
indispensable EBV latent antigen EBNA3C and thus facilitating
its stability and expression. Interestingly, EBNA3C can also
enhance stability and expression of METTL14 (Lang et al., 2019).

METTL16

METTL16 has been recently shown to have distinct target RNAs
for m6A modification. Studies have revealed that METTL16
can bind a subset of mRNAs and methylate U6 small nuclear
RNA (U6 snRNA) and long non-coding RNA (lncRNA) (Brown
et al., 2016; Fitzsimmons and Batista, 2019). Moreover, the
UACAGAGAA sequence is essential for METTL16-mediated-
methylation and the Nterminal module of METTL16 is required
for RNA binding (Doxtader et al., 2018; Mendel et al., 2018).
METTL16 is involved in catalyzing m6A in A43 of the U6
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TABLE 1 | Functions of m6A regulators in RNA metabolism.

Type m6A Regulators Function References

m6A writer METTL3 Catalyzes m6A modification Schwartz et al., 2014

Zhou J. et al., 2015

– METTL14 Forms a stable complex with METTL3 Schwartz et al., 2014

– – – Zhou J. et al., 2015

METTL16 Catalyzes m6A modification Warda et al., 2017

– WTAP Contributes to the localization of METTL3-METTL14 heterodimer to the
nuclear speckle

Ping et al., 2014

RBM15 Binds the m6A complex and recruit it to special RNA site Moindrot et al., 2015

– VIRMA Recruits the m6A complex to the special RNA site and interacts with
polyadenylation

Wang T. et al., 2020

– – Cleavage factors CPSF5 and CPSF6 –

– – – –

ZC3H13 Bridges WTAP to the mRNA-binding factor Nito Wen et al., 2018

m6A eraser FTO Mediates demethylation of both hm6A and f6A in mRNA Basak et al., 2019

– – – –

ALKBH5 Removes m6A modification Tang et al., 2018

m6A reader YTHDF1 Facilitates mRNA translation efficiency Liu J. et al., 2020

– – – –

YTHDF2 Promotes mRNA degradation Zhou J. et al., 2015

– YTHDF3 Enhances translation and degradation by interacting with YTHDF1 and
YTHDF2

Shi et al., 2017

– – – Li A. et al., 2017

YTHDC1 Recruits the RNA splicing and controls the nuclear export Roundtree et al., 2017b

– YTHDC2 Interacts with RNA helicase and increases the translation efficiency of
target RNA

Mao et al., 2019

– – – –

IGF2BPs Recruits RNA stabilizers Huang H. et al., 2018

– HNRNPA2B1 Mediates mRNA splicing and primary microRNA processing Alarcon et al., 2015

– – – –

HNRNPC Influences alternative splicing and mRNA localization Guichard et al., 2012

– EIF3 Facilitates cap-independent translation Meyer et al., 2015

small nuclear RNA (Warda et al., 2017). Under loss-of-SAM
conditions, METTL16 can induce the splicing of a retained
intron, thereby enhancing level of MAT2A and expression of
SAM, while down-regulation of METTL16 and YTHDC1 can
abolish SAM-responsive regulation of MAT2A (Pendleton et al.,
2017; Shima et al., 2017). While the specific role of METTL16 in
solid tumors remain to be further explored.

Demethylases (“Erasers”)
The reversible and dynamic m6A modification can be mediated
by obesity-associated protein (FTO) and alkB homolog 5
(ALKBH5) (m6A “erasers”) (Jia et al., 2011; Zheng et al., 2013).
Both FTO and ALKBH5 are members of the ALKB family
of dioxygenases. As the first reported demethylase, FTO can
also mediate demethylation of both N6-hydroxymethyladenosine
(hm6A) and N6-formyladenosine (f6A) in mRNA (Basak et al.,
2019). ALKBH5 plays an essential role in mRNA export and RNA
metabolism (Tang et al., 2018).

FTO

As an m6A eraser, FTO is associated with the initiation
and development of various cancers including hepatocellular
carcinoma (HCC), melanoma, breast cancer and glioma. In
HCC, SIRT1 destabilizes FTO and thus steering the m6A
of downstream elements and consecutive mRNA expression
in tumorigenesis (Liu X. et al., 2020). In melanoma, FTO
can impair IFNγ-induced killing via augmenting CXCR4, PD-
1 and SOX10 expression via repressing YTHDF2-mediated
degradation and suppress response to anti-PD-1 blockade
immunotherapy (Yang S. et al., 2019). In breast cancer, FTO
enhances breast cancer cell growth, colony formation and
metastasis. Mechanistical study demonstrated that FTO can
mediate m6A demethylation of BNIP3 transcript and induce
its degradation via an YTHDF2 independent mechanism (Niu
et al., 2019). The ethyl ester form of meclofenamic acid (MA2)
inhibits FTO and enhances the effect of the chemotherapy drug
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FIGURE 1 | The molecular mechanism of m6A. M6A can be installed by “writers” (METTL3/14/16, WTAP, RBM15, VIRMA, KIAA1429, and ZC3H13), removed by
“erasers” (FTO, ALKBH5, and ALKBH3), and recognized by “readers” (YTHDF1/2/3, YTHDC1/2, IGF2BPs, HNRNPs, and eIF3). METTL3/14/16, methyltransferase
like 3/14/16; WTAP, WT1 associated protein; RBM15, RNA binding motif protein 15; VIRMA, vir like m6A methyltransferase associated; ZC3H13, zinc finger
CCCH-type containing 13; FTO, FTO alpha-ketoglutarate dependent dioxygenase; ALKBH5, alkB homolog 5, RNA demethylase; ALKBH3, alkB homolog 3, RNA
demethylase; YTHDF1/2/3, YTH N6-methyladenosine RNA binding protein 1/2/3; YTHDC1/2, YTH domain containing 1/2; IGF2BPs, insulin like growth factor 2
mRNA binding proteins; HNRNPs, heterogeneous nuclear ribonucleo proteins; eIF3, eukaryotic translation initiation factor 3 subunit.

temozolomide (TMZ) on suppressing proliferation of glioma
cells (Xiao et al., 2020).

ALKBH5

ALKBH5 has been regarded as a tumor suppressor in many
cancers. In NSCLC, ALKBH5 suppresses cell growth and
metastasis both in vitro and in vivo via repressing miR-
107/LATS2-mediated YAP activity and YTHDFs-mediated
YAP expression (Jin D. et al., 2020). In pancreatic cancer,
downregulated ALKBH5 predicts poor prognosis and
knockdown of ALKBH5 markedly facilitates tumor growth and
metastasis (Tang et al., 2020). In HCC, ALKBH5 is characterized
as a tumor suppressor and could attenuate the expression of
LYPD1 via an mA-dependent manner in HCC cells (Chen Y.
et al., 2020). In addition, ALKBH5 can augment steady-state
CYR61 mRNA expression via an m6A -dependent mechanism,
thereby repressing trophoblast invasion (Li X. C. et al., 2019).

m6A Binding Proteins (“Readers”)
M6A readers can recognize and bind to m6A sites and regulate
target RNA translation, splicing, nuclear export and decay
(Figure 2). In YTH (YT521-B homology) domain family, the
evolutionarily conserved YTH domain acts as the module

for directly binding to m6A. YTHDF1–3 and YTHDC1–2
are the main five YTH domain proteins. YTHDF1 can bind
to m6A sites around the stop codon and thus facilitating
mRNA translation efficiency (Liu X. et al., 2020). YTHDF2
can accelerate degradation and deadenylation of the transcripts
by bringing m6A-modified translatable mRNAs to mRNA
decay sites and recruiting CCR4-NOT deadenylase complex
(Zhou J. et al., 2015). YTHDF3 can, respectively, promote RNA
translation through associating with YTHDF1 and enhance RNA
degradation by interacting with YTHDF2 (Li A. et al., 2017;
Shi et al., 2017). In contrast to the prevailing model, where
each DF paralog binds to distinct subsets of mRNAs, Zaccara
and Jaffrey show that the DF paralogs bind proportionately
to each m6A site throughout the transcriptome (Zaccara and
Jaffrey, 2020). YTHDC1 recruits the RNA splicing and control
the nuclear export (Roundtree et al., 2017b). YTHDC2 interacts
with RNA helicase and increases the translation efficiency
of target RNA (Mao et al., 2019). The insulin-like growth
factor 2 mRNA binding protein (IGF2BP) family proteins,
including IGF2BP1-3, can recognize m6A containing transcripts.
IGF2BPs exert their functions via recruiting RNA stabilizers
(Huang H. et al., 2018). Eukaryotic initiation factor 3 (EIF3)
can facilitate cap-independent translation (Meyer et al., 2015).
Heterogeneous nuclear ribo nucleo protein (HNRNP) family
proteins include hnRNPC, hnRNPG and hnRNPA2B1. HnRNPC
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FIGURE 2 | The detailed molecular mechanism of m6A enzymes. The “writers”, “erasers” and “readers” relay on a variety of related factors install, remove and
recognize m6A mutation and participate in RNA metabolic processes, including translation, splicing, export, degradation and so on.

and hnRNPG can influence alternative splicing and mRNA
localization (Guichard et al., 2012) while hnRNPA2B1 can bind
to m6A -containing primary microRNAs and enhance microRNA
maturation (Alarcon et al., 2015).

YTHDF1

More recently, YTHDF1 has been proved to be upregulated in
various tumors, associated with more advanced stages and poorer
survival. In ovarian cancer, YTHDF1 promotes tumor growth
and metastasis. Mechanistically, YTHDF1 binds to the m6A
modification site of EIF3C 3′-UTR to increase the translation of
EIF3C mRNA (Liu X. et al., 2020). YTHDF1 could promote the
translation of frizzled7 (FZD7) in an m6A-dependent manner,
leading to hyper-activation of the Wnt/β-catenin pathway and
promotion of gastric carcinogenesis (Pi et al., 2020). Besides,
YTHDF1 binds the m6A modification site of Robo3.1 3′-UTR
and promotes its translation in an m6A-independent mechanism.
While down-expression of YTHDF1 in spinal commissural
neurons contributes to pre-crossing axon guidance defects
(Zhuang M. et al., 2019).

YTHDF2

Evidence has shown that YTHDF2 can act as an oncogene
or tumor suppressor in different tumor models. In HCC,
YTHDF2 decreased expression level is associated with poor

prognosis and classification. YTHDF2 may participate in the
occurrence and progression of HCC by processing the decay
of m6A-containing serpin family E member 2 (SERPINE2)
and interleukin 11 (IL11) mRNAs (Hou et al., 2019). Besides,
YTHDF2 can suppress tumor growth through modulating
the m6A methylation of EGFR mRNA by the m6A/mRNA
degradation pathway. However, YTHDF2 promotes the cancer
stem cell liver phenotype and cancer metastasis by binding
m6A-modified OCT4 mRNA (Zhang et al., 2020). YTHDF2
can also interact with miRNA, miR-145 targets YTHDF2 and
results in its degradation (Yang Z. et al., 2017). Moreover,
YTHDF2 is also involved in the initation of other biological
process. In spermatogenesis, YTHDF2 regulates cell proliferation
and adhesion via modulating the m6A methylation of MMPs
and simultaneously decreasing the overall translational output
(Huang T. et al., 2020). Knockdown of YTHDF2 promotes
the expression of MAP2K4 and MAP4K4 and activates MAPK
and NF-κB signaling pathways, which facilitate the expression
of proinflammatory cytokines and exacerbate the inflammatory
response in LPS-stimulated RAW 264.7 cells (Yu et al., 2019).

YTHDF3

YTHDF3 has been reported to play a fine-tuning role in the
RNA accessibility of YTHDF1 and YTHDF2 and biological
process. In CRC, lncRNA GAS5 leads to ubiquitin-mediated
degradation of YAP via interacting with WW domain of YAP,
thus repressing tumor progression. While YTHDF3 might
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recognize m6A-modified GAS5 and induce decay of it (Ni
et al., 2019). YTHDF3 can serve as a negative regulator to
enhance the translation of FOXO3 mRNA, thereby maintaining
host antiviral immune function and preventing inflammatory
response (Zhang Y. et al., 2019).

YTHDC1

YTHDC1 and YTHDC2 have conserved m6A binding domain
and preferentially bind to m6A-modified RNA in RRm6ACH
consensus sequence (Roundtree et al., 2017a). YTHDC1 is
involved in processing of pre-mRNA transcripts of F6, SRSF3,
and SRSF7 in the oocyte nucleus, and it may play a crucial role
in fetal development (Kasowitz et al., 2018). MAT2A mRNA
can be methylated by METTL16 and YTHDC1 can bind to
the m6A modification site of MAT2A 3′-UTR. Downregulation
of METTL16 and YTHDC1 might effectively abolish SAM-
responsive regulation of MAT2A (Shima et al., 2017). The m6A
modification site of long non-coding RNA X-inactive specific
transcript (XIST) can be preferentially read by YTHDC1 and
it’s required for XIST function (Patil et al., 2016). Recent study
shows that the ability of the YTH domain of YTHDC1 binding to
ssDNA is stronger than in an RNA context. However, the YTH
domains of YTHDF2 and YTHDF1 exhibit the opposite effect
(Woodcock et al., 2020).

YTHDC2

YTHDC2 could bind mitotic transcripts, specific piRNA
precursors and interact with RNA granule components, licensing
the proper progression of germ cells through meiosis (Bailey
et al., 2017). YTHDC2 results in colon cancer metastasis
through augmenting translation of HIF-1α, it may be a potential
diagnostic marker and therapy target in colon cancer (Tanabe
et al., 2016). YTHDC2 binds to the mRNA of lipogenic genes
and participates in the regulation of hepatic lipogenesis and TG
homeostasis (Zhou B. et al., 2020).

IGF2BPs

IGFBPs could use common RNA binding domains to recognize
m6A containing transcripts and play a significant role in many
diseases. In breast cancer, FGF13-AS1 can reduce the half-life
of c-Myc (Myc) mRNA by binding IGF2BPs, thus suppressing
cell proliferation, migration and invasion (Ma et al., 2019). In
ovarian cancer, IGF2BP1 enhances cell proliferative and invasive
ability by antagonizing miRNA-impaired gene expression, the
elevate expression of IGF2BP1 is correlated to poor prognosis
(Muller et al., 2018). IGF2BP1 could function as an adaptor
protein to recruit the CCR4-NOT complex, so as to initiate the
degradation of the lncRNA highly up-regulated in liver cancer
(HULC) (Hammerle et al., 2013). In pancreatic cancer, IGF2BP2
could promote cell growth through activating the PI3K/Akt
signaling pathway and be negatively regulated by miR-141 (Xu

et al., 2019). In addition, IGF2BP2 enhances cancer stemness-
like properties and promotes tumorigenesis by acting as a reader
for m6A modified DANCR (Hu et al., 2020). In gastric cancer,
miR-34a directly targets IGF2BP3, overexpression of IGF2BP3
promotes cell proliferation and invasion (Zhou Y. et al., 2017).
IGF2BP3 could interact with RNA-binding protein Lin28b and
thereby promotes stability and expression of target mRNAs such
as B-cell regulators Pax5 and Arid3a, so as to participate in the
fetal–adult hematopoietic switch (Wang S. et al., 2019).

EIF3

EIF3 is crucial for specialized translation initiation via interacting
with the 5′; cap region, resulting in assemblage of translation
initiation complexes on eIF3-specialized mRNA (Lee et al., 2016).
Study has proved that YTHDF1 might promote the translation
of EIF3 via recognizing the m6A-modified sites of EIF3 mRNA
and simultaneously augments the overall translational output,
thus facilitating tumorigenesis and metastasis in ovarian cancer
(Liu X. et al., 2020). In renal cell carcinoma (RCC), knockdown
of EIF3 dramatically decreases cell viability with sunitinib
treatment. Mechanistically, EIF3 could interact with GRP78 and
enhance protein stability by blocking the ubiquitin-mediated
degradation of GRP78 (Huang H. et al., 2019). In gallbladder
cancer (GBC), EIF3 can stabilize GRK2 protein through blocking
ubiquitin-mediated degradation, wherefore activating PI3K/Akt
signal pathway and enhancing tumor growth and metastasis
(Zhang et al., 2017). All above studies demonstrate that EIF3 is
a vital role in the progerssion of various cancers.

ROLES OF RNA M6A IN UROLOGICAL
TUMORS

Accumulating evidence indicates that RNA m6A modification
is related to the tumorigenesis, development and progression of
urological tumors. Therefore, we summarize these latest advances
of m6A modification in urological tumors (Table 2, Figure 3).

Renal Cell Carcinoma
Renal cell carcinoma (RCC) is derived from renal epithelium
and is one of the most common cancers worldwide, making up
nearly 2% to 3% of all adult malignancies (Rini et al., 2009). Li
and collaborators demonstrated that METTL3 was a potential
prognostic marker of RCC, and the expression levels of METTL3
are interrelated to tumor size and histological grade. Inhibition of
METTL3 could obviously promote cell proliferation, migration
and invasion, and make cell cycle arrest (Li X. et al., 2017).
In addition, METTL3 knockdown might activate oncogenic
PI3K/Akt/mTOR signaling pathway. Hence, METTL3 might
function as a tumor suppressor in the tumorigenesis of RCC.
Gong and co-workers found that the expression level of
METTL14 is decreased in RCC (Gong et al., 2019). Additionally,
the mRNA level of METTL14 is associated with RCC patients’
overall survival. Knockdown of METTL14 promotes the mRNA
and protein expression levels of P2RX6, while P2RX6 could
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TABLE 2 | The roles of RNA m6A in urological tumors.

Cancer m6A Regulators Role in cancer Biological function Mechanism References

Renal cancer METTL3 Suppressor Suppresses RCC proliferation,
migration

Regulates EMT and PI3K-Akt-mTOR pathways Rini et al., 2009

gene and invasion

– METTL14 Suppressor Suppresses RCC migration and
invasion

Down-regulates P2RX6 protein translation Li X. et al., 2017

– – gene – – –

– – – – – –

FTO Suppressor Spppress RCC growth Promotes PGC-1α expression by reducing m6A
levels

Gong et al., 2019

gene

Prostate cancer METTL3 Oncogene Promotes PCa growth and
metastasis

Regulates hedgehog pathway Siegel et al., 2020

– – – – – –

METTL3 Oncogene Promotes PCa proliferation,
migration

Promotes MYC expression by increasing m6A
levels

Cai et al., 2019

and invasion

– YTHDF2 Oncogene Promotes PCa proliferation and
migration

/ Yuan et al., 2020

– – – – – –

Bladder cancer METTL3 Oncogene Promotes BC growth Promotes CDCP1 mRNA modification and
translation

Bray et al., 2018

– METTL3 Oncogene Promotes BC proliferation Interactes with the microprocessor protein DGCR8
and

Yang F. et al., 2019

– – – – positively modulates the pri-miR221/222 process –

– – – – – –

METTL3 Oncogene Promotes BC growth and
metastasis

Regulates AFF4/NF-κB/MYC signaling network Han et al., 2019

– METTL3 Oncogene Promotes BC growth and
metastasis

promote the translation of ITGA6 mRNA Cheng et al., 2019

– – – – – –

METTL3/YTHDF2 Oncogene Promotes BC growth and
metastasis

METTL3/YTHDF2 may mediate the mRNA decay Jin H. et al., 2019

of tumor suppressors SETD7 and KLF4

– METTL14 Suppressor Promotes the proliferation,
self-renewal, metastasis

METTL14 knockdown may enhance the RNA Xie et al., 2020

– – gene and tumor initiating capacity of
bladder TICs

stability of Notch1 mRNA –

– – – – – –

FTO Suppressor Inhibits BC proliferation and
migration

/ Gu et al., 2019

Gene

further regulate the Ca2+-mediated p-ERK1/2/MMP9 signal
pathway promote cell migration and invasion. Zhuang C. et al.
(2019) found that PGC-1α underwent m6A methylation in
RCC. As an m6A demethylase, FTO could recognize the m6A
sites of PGC-1α and reduce its methylation level, therefore
leading to the increases in mitochondria biogenesis and oxidative
phosphorylation and the decreases in tumor growth of RCC
(Zhuang C. et al., 2019).

Prostate Cancer
Prostate cancer (PCa) has been regarded as the most common
cancer among men and the second cancer-related deaths in

the men in 2019 (Siegel et al., 2020). Despite recent advances
in many therapies, the 5 years’ survival rate for prostate
cancer patients remains low. Cai et al. found that METTL3 is
overexpressed in PCa tissues and cell lines (Cai et al., 2019).
Elevated expression of METTL3 could promote cell proliferation,
survival, colony formation, and invasion. Moreover, knockdown
of METTL3 could decrease the m6A modification and expression
of GLI1, thereby regulating hedgehog pathway. Yuan et al. (2020)
demonstrated that the mRNA expression level of METTL3 was
increased in prostate cancer tissues. Additionally, the expression
level of METTL3 is associated with the deterioration of PCa
patients’ condition. Mechanistically, METTL3 could enhance

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 September 2020 | Volume 8 | Article 579919

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-579919 September 8, 2020 Time: 14:53 # 8

Li et al. Appilications of m6A in Urological Tumors

FIGURE 3 | The potential roles of m6A in urological tumors progression. The potential role of m6A in urological tumors progression is reflected in the regulation of
tumor-associated gene expression. M6A modification promotes urological tumors progression by enhancing oncogene expression and inhibiting tumor suppressor
gene expression. M6A modification hinders cancer progression by inhibiting oncogene expression and enhancing tumor suppressor gene expression.

MYC (c-myc) expression via elevating m6A levels of MYC mRNA
transcript, so as to facilitate the proliferative, migrative and
invasive ability of cancer cells. Li found that YTHDF2, an m6A
reader, was upregulated in prostate cancer tissues and cell lines
(Li J. et al., 2018). Knockdown of YTHDF2 led to decreased
levels of m6A and impaired proliferation and migration of PCa
cells. Therefore, YTHDF2 played a vital role in the initition and
progression of PCa.

Bladder Cancer
Bladder cancer (BCa) is the most common urogenital and the
10th most common cancer worldwide, with an estimated 549
000 new cases and 200 000 deaths in 2018 (Bray et al., 2018).
Despite the improvement of clinical diagnosis and therapies, BCa
is regarded as a major cause of cancer-interrelated morbidity and
mortality. In the study of Yang F. et al. (2019) the expression
levels of METTL3 were elevated in BCa patient samples. The
increase in METTL3 expression was proven to be correlated with
BCa growth and progression in vitro and in vivo. Moreover,
METTL3 could positively regulate CDCP1 process based on an
m6A -dependent mode, bringing about elevated expression of
CDCP1. Han et al. (2019) demonstrated that the expression
level of METTL3 in BCa was significantly up-regulated and
associated with poor prognosis of BCa patients. They found
that METTL3 might interact with the microprocessor protein
DGCR8 and positively modulate the pri-miR221/222 process
through an m6A -dependent mechanism. Cheng and coworkers

elucidated that METTL3 was obviously up-regulated in BCa
tissues and significantly promoted growth and metastasis of BCa
(Cheng et al., 2019). Mechanistically, METTL3 might promote
BCa progression via AFF4/NF-κB/MYC signaling pathway. Jin
and coworkers demonstrated that METTL3 and ALKBH5 can
alter cell adhesion via regulating ITGA6 expression in BCa
(Jin H. et al., 2019). Increased m6A methylation enhanced
the translation of ITGA6 mRNA by binding of YTHDF1 and
YTHDF3 and promoted malignant phenotypes in BCa. Xie
and coworkers found that knockout of METTL3 impaired
tumor growth and metastasis, METTL3/YTHDF2 m6A axis
could directly degrad the mRNA expression of the tumor
suppressors SETD7 and KLF4, leading to the development
and progression of BCa (Xie et al., 2020). Gu et al. (2019)
found a decrease of N6-methyladenosine in BCa and bladder
tumor initiating cells (TICs). In addition, METTL14 is down-
regulated in BCa and bladder TICs and it could promote
the proliferation, metastasis, self-renewal and enhance tumor
initiating capacity of bladder TICs. Mechanistically, METTL14
might regulate Notch1 expression in an m6A-dependent manner.
Wen demonstrated that knockdown of FTO could accelerate
the progression of BCa (Wen et al., 2020), while the potential
mechanism remains unknown.

Testicular Germ Cell Tumors
Testicular germ cell tumors (TGCTs) are the most common
solid neoplasm among men aged between 14 and 44 years
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(Cheng et al., 2018). Despite the advanced prognosis of localized
TGCTs, approximately 20–30% of patients may experience
disease recurrence during surveillance (Mortensen et al., 2016).
Lobo and coworkers demonstrated that abundance of m6A and
expression of VIRMA/YTHDF3 were different among TGCTs
subtypes, with higher levels in seminomas (SEs), suggesting a
contribution to SE phenotype maintenance (Lobo et al., 2019).
However, the potential biological roles of VIRMA/YTHDF3
remain to be further explored.

Wilms Tumor
Wilms tumor (WT) is the most prevalent childhood kidney
tumor characterized by the disorganized and dysregulated
development of a kidney (Davidoff, 2009; Servaes et al., 2019).
Hua et al. (2020) found an obvious relationship between ALKBH5
rs1378602 AG/AA genotypes and decreased Wilms tumor risk
in children in clinical stage I diseases. However, the observed
association should be further validated in another well-designed
analysis with other larger ethnicities.

POTENTIAL APPLICATION OF RNA M6A
IN UROLOGICAL TUMORS RNA

RNA m6A as Biomarker in Urological
Tumors
Mounting evidence has indicated that m6A regulators have the
potential to be superior diagnostic and prognostic biomarkers
for urological tumors patients. Strick et al. conducted qRT-
PCR to detect the gene expressions of ALKBH5 and FTO were
studied in 166 ccRCC and 106 normal renal tissues. They found
that the expression level of ALKBH5 and FTO were obviously
decreased in ccRCC tissues (Strick et al., 2020). Declined mRNA
levels of ALKBH5 and FTO were related to a shortened overall
and cancer-specific survival following nephrectomy. Therefore,
ALKBH5 and FTO could be used as prognostic biomarkers
for RCC. Zhao Y. et al. (2020) demonstrated that METTL14
mRNA expression negatively correlated with the RCC stages
and positively correlated with RCC patients’ overall survival, it
might be a potential biomarker of RCC. Yuan et al. performed
the qRT-PCR to detect the mRNA expression level of METTL3
in 84 clinical human PCa specimens and 32 corresponding
adjacent normal specimens. The results showed that a significant
positive association between METTL3 expression was observed
with tumor stage and metastasis. Moreover, the expression level
of METTL3 had remarkable prognostic value for overall survival
and disease-free survival (Yuan et al., 2020); hence, METTL3
might play a vital role in PCa progression and metastasis. Chen
et al. concluded that m6A regulators were related to malignant
clinicopathological features of BCa and a risk signature with
FTO, WTAP and YTHDC3 might play vital roles in diagnosis
and prognosis of BCa patients (Chen M. et al., 2019). In
TGCTs, VIRMA and YTHDF3 might be prognostic factors
(Lobo et al., 2019).

RNA m6A as Therapeutic Targets in
Urological Tumors
The critical roles of m6A in urological tumors suggest that it
has the potential to be involved in tumor therapy. A number
of studies have indicated that m6A modification is significant in
therapies of urological tumors, especially in targeted treatment.
Zhuang et al. found that the Von Hippel-Lindau (VHL) -deficient
cells expressing FTO might restore mitochondrial activity, induce
oxidative stress and ROS production and suppressed tumor
growth, via promoting PGC-1α expression by decreasing m6A
levels in its mRNA transcripts (Zhuang C. et al., 2019). Therefore,
the m6A methylation and m6A-related regulators, and uncovers
an essential FTO-PGC-1α axis might play a vital role in the
treatment of RCC. Gong and coworkers found that ATP could
enhance cell migration and invasion via rugulating P2RX6
expression in RCC (Gong et al., 2019). Mechanistically, ATP-
P2RX6 could modulate the Ca2+-mediated p-ERK1/2/MMP9
signal pathway, while METTL14 might down-regulate P2RX6
protein translation in an m6A-dependent manner. Herein,
the further exploration of regulation of METTL14 expression
might contribute to develop a new approach to repress RCC
progression. Li et al. suggested that METTL3 expression is higher
in PCa than in normal prostate tissues, especially in PCa with
bone metastasis (Li E. et al., 2020). METTL3 regulates the
expression of Integrin β1 (ITGB1) through m6A-HuR-dependent
mechanism, which affects the binding of ITGB1 to Collagen I and
tumor cell motility, so as to promote the bone metastasis of PCa.
Therefore, METTL3 might act as a therapeutic target for PCa
bone metastasis. Wen et al. found that knockdown of FTO could
enhance cell proliferation and migration and protect BCa cells
from cisplatin-induced cytotoxicity (Wen et al., 2020). Hence,
targeting the m6A modification of FTO may be beneficial to the
treatment of BCa.

DISCUSSION

Recently, RNA epigenetics is emerging as a hot topic. Among
them, m6A modification has become a new layer of post-
transcriptional regulation of gene expression. The implications of
m6A modifications in human carcinogenesis have been verified
in many kinds of cancers, including urological tumors. In this
review, we summarized the potential biological effects of m6A-
related regulators, and particularly focused on the impacts of
m6A modification on different tumors in the urinary system.
M6A can be installed by the methyltransferase, while these
modifications may be removed by m6A eraser demethylases.
Furthermore, m6A readers could specifically recognize the m6A
methylation sites and thus regulating mRNA splicing, translation,
degradation, nuclear export, and other cellular processes. Besides,
m6A methylation and its related regulatory factors are reported to
be involved in the processing and the biological function of non-
coding coding RNAs (Coker et al., 2019; Huang H. et al., 2020).

However, m6A methylation seems to serve as a double-edged
sword due to the specific mechanism for m6A in cancers remains
unknown. Some genes may lead to cancer progression after m6A
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methylation, while removal of m6A modification can result in
the progression of other tumors. For example, in HCC, sumo1
modification of METTL3 can promote tumor progression via
regulating snail mRNA homeostasis (Xu et al., 2020), while
in glioblastoma, LncRNA SOX2OT can facilitate temozolomide
resistance through promoting SOX2 expression via ALKBH5-
mediated epigenetic regulation (Liu X. et al., 2020). In addition,
the same m6A-associated regulator may play crucial roles in the
same type of cancer via targeting different downstream genes.
For instance, in CRC, METTL3 can promote tumor progression
through enhancing the expression of either MYC (Xiang et al.,
2020) or CCNE1 (Zhu W. et al., 2020). Additionally, researches
have reported conflicting findings in the same type of cancer; for
instance, in CRC, METTL3 and METTL14 play totally opposite
roles in tumor initition and progression (Li T. et al., 2019; Yang X.
et al., 2020). Overall, all above studies show that m6A methylation
and its related regulatory networks are complex and need to
be further explored. Moreover, Han et al. found that METTL3
can enhance tumor growth of BCa through accelerating pri-
miR221/222 maturation based on m6A-dependent mode (Han
et al., 2019), while Gu et al. (2019) reported that METTL14 can
inhibit bladder tumorigenesis through N6-methyladenosine of
Notch1. The above discrepancy may result from several factors
such as case sample size and different related regulatory genes.
Furthermore, studies have identified the therapeutic potential
of m6A modification. METTL3 might induce NSCLC drug
resistance and metastasis via modulating the MALAT1-miR-
1914-3p-YAP axis (Jin D. et al., 2019). In glioma, METTL3 can
promote glioma radioresistance and stem-like cell maintenance
(Visvanathan et al., 2018). In melanoma, FTO can act as an
m6A demethylase to promote melanoma tumorigenesis and anti-
PD-1 resistance (Yang S. et al., 2019). R-2HG can inhibit FTO
activity and thus elevating m6A mRNA modification in R-2HG-
sensitive leukemia cells, thereby generating anti-leukemia effects
(Su et al., 2018). In cervical squamous cell carcinoma (CSCC),
FTO can regulate the chemo-radiotherapy resistance by targeting
β-catenin through mRNA demethylation (Zhou S. et al., 2018).

The advanced development of m6A modification study
marks a novel insight in the dignosis and therapy of various
diseases. Nevertheless, we believe that future prospects on
m6A modification need to be further explored. Firstly,

several databases (such as GEPIA, TCGA et al.) were used
in many studies to explore the prognostic significance of
m6A regulators expression in OS and DFS of urological
tumors patients. Hence, expansion of the sample size
and screening factors are essential for early diagnosis and
prognosis; while the specificity and sensitivity of m6A-
related regulators also need to be discussed. Secondly, more
and more clinical pratice are urgent for confirming the
therapeutic potential of m6A regulatory factors and related
pathways. Thirdly, it’s significant to construct a complex
and specific regulatory network model of m6A and its
associated modifiers in a single cancer. Fourthly, exploring
other components of m6A methylation and demethylation and
effectors is necessary.

CONCLUSION

Urological tumors are major public health concern with growing
prevalence. Studies have showed that m6A methylation plays
a significant role in prevention, treatment and management of
various urological tumors; however, more endeavors and more
multi-center and large-scale research are urgent for exploring the
relationship between m6A modification and urological tumors.
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