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Balance and fragmentation 
in societies with homophily 
and social balance
Tuan M. Pham1,2, Andrew C. Alexander3, Jan Korbel1,2, Rudolf Hanel1,2 & Stefan Thurner1,2,4*

Recent attempts to understand the origin of social fragmentation on the basis of spin models include 
terms accounting for two social phenomena: homophily—the tendency for people with similar 
opinions to establish positive relations—and social balance—the tendency for people to establish 
balanced triadic relations. Spins represent attribute vectors that encode G different opinions of 
individuals whose social interactions can be positive or negative. Here we present a co-evolutionary 
Hamiltonian model of societies where people minimise their individual social stresses. We show that 
societies always reach stationary, balanced, and fragmented states, if—in addition to homophily—
individuals take into account a significant fraction, q, of their triadic relations. Above a critical value, 
qc , balanced and fragmented states exist for any number of opinions.

The concept of so-called filter bubbles captures the fragmentation of society into isolated groups of people who 
trust each other, but clearly distinguish themselves from “other”. Opinions tend to align within groups and 
diverge between them. Interest in this process of social disintegration, started by Durkheim1, has experienced a 
recent boost, fuelled by the availability of modern communication technologies. The extent to which societies 
fragment depends largely on the interplay of two basic mechanisms that drive social interactions: homophily 
and structural balance. Homophily is the “principle” that “similarity breeds connection”2. In particular, for those 
individuals who can be characterised by some social traits, such as opinions on a range of issues, homophily 
appears as the tendency of like-minded individuals to become friends3. The concept of structural balance, first 
described by Heider4, can be translated into a tendency of unbalanced triads to become balanced over time. A 
triad of individuals is balanced if all three individuals are mutual friends (friend of my friend is my friend) or if 
two friends have a mutual enemy (enemy of my enemy is my friend). Structural balance has been investigated by 
social scientists for a long time5–7 and, more recently, by physicists and network scientists8–24. Recent contribu-
tions study the dynamics on balanced networks25–27, the co-evolution of opinions and signed networks28–40, and 
generalized measures of structural balance41, 42. For an overview, see43,44. A general survey of statistical physics 
methods applied to opinion dynamics is found in45,46.

Previous works studying social fragmentation under the joint effects of homophily and social balance have 
been in only partial agreement with Heider’s theory. For example, in an attribute-based local triad dynamics 
model (ABLTD)47 each agent has binary opinions on G attributes. If two agents agree on more attributes than 
they disagree on, they become friends (positive link). Agents tend to change their attributes to reduce stress in 
unbalanced triads. The paper showed that given a system of N agents, as N → ∞ , the so-called “paradise state”, 
where all agents are friends of each other, is never reached unless the number of attributes G scales as O(Nγ ) , 
with γ ≥ 2 . Instead, the society remains in a stationary unbalanced state with an equal number of balanced and 
unbalanced triads. Realistic social networks, where N is typically large and G remains relatively small, are hence 
expected to be unlikely to reach social balance, let alone the paradise state. This statement is to some extent 
contrary to empirical findings that societies are balanced to a high degree; see e.g. recent work on large scale 
networks16,17.

In another, so-called global social stress Hamiltonian framework12,40,48–51, the opinion of individual i is 
denoted by si and the relation between i and j by Jij (positive or negative). Defining a social stress, H, as the 
sum of a homophily-related term, −

∑

(i,j) Jijsisj and a term reflecting social balance, −
∑

(i,j,k) JijJjkJki , it can be 
shown that societies, where social balance is present, necessarily become fragmented at some critical level of 
interconnectedness40. This result, however, is restricted to the case where the reduction of H can be realised by 
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either an opinion update or a flip of link’s sign with the latter happening to be independent from the former. 
Social relations, which are subject to a homophily effect, essentially depend on the agents’ similarity in opinions, 
and hence necessarily evolve as opinions are updated.

In this paper, motivated by the lack of a consistent theory of balance and fragmentation in societies of 
agents with multidimensional opinions and homophilic interactions, we propose an individual-stress-based 
model that takes into account the homophily effect between adjacent individuals and structural balance within 
a time-varying local neighborhood. The latter consists of the subset of the most relevant triads to an individual 
at a given moment in time, i.e. those that involve the relationships that are currently in their field of attention 
when considering their social stress. The ratio of relevant triads to the total number of triads the individuals 
belong to determines whether society fragments or remains cohesive. With the help of simulations on a regular 
network, we show that there exists a critical size of the local neighborhood above which society fragments, yet 
stays balanced. We discuss the relation of the presented model to both, the ABLDT model47 and the social stress 
Hamiltonian approach40.

Results
Local social stress model.  Consider a society of N individuals. Each individual i has binary opinions on G 
issues, characterized by an attribute vector, Ai = {aℓi } , where aℓi ∈ {−1,+1} ; ℓ ∈ 1, . . . ,G . Further, i has relations 
to ki other individuals in a social network. Network topology does not change over time. Following47, the rela-
tion between two agents i and j is determined by the sign of their distance in attribute space: Jij = sign(Ai · Aj) , 
where the dot denotes the scalar product. Jij = 1 indicates friendship, Jij = −1 enmity. Each agent i has a social 
stress level, H(i) , defined as

The first sum extends over all ki neighbours of i, while the second is restricted to Qi out of N�
i  triads that node 

i belongs to (by definition, N�
i ≡ ciki(ki − 1)/2 , where ci is the local clustering coefficient). The relevance of this 

term in the model dynamics is discussed in the Supplemental Material. The notation (j, k)Qi means to sum over 
all pairs of j and k which, together with i, form the Qi triads. These are chosen at each step of the dynamics (see 
below). Qi represents the number of triads i would like to have socially balanced—i ’s relevant neighborhood to 
the current stress-calculation. The existence of this neighborhood limits the extent to which the social network 
can change at any given update. Specifically, those edges that do not belong to the Qi triads, will not be updated. 
The idea behind this is that such links preserve a memory of i’s relationships (at a previous time) with those who 
are currently not in the field of attention of i. As such, these links do not change instantaneously as i updates his 
opinion. For example, you may have an outdated relation to an old school friend until you two meet again at 
a class reunion and find out you still like each other or perhaps not. The factor 1/G ensures that contributions 
from any link towards H(i) do not diverge in the limit G → ∞ . Assuming agents try to minimize their individual 
social stress over time, we implement the following dynamics: 

1.	 Initialize. Each node is assigned an opinion vector, Ai , whose components are randomly chosen to be 1 or 
−1 with equal probability. Every node has the same degree, ki = K , and is connected to its neighbours in a 
regular way, forming the ring topology. The topology is fixed over time. For any pair of connected agents, i 
and j, we set Jij = sign(Ai · Aj).

2.	 Update. (i) Pick a node i randomly and choose Qi of its triads, also randomly. Compute H(i) . In the current 
state its value is H . (ii) Flip one of i’s attributes at random. Let Ãi be its new opinion vector. For each of the 
chosen triads, the weights of the two links adjacent to i are recomputed as J̃ij = sign(Ãi · Aj) . J̃ is the new 
matrix. Compute the new stress H̃ using J̃ . The change in stress is �H(i) ≡ H̃−H.

	   (iii) Update the system Ai → Ãi and Jij → J̃ij with probability, min
{

e−�H(i)
, 1
}

 , otherwise leave it 
unchanged. This stochastic rule means that agents are not always rational and might choose to increase their 
stress.

3.	 Continue with the next update of opinions and links by returning to step 2.

Figure 1 illustrates an update where by changing one opinion, agent i becomes an enemy of j, but the chosen 
triad, (ijk), becomes balanced. If Q = 1 , this decreases i’s social stress from H(i) = −5/3 to H(i) = −3 . If more 
triads are chosen, Q > 1 , this flip leads to a stress increase and is less likely accepted.

The change in stress for agent i, �H(i) , given that attribute aℓ∗i  flips, can be written as

where j|J̃ij = Jij means to sum over those j (neighbours of i) for whom the sign of the edge Jij remains unchanged 
and �jk =

[

JijJki − J̃ij J̃ki
]

Jjk . Obviously, �jk ∈ {−2, 0, 2} . According to the dynamical rule, the maximum number 
of links that may change their signs due to an opinion update depends on Q. Since most links are kept frozen for 
a small Q, the dynamics is mainly driven by the first term that makes friends more similar while enemies more 
dissimilar. Note the similarity to the Hebbian rule34,52. Because of the random assignment of the opinions at the 
start, there are approximately as many balanced as unbalanced triads in the stationary state. For large Q, the 

(1)H(i)(A) = −
1

G

∑

j

JijAi · Aj −
∑

(j,k)Qi

JijJjkJki .

(2)�H(i) =
2

G

∑

(j|J̃ij=Jij)

Jija
ℓ∗
i aℓ∗j +

∑

(j,k)Q

�jk ,
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change in the energy related to social balance can be very large, increasing the chance to reach a balanced state 
without unbalanced triads. In this state, all individuals are expected to have a minimum amount of social stress.

Order parameter.  To measure the level of social balance within a society, we define an order parameter, f, 
as the difference between the proportions of balanced and unbalanced triangles:

where n+ and n− are the number of balanced and unbalanced triangles, respectively. f = 1 means that all trian-
gles are balanced, f < 1 signals the presence of unbalanced triangles. A network is called balanced53 if and only 
if all cycles (including triangles as cycles of length 3) contain only an even number of negative edges. In our 
study, rather than following this strict mathematical definition of balanced graphs, we propose to call a society 
balanced, if all of its constituent triads are balanced. Fully-connected balanced networks are two-clusterable, i.e., 
they can be partitioned into two clusters of friends, within which all links are positive and between which links 
are exclusively negative53. For these networks, f = 1 is a necessary and sufficient condition for such a bipartition 
as they having all triads balanced is equivalent to having cycles of any length balanced. However, as we would 
only call a network fragmented (k-clusterable in the signed network literature), if it can be decomposed into 
k ≥ 2 clusters of friends, it is worth to noting that balanced states are generally different from fragmented ones 
in incomplete networks. This is because, for an incomplete network, all triangles may be balanced while leaving 
some cycles of larger lengths unbalanced. Therefore, being triad-wise balanced ( f = 1 ) is a necessary, but not 
sufficient condition for being fragmented (k-clusterable)53.

Results.  We first run the simulation on a regular ring network for N = 400 , where every node has a degree of 
K = 32 neighbors. Figure 2a shows a phase diagram of the order parameter, f, which indicates a transition from 
an unbalanced to a balanced society. For any given G, this transition occurs as q ≡ Q/N� passes a threshold qc . 
The existence of a critical qc demonstrates the importance of Heider’s balance term in driving a society towards 
social balance: if a sufficiently large number of triangles is taken into account, society becomes balanced. For a 
wide range of G, q > 1/5 clearly suffices to be in the balanced phase. Also, qc increases with growing G, indicat-

(3)f =
n+ − n−
n+ + n−

,

Figure 1.   Co-evolutionary interplay of opinions and links. Red (blue) links denote positive (negative) 
relationships. Among the three triads in the graph, the chosen one, (i, j, k) is circled. We consider the case 
Q = 1 . As agent i flips one of its attributes, A1

i  , this triad becomes balanced and i decreases its individual stress 
from −5/3 to −3 . The opinion vectors of l and m are Al = Ai and Am = −Ai , respectively (not shown in the 
figure). Links that do not belong to the three depicted triangles are not shown in the figure. Note that the full 
network is a ring.

Figure 2.   Order parameter, f, (a) as a function of q and G for K = 32 , and (b) as a function of K and G with 
q = 1/3 . Results are averaged over 100 runs on a regular ring network with N = 400.
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ing that when more issues become relevant for homophily, the chance for achieving balance lowers. This can be 
understood as follows. The probability that a link incident with i switches its sign if aℓ∗i  flips, is proportional to 
1/
√
G , as G → ∞ (see the Supplemental Material for the derivation of this asymptotic formula). Therefore, links 

are less likely to change as G increases, making it harder for the dynamics to happen and the society to become 
balanced. Note that the situation resembles non-equilibrium in the sense that the quasi-stationary unbalanced 
states in the cohesive phase, due to fluctuations in finite-sized systems, eventually become highly balanced after 
a very long time. As the presented model is stochastic, these final states are not necessarily frozen (absorbing). 
This means that a small number of unbalanced triads still fluctuates over time. The transition is presumably first-
order, as a region of bi-stability is numerically observed where the order parameter can be f ∼ 0 or f ∼ 1 ; see 
Supplemental Material for examples of the transition at the critical value of Q. Since the total number of triads 
per agent, N� , grows with K, Q must also grow with K as long as q = Q/N� fixed. Therefore, the balanced phase 
is expected to be reached if the network degree exceeds a critical value, Kc . We verify this hypothesis in Fig. 2b 
for q = 1/3 . Interestingly, the transition becomes sharper at higher K.

We next study the scaling behaviour of the time to reach a balanced steady state and the number of clusters 
of friends in this state with the system size. The latter is investigated in order to check whether the balanced 
states are also fragmented. For N = 50, 100, 200, 400, 800 , the results in Fig. 3a demonstrate that the number of 
clusters grows with N for K = 8 , but remains small for higher degrees K = 16, 32 . In both cases, the fragmented 
state tends to persist also in the thermodynamic limit as long as the average number of clusters are always larger 
or equal to two. Further, the time to reach balance grows as tr ∝ Nα , with α < 1 for K = 8 , and tr appears to be 
a convex function of N for K = 16, 32 , suggesting that it may saturate at some point, see inset in Fig. 3a. This 
means that the balanced phase should always be reached even though the time it takes may be quite long for 
very large systems. It would also be interesting to understand the temporal evolution of the number of clusters 
and to establish whether this number can converge to two at long times for K = O(N) . Finally, we find that the 
distribution of cluster sizes follows an exponential for networks with K = 8 , but shows a bimodal distribution 
for those with K = 32 , see inset in Fig. 3b. We can intuitively understand this observation as follows: A balanced 
network is expected to have a cluster statistics similar to that of an unsigned graph that can be obtained from 
it by removing all negative edges. For small K, this unsigned network has an expected number of connected 
components proportional to N (Fig. 3a main). Therefore, it must have an average degree, K̃ , of positive edges that 
is below the percolation threshold for the emergence of giant component. That below this threshold unsigned 
networks, with high probability, exhibit an exponential distribution of component sizes, in full consistency with 
the distribution observed in the original balanced network. This situation changes as the degree, K, of the original 
network increases. In the limit of K → N − 1 , only two clusters of friends can emerge. While in general these 
two clusters can have different sizes, in the most probable configuration they are of almost equal size. This gives 
rise to a single peak at N/2 in the cluster distribution of fully-connected networks. In the intermediate range of 
K, a bimodal distribution necessarily occurs as a crossover between the exponential and the singly-peaked ones.

Limit of small Q.  In the limit Q = 1 and G → ∞ , the society is expected to reach an unbalanced stationary 
state, where the order parameter f is close to zero. We show this by a mean-field approach for fully-connected 
networks; see Supplemental Material. Here we assume that the two links of a chosen triad are not likely to be 
flipped simultaneously, as G → ∞ . Instead, only one of them would be flipped at every update. We then derive 
a set of rate equations for triads of different types whose steady state solution is f (st) = 0 and ρ(st)

+ = 1/2 , where 
ρ+ denotes the fraction of positive links. These values of f and ρ+ are the same as those obtained in the ABLTD 
model47 for G = O(Nγ ) , N → ∞ with γ < 2 . Note, however, the models show different results for G = O(Nγ ) , 
N → ∞ with γ ≥ 2 . For a discussion on the similarities and differences of the models, see Supplemental Mate-
rial.

Limit of large Q.  Another interesting limit is when Q → N� . In this case, one can compare the model with the 
Hamiltonian approach used in40, in which the contribution of all N × N�/3 triangles, weighted by a coupling 
g, is taken into account:

(a) (b)

Figure 3.   (a) Average number of clusters and average time to reach the balanced states, tr , with f = 1 
(inset), as a function of N for K = 8, 16, 32 . Results are averaged over 1000 runs on a regular ring network for 
N = 12, 25, 50, 100, 200, 400 and over 100 runs for N = 800 with G = 9 and Q = 16 . (b) Probability density 
function of cluster sizes for K = 8 (main plot) and K = 32 (inset). The red line indicates a linear fit on a semi-
log scale. Here N = 200 , G = 9 and Q = 16 . One observes an exponential (bimodal) distribution for K = 8 
( K = 32 ) networks, respectively.
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Here the first sum extends over all connected pairs, the second over all triangles. In Eq. (4), in contrast to the 
model presented here, Jij are random dynamical variables that co-evolve with, but are not strictly determined 
by the opinion vectors. The detailed updating procedure of40, which aims at minimizing H̄ , is described in the 
Supplemental Material. Despite the differences in the concrete update dynamics, for a large enough Q ≥ QMF , the 
two models are expected to yield similar results if g is related to Q by g = αQ/N� , for some constant α . Here the 
main idea is that for sufficiently large Q, individuals’ actions have a similar outcome regardless of their knowledge 
of the total stress H̄ in the society. Figure 4 shows the comparison for α = 1 . The curve of the presented model 
indeed crosses that of the model given by Eq. (4) at q1 ≥ QMF/N

� ≃ 0.133 for G = 23 in (a), and at q2 ≥ 1/6 , 
for G = 99 in (b), where the coupling, g, is chosen to be equal to q1 in (a) and q2 in (b), respectively.

Discussion
We showed that under the simultaneous effects of homophily and structural balance society can achieve structur-
ally balanced states if individuals’ opinions co-evolve with their social links so as to minimize their individual 
social stress. The parameter G controls the dimension of the opinion vectors relevant for homophily, and Qi 
specifies how many triangles individuals actually consider for their local social balance. The interplay between 
homophily and structural balance results in a nontrivial phase diagram showing an abrupt change in patterns 
of social structure. We find two regimes: fragmentation and cohesion. In the former, society is fragmented into 
locally cooperative clusters of agents who are linked positively within and negatively between clusters. In the 
latter, globally percolating cooperation is realized by the existence of a large connected component of positively 
linked agents. The transition between the regimes is numerically observed at a critical fraction of the considered 
triangles, qc , illustrating the main message of the paper: The more people try to balance their social neighbor-
hoods, the more likely society is to become fragmented. Because of the relation between Qi and K, this message 
is robust with respect to the change of the network connectivity; for a fixed value of q, we see that the higher the 
degree, the more likely the society fragments.

The fragmented phase with most of the triads balanced agrees with the result of47. However, a crucial differ-
ence between the two models is that increasing G leads to a balanced society in47, but to the destruction of social 
balance in ours. While the reason for this difference is not fully clear to us, it seems that the probabilities of link 
updates in the two models depend on G in different ways. While less link updates can happen as G increases 
in our model, a large G seems to retain the constant high activity of link updates in47 due to their local instant 
updating rule. Nevertheless, for small Q, the unbalanced steady states of both models have the same stationary 
values in the network observables. Note that if a term, equivalent to that of the p term, is introduced to Eq. (1), 
e.g. of the form h

(
∑

(i,j)(1− Jij)
)

 for some external field strength h, then the “paradise state” can be reached 
for sufficiently large h, see40. Beyond a value QMF , the model produces very similar result to that obtained by 
minimising the Hamiltonian in Eq. (4)40. The existence of QMF suggests that if individuals keep a large fraction 
of their local triads balanced then locally minimising an individual stress can become equivalent to reducing an 
overall stress. In comparison with these two approaches, the model presented here shows the possibility of social 
fragmentation being fully consistent with both, homophily and social balance theory.

The model, however, has a number of limitations that may be interesting to address in future work. The first 
is the choice of binary symmetric interaction coupling, Jij ∈ {−1, 1} , which does not capture the possibility of 
non-reciprocal and weighted links, as well as the existence of higher-order interactions between individuals. 
Further, the actual relations between agents can be poorly estimated by such binary definition. For instance, peo-
ple who are only extreme about one particular issue can become enemies despite of their similar opinions on all 
other topics. The second limitation comes from the use of unrealistic networks with a fixed ring topology. While 
this special case is chosen to highlight the key effect of balancing a sufficiently large number of triads on social 
balance of the entire network, more general cases with heterogeneity and/or adaptive changes in the topology, 
such as link rewiring, may not ensure such effect to happen. Nevertheless, since our model becomes equivalent 

(4)H̄ ≡ −
1

2G

∑

(i,j)

Jij Ai · Aj − g
∑

(i,j,k)

JijJjkJki .

Figure 4.   Limit of large Q. Comparison of the presented model in Eq. (1) and the one in Eq. (4) that 
resembles40. The coupling, g, is chosen to be g = q ≡ Q/N� , where Q is the number of actually updated 
triads; N� is the total number of triads. Results are averaged over 100 independent runs for N = 100 , K = 32 , 
N� = 360 , and G = 23 (a); G = 99 (b). 
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to that of40 in the limit of Q → N� , which does exhibit a balanced phase on both, time-varying topology and 
small-world topology, we conjecture that the main result of our model will still hold true for these topologies.

In the current implementation of the model all agents have the same fraction Q/N� . If Qi/N
� varies from 

one individual to another, then, for some agents i, Qi/N
� may become smaller than qc that is required to make 

all their N�
i  triads balanced. As a consequence, the whole network appears to be partly—but not perfectly—bal-

anced (indeed f ≃ 0.69− 0.88 in online societies16,17). Finally, one can generalise our treatment to the case of 
interdependent and continuous opinions on correlated topics, where, interestingly, an emergence of polarised 
ideological opinions has been observed54.
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