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Summary11

Motor brain-machine interfaces (BMIs) decode neural signals to help people with paralysis move and12

communicate. Even with important advances in the last two decades, BMIs face key obstacles to clinical13

viability. Invasive BMIs achieve proficient cursor and robotic arm control but require neurosurgery,14

posing significant risk to patients. Non-invasive BMIs do not have neurosurgical risk, but achieve lower15

performance, sometimes being prohibitively frustrating to use and preventing widespread adoption. We16

take a step toward breaking this performance-risk tradeoff by building performant non-invasive BMIs.17

The critical limitation that bounds decoder performance in non-invasive BMIs is their poor neural signal-18

to-noise ratio. To overcome this, we contribute (1) a novel EEG decoding approach and (2) artificial19

intelligence (AI) copilots that infer task goals and aid action completion. We demonstrate that with this20

“AI-BMI,” in tandem with a new adaptive decoding approach using a convolutional neural network (CNN)21

and ReFIT-like Kalman filter (KF), healthy users and a paralyzed participant can autonomously and22

proficiently control computer cursors and robotic arms. Using an AI copilot improves goal acquisition23

speed by up to 4.3× in the standard center-out 8 cursor control task and enables users to control a robotic24

arm to perform the sequential pick-and-place task, moving 4 randomly placed blocks to 4 randomly chosen25

locations. As AI copilots improve, this approach may result in clinically viable non-invasive AI-BMIs.26

Main27

The only control source in traditional motor BMIs, including computer cursor1–3 and robotic arm4–7
28

control, are decoded neural signals (Figure 1a). In intracortical BMIs, recording spikes that have high29

signal-to-noise ratio (SNR), this traditional approach has produced high-performance cursor control,30

communication, and robotic arm control2–7. However, when neural signals have a low SNR, traditional31

BMIs also achieve low performance. This particularly impacts non-invasive BMI paradigms, including32

those decoding from electroencephalography (EEG). Non-invasive BMIs therefore perform significantly33

worse and have not been widely adopted, even though they present minimal clinical risk.34

To build performant non-invasive BMIs, we leverage a critical insight: many tasks we perform are35

goal-oriented, where our movements are typically directed toward target locations, such as search bars,36

buttons, and icons on a computer (Figure 1b), or physical objects such as cups, chips, door handles, keys37

on a table, or blocks (Figure 1c). In these cases, knowing the user’s goal, a deliberation between a finite38

number of possible goals, largely determines the movement. Once a goal is known, human actions are39

often stereotyped and could be aided via an artificial intelligence (AI) copilot. But how do we infer the40
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Figure 1. a, In traditional brain-machine interfaces (BMIs), neural signals are decoded to control an end effector (e.g.,
computer cursor or robotic arm). b, In computer tasks, there can be a finite number of selectable targets. In web browsing,
goals include editing the URL, changing the web page, closing the webpage, entering a search query, or hitting the search
button. These goals could be inferred through computer vision (CV). In a BMI benchmark, the center-out 8 task, there are 9
potential targets. c, In robotic arm tasks, finite goals often correspond to physical objects. An example may be choosing to
drink water or grabbing a bag of chips, both of which could be inferred through CV. In a BMI benchmark, the goals could be
pick locations (block) and place locations (crosses). d, In an AI-BMI, the BMI and AI agent are combined to produce
task-informed actions. The AI uses information, including task priors, past movements, CV, and neurally decoded signals, to
infer potential goals and movements. The AI-BMI then helps to complete the task. e, The goal of the AI-BMI is to increase
task performance without additional cost to participants.

user’s goal? We reason that, in addition to neural signals, there are other information sources, including41

task structure, historical movements, and computer vision (CV), that can be used to infer a user’s goal and42

subsequently aid their movements (Figure 1d).43

For example, consider taking a drink from a cup on a table. An intracortical BMI, decoding spikes44

from populations of neurons, can control the 3D endpoint velocity of a robotic arm to produce a trajectory45

towards the cup, grasp it, and bring it to the user to drink4. Achieving this high-resolution trajectory with46

only non-invasive EEG signals is very challenging. But an AI copilot, with (1) a camera that sees the47

cup and (2) task structure knowledge that humans typically grab cups to drink with their mouths, can48

then process a (3) high-level motor command (such as “move forward”) to infer the user wants to drink49

from the cup. The copilot would then help the user grab the cup with the appropriate force and bring it to50

the user to drink. We call this kind of architecture an AI-BMI, illustrated in Figure 1d. Similar kinds of51

reasoning could be made to infer goals for a computer task. For example, when using a search engine,52

one’s goal would likely be to select “search” after entering a query into a search bar (Figure 1b), or for53

typing, the past context gives strong information over the next character selection8–10. What if a task54

doesn’t have a structured goal (such as free drawing with a computer cursor)? In this case, the AI-BMI55

simplifies to a traditional BMI. But we emphasize that in tasks with goal-directed movements, an AI-BMI56

can and should use additional contextual and task-specific information to outperform a traditional BMI.57

Although an AI copilot could improve both an invasive and non-invasive BMI, we focus on the58

latter because non-invasive BMIs present less medical risk and cost. Our goal is to build a non-invasive59

AI-BMI that enables a paralyzed participant to proficiently control computer cursors and robotic arms60

2/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.09.615886doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.09.615886
http://creativecommons.org/licenses/by-nc-nd/4.0/


a EEG decoder architecture b Cursor copilot c Robotic arm copilot

d Open-loop training task e Decorrelated closed-loop training task

Te
m

po
ra

l c
on

v

Sp
at

ia
l c

on
v

Se
pa

ra
bl

e 
co

nv

zt
ytyt-1 yt+1

xxt-1 xt+1t

Kalman Filter (ReFIT-like)

closed-loop 
decoder adaptation

Convolutional NN Online adapting KF

y

CNN scores
(classification)

tCNN hidden state:

MSE 
loss

action

AI policy Synthetic 
KF

Center-out 8 environment
task goals EEG KF 

kinematicsgrasp & 
release

Left leg

2s

20s

Left leg

Behaviors
Left leg

Right leg
Both legs

Still
cursor on target on

Left 
Leg

Left 
Leg

Locations

Behaviors
Left leg, Right leg

Both legs, Still

Left leg

Up right

Left 
Leg

Target selection “Left leg” 
decoded

“Right leg” 
decoded

Left 
Leg

“Both legs” or 
“Still” decoded

Figure 2. a, CNN-KF architecture. The CNN uses the EEGNet, whose final hidden state is the observation of a ReFIT-like
Kalman Filter. The Kalman Filter is updated using CLDA. b, The cursor copilot is trained with deep reinforcement learning
(RL) and synthetic Kalman Filter (KF) output velocities to drive cursor movements towards one of the potential center-out
goals. c, The robotic arm copilot detects pick and place locations with computer vision (CV). The copilot has a simple policy:
when close to a block, it picks it up, and when close to a cross, it places any held object. d, Open-loop training task. Text
corresponding to one for 4 actions is presented for participants to execute (healthy) or attempt (paralyzed). The order of the 4
actions is randomized. e, Decorrelated closed-loop training task. Each trial, one of the 4 actions is placed at any of 8 radial
locations. The 2D decoded cursor is projected onto the 1D line connecting the center to the target. The correctly decoded action
moves the cursor towards the target, while the opposing decoded action moves the cursor away from the target. The target is
presented for 2s and the cursor movement period is 5s.

(Figure 1e). Toward this end, we summarily make two key contributions. First, we develop a novel61

EEG decoding architecture that uses a CNN’s nonlinear features as the observations of a ReFIT-like62

Kalman filter (KF)11, enabling online closed-loop decoder adaptation (CLDA)12–14 (Figure 2a). We63

characterize the performance of this new decoder architecture and show it can achieve stable performance64

across days. Second, we demonstrate two copilots, one for cursor control trained with deep reinforcement65

learning (RL) (Figure 2b) and another for robotic arm control with concurrent computer vision (CV) to66

automatically detect and grasp or place objects (Figure 2c). We demonstrate AI copilots significantly67

increase performance in a computer cursor and robotic arm task. We anticipate AI-BMI performance68

will continue to improve with advancing AI copilots, providing a complementary axis to improve BMIs69

beyond more traditional approaches of decoder design11,15–19 and neural adaptation12,13,20.70

A novel non-linear and adaptive EEG decoder71

We performed experiments with three healthy (H1, H2, H4) and one spinal cord injury participant (S2)72

with T5 complete paraplegia, having no movement in his legs. All experiments were approved by73

the UCLA IRB. Our first goal is to demonstrate stable control of a computer cursor across days. We74

evaluated performance on an intracortical BMI cursor control benchmark, the center-out task with 875

targets and a 500 ms hold time2,11,14. To achieve continuous control, we trained decoders to translate76

EEG activity corresponding to four discrete behaviors into continuous cursor velocities. Our decoding77

approach combines deep learning with traditional closed-loop decoder adaptation (CLDA) approaches78

from invasive BMIs. The decoder was a CNN (the EEGNet21) followed by a velocity KF performing79

ReFIT-like corrections11,15, which we call a “CNN-KF” (Figure 2a).80

Our design was guided by two principles. First, deep learning architectures empirically achieve81
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higher performance in both offline21 and closed-loop experiments22. We incorporated an empirically82

successful CNN adapted from EEGNet21. Second, we found that adaptation was important for stable83

EEG BMI performance. We found EEG occasionally exhibited non-stationarities. For example, it was84

possible to decode whether EEG activity was recorded in the first or second half a session (Extended85

Data Figure 2) and as we further characterize below, biases frequently arose in fixed decoders. We86

therefore incorporated CLDA to stabilize performance. Neural networks are not straightforward to adapt87

in closed-loop experiments because noisy gradient descent steps are not guaranteed to improve the decoder.88

We instead froze the CNN, and used its nonlinear features as the observations of a linear KF. The decoded89

state of the KF was cursor (x,y) velocity. We updated the KF parameters in CLDA using the parameter90

sufficient statistics12–14 after ReFIT-like innovations11. This enabled us to (1) perform nonlinear decoding91

while (2) adapting the decoder in real-time to the most recent data. Please see the Methods for additional92

details on this decoder architecture, training, and CLDA.93

To train the CNN-KF, participants first performed an open-loop training task. Participants were94

prompted with one randomly chosen action out of four total actions (Figure 2d). These four actions95

corresponded to left, right, up, and down movement classes, where the respective corresponding actions96

were: left hand, right hand, both hands, feet (H1, H2, H4) and left leg, right leg, both legs, and still (S2).97

We then trained an initial “seed decoder” from this data (Extended Data Figure 1). This was not the final98

decoder because we found CNNs may decode features related to eye movement. In closed-loop control,99

eye movements are highly correlated with cursor and/or target location, meaning that unless the CNN100

features learn to ignore eye movement activity, the decoder may adapt to decode eye movement features,101

resulting in spuriously high performance. For example, when the cursor moves from the center to the102

left-positioned target, the user performs a left motor action while looking to the left of the screen. To103

ensure we did not decode eye movements, we performed a second training task where presented targets104

and kinematics were decoupled from motor intent (“decorrelated closed-loop training task”, Figure 2e, see105

Methods).106

This training task was closed-loop23–26, where participants controlled a computer cursor using the107

“seed decoder.” Normally, to move the cursor left, the paralyzed participant would attempt a left leg action.108

To decorrelate these, we prompted motor intent (“left leg”) to a random target position (“up right” in109

Figure 2e). When the participant performed the correct motor action (left leg), the cursor moved towards110

the target (up right). We then trained a CNN on this dataset to decode motor intent. We hypothesized111

that CNN activity (the hidden state, yt , in Figure 2a, which is the input to the KF) would not reflect any112

neural features related to eye movements, since eye movements were uninformative of motor intent. To113

demonstrate this, we performed two analyses. First, we found that the presented target location, reflecting114

where the eyes looked towards and not motor intent, could not be decoded above chance levels from CNN115

hidden state (average validation accuracy: 8.0%, chance: 12.5%, Extended Data Figure 3). Second, we116

used an eye tracker to measure eye position and trained a decoder to predict eye position from the CNN117

hidden state. This eye position decoder achieved a negative average coefficient of determination on test118

data across all participants, meaning it could not predict eye position from the CNN hidden state better119

than the mean of the test data (average test R2 =−0.024, Extended Data Figure 4). Together, these prove120

that the CNN hidden state, which was the input to the KF, did not represent eye movements. Because121

the “CNN-KF’ freezes the CNN and only adapts the KF, this architecture and training paradigm yields a122

nonlinear, adaptable architecture that decodes movement intent and is robust to eye movement artifact123

signals.124
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Figure 3. Performance of CNN-KF for center-out 8 task. a, Success percentage and trial time for participant S2 on 5
separate sessions while performing the center-out 8 task. The Kalman Filter (KF) statistics of the CNN-KF were incremented
during all trials, but were only used to update decoding parameters before and after each adaptation trial. Only trials from
center to radial targets are included, and each set of 8 trials is compiled to a single data point. Lines show Gaussian-smoothed
averages. Decoder retraining and 1 omitted day due to lower performance (when participant felt paresthesia, see Methods) are
indicated in magenta and cyan, respectively. b, Same as a, but for three healthy participants. c, Half-sided violin plots showing
the distribution of x and y decoded velocity on each day of center-out 8 task for CNN-KF (solid) and CNN only (dashed line).
The CNN-KF adapts to velocity biases that emerge in the CNN over days. d, Success percentage and trial time across all days.
The median of each box plot is shown in cyan. e, Saliency maps for paralyzed participant S2. Different hemispheric patterns
are activated for each of 4 classes. f, Saliency maps for healthy participant H1.

Stable CNN-KF performance across days125

We evaluated the stability and performance of the CNN-KF. Participants performed the center-out task126

on 5 separate days, distributed over anywhere from 9 to 36 calendar days (see Extended Data Table127

1). Similar to Silversmith et al.14, we initially evaluated center-out 8 performance with large targets128

that were progressively shrunk after the participant achieved good performance. Circular targets were129

positioned 8.2 cm from the center target, and initial target diameters were 7 cm, meaning the target could130

be acquired moving a minimum distance of 4.7 cm. Participants needed to hold the center of the cursor131

over the target for 500 ms to successfully acquire it. When the participant acquired targets at a rate132

higher than 10 targets per minute at over 90% success rate, we increased task difficulty by decreasing the133

target diameter (4.7 cm, 3.5 cm, and 2.9 cm). All participants reached the 3.5 cm target size. Overall134

performance occasionally decreased when target sizes were decreased. Nevertheless, our goal with these135

experiments was to demonstrate stable performance over weeks rather than maximal performance.136
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All participants achieved stable performance across 5 separate sessions (Figure 3a, b). Two key metrics137

of performance in the center-out 8 task are the percentage of successfully acquired radial targets and the138

average time to acquire each radial target. We found that, even as the target size decreased, these metrics139

were stable across all 5 experimental sessions. Participants were always able to complete the center-out 8140

task at a high success rate (median: 88% for S2, 100% for all healthy participants, Figure 3d). Trial time141

expectedly varied based on target size, since smaller targets are more challenging to successfully hold142

over. Across all sessions, the median trial time was 10.1 s for S2 and between 7.0 s to 9.6 s for healthy143

participants (Figure 3d). Finally, when summarizing a metric called Fitts’ ITR that factors in target size,144

success rate, and acquisition time, we did not observe that performance significantly increased from the145

first day to the last day, but did remain stable. It is possible performance could increase with longer-term146

CLDA14.147

All healthy participants achieved plug-and-play performance, where the same decoder could be adapted148

day-after-day without recalibration on the decorrelated closed-loop training task (Figure 3b). For S2149

(Figure 3a), we decided to retrain the decoder on experimental session 3 (which followed a gap of 8150

calendar days) and session 4 (following a gap of 6 calendar days), although we also observed that the151

decoder did not need to be retrained for session 5 (gap of 19 calendar days). Between experimental152

sessions 3 and 4, we omitted one session where participant S2 experienced very strong phantom pain.153

On this day, we were unable to train a high-performance decoder and S2 was unable to perform a full154

experimental session. One contribution to stable decoding across days was that CLDA on the KF helped155

to remove biases in decoded velocity due to drifting EEG activity. We show the distribution of decoded156

velocities when using CNN vs CNN-KF across all participants and experimental sessions (Figure 3c).157

We observed significant drift in these distributions for some participants with the CNN (dotted lines)158

but the CNN-KF velocity distribution was relatively unbiased across sessions. Together, these results159

demonstrate that our decoder approach can yield stable performance across days, and that performance can160

even be sustained in the same decoder through adaptation, although CNN recalibration may sometimes be161

required.162

What neural features guided proficient decoding? To answer this question, we computed spatial saliency163

maps that exhibit which EEG electrodes contributed most for each motor class. These saliency maps are164

based on computing the gradient of the cursor’s velocity update with respect to the magnitude of each165

electrode’s activity (see Methods). In EEG activity, movement leads to event-related desynchronization,166

resulting in lower alpha and beta power in contralateral motor areas during movement27. Active regions167

therefore tend to demonstrate a decrease in EEG activity. We found that, as a result of the chosen action168

sets, hemispheric activity near the motor cortex largely drove cursor movements. The left hemisphere169

was more active during right movements, the right hemisphere was more active during left movements,170

both hemispheres were active during up movements, and both hemispheres were less active during down171

movements (Figure 3e, f, showing saliency maps for S2 and H1, respectively). Together, these results172

demonstrate that the modulation of hemispheric activity can support proficient and stable 2D EEG cursor173

control.174

A cursor control copilot more than doubles target hit rates in center-out 8175

We hypothesized that an AI copilot that helps infer user goals could increase task performance. In the176

center-out 8 task, there were only 9 possible goals, corresponding to 9 potential target locations. This177

imitates, in spirit, how in many applications, there are often only a handful of selectable goals (such as178

buttons on a computer screen, Figure 1b or likely keys on a keyboard28). Our goal was to build a copilot179

that can infer the user’s goal and help acquire it. Although the possible goals were known a priori in the180

center-out 8 task due to the task structure, for tasks such as using a computer browser, the possible goal181
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c, Average success percentage of radial target trials. d, Average hit rate (successful acquisition of only radial target goals) per
minute. Center targets, which occurred after every radial target, were not included. e, Average time to first touch the target for
successful radial trials (applies to all following panels). f, Average dial-in time. g, Average path efficiency. h, A summary
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performance. i, j, Average trajectories towards each radial goal with and without the copilot for S2 (i) and H1 (j). The copilot
helps improve path efficiency towards the goal.

locations can be inferred via computer vision (CV).182

We trained a deep RL copilot with proximal policy optimization29 (PPO) to assist the user in performing183

the task. At the highest-level, this copilot observed the BMI decoder trajectories and velocities, and used184

these inputs to infer what goal the user was trying to acquire, aiding movement towards that goal. The185

copilot input was the CNN-KF decoded velocities and cursor positions throughout the trial (see Methods).186

A key advantage of using CNN-KF decoded velocities, and not the high-dimensional EEG, was that187

this enabled us to train the copilot in a simulated environment where we generated synthetic CNN-KF188

velocities, removing the need for large experimental datasets. The copilot outputted a probability over189

potential goals, and affected the cursor velocity through a charge field proportional to the probability28.190

The copilot therefore influenced the velocity of the cursor at every timestep through charge allocation. We191

trained this copilot in a custom environment where the copilot received positive rewards for movement192

toward the correct goal and negative rewards for movement away from the correct goal (Methods, Extended193

Data Figure 5).194

We performed our most challenging task condition, where targets were 2.3 cm in diameter with a195

500 ms hold time, a more challenging task condition than some intracortical studies11. Although the196

copilot was trained in a simulated environment, we found it generalized to increase closed-loop BMI197

center-out 8 task performance. Distance-to-target plots11 averaged across all single trials summarize198

the performance improvement (Figure 4a). The cursor copilot reduced the average distance to target199

significantly faster than without the copilot. For example, in S2, the AI-BMI achieved the same average200

distance-to-target as the BMI at end of trial (20s) within only 5s. Ultimately, this had the effect of201

significantly reducing the time it took to complete a trial (Figure 4b). The copilot additionally increased202

the success percentage of correct target acquisition. S2 and all healthy participants achieved a median203

accuracy of 100% target success rate (Figure 4c). Together, the increased success rate and decreased trial204

time means the cursor copilot increased the goal acquisition rate of the task by a factor of 2.26× in healthy205

participants and 4.33× in S2 (Figure 4d).206

How did the copilot achieve this increased performance? First, we note the copilot was able to correctly207

infer the participant’s goal on every successful trial. If the copilot did not, the AI-BMI would never acquire208

the correct goal. Second, the copilot significantly decreased trial time. This could be achieved through209
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Figure 5. a, Setup of the robotic arm experiments. Each participant was seated in front of a table containing the robotic arm
and a monitor showing the control orientation. b, Paired pick-and-place task. Participants must move a random block to a
random target cross on each trial using a hover strategy or with the computer vision (CV) copilot. Inset: computer vision object
identification. c, Sequential pick-and-place task. Each trial, the locations of target crosses were scattered, and blocks were
randomly dropped onto the table. Participants were then presented with a random sequence of 4 block-target pairs, and were
instructed to pick and place each block on its respective target in the order given. d, Computer Vision object detection using
Grounding DINO for the paired (left) and sequential (right) pick-and-place tasks. e, Trial-level success percentage for hover
and copilot conditions. f, Total time required to successfully pick and place blocks on their respective targets. No successful
trials were recorded for S2 with the hover condition. g, Bar chart showing percentage of blocks that were placed on the correct
target at the end of each trial of the Randomized pick and place task. h, Box plot showing the total time for all trials. i,
Stacked bar chart showing the proportion of correct, out of order placements at the correct location, error, and error correction
pick or place actions. j, Trajectories showing S2’s successful completion of the task.

two means: ballistic control (time it takes to first touch a target) or fine control (time it takes to dial-in210

to the target) could be improved. Although we found the median time to reach a target was less using211

the copilot, this difference was not statistically significant (Figure 4e). However, there was a significant212

reduction in dial-in time to acquire the goal, consistent with the cursor copilot aiding the acquisition of213

goals. In particular, whereas a traditional BMI had difficulty dialing in to a small target, the AI-BMI214

helped significantly reduced this dial-in time from a median of 4.74 s to a median of 0.05 s (Figure 4f). A215

breakdown of trial time reduction is shown in Figure 4h. Third, we found the cursor copilot also helped to216

make path trajectories more efficient, i.e., closer to a straight line towards the target (Figure 4g). Average217

trajectories for all center-out reach conditions are shown in Figure 4i, j, reflecting straighter trajectories218

when using the copilot compared to no copilot. Together, these results show that a cursor copilot is able to219

correctly infer user goals and aid their completion, increasing goal acquisition rates on a center-out 8 task220

by 2.3× to 4.3×.221
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A robotic arm copilot enables proficient control in a sequential pick-and-place task222

While some goals may be task-defined, they may also appear in random locations. In these situations,223

AI-BMIs can also use CV to infer goals. We used this approach to develop a robotic arm AI copilot, used224

in two pick-and-place tasks (Figure 5a-c). The copilot used CV to infer the location of potential goals and225

keep track of objects’ locations (Figure 5d). The goals were pick locations (blocks) and place locations226

(crosses). We inferred the locations of all blocks and crosses using a camera (Intel, RealSense D455)227

paired with a foundation model for open-set object detection (Grounding DINO)30. Our robotic arm228

copilot was programmed to identify all goal locations and aid control in real-time by precisely grasping a229

block when the robotic arm was within 2.54 cm of the block and placing any held block when the robotic230

arm was within 2.54 cm of a cross, or the block’s starting location. This robotic arm copilot therefore231

aided in executing grasp and place actions in the vicinity of CV inferred goals.232

We first evaluated the extent to which CV aided performance. We compared traditional BMI vs233

AI-BMI performance of a pick-and-place task, where 4 different colored blocks were placed in a line and234

4 different colored crosses were placed in another line (Figure 5b). We called this the Robotic Arm Paired235

Pick-And-Place task (see Methods). On each trial, participants were asked to pick up a random block and236

move it to a random place location. The traditional BMI was able to give a command to pick or place via237

hold-time selection, while the AI-BMI relied on CV and the decoded location of the robotic arm to help238

execute pick and places. Trials were only successful if the participant picked up the correct block and239

placed it at the correct cross. Any trials where a participant picked up an incorrect block or placed it on an240

incorrect cross, or failed to complete a pick or place action, were counted as failures. When users were241

aided by the copilot, their rate of successful trials significantly increased (Figure 5e). The time to perform242

a trial also significantly decreased using the copilot (Figure 5f). Participate S2 was unable to perform any243

successful trials without the robotic CV copilot. These results therefore demonstrate that the robotic CV244

copilot both significantly increased success percentage and decreased trial time.245

We next used this copilot to demonstrate proficient control for sequential pick-and-place tasks. We246

performed a task where we randomly dropped 4 blocks and 4 crosses on a table (Figure 5c). We then247

generated a random sequence pairing each block with a cross, and asked the participant to pick and place248

each block at its respective cross in order. We called this the Robotic Arm Sequence Pick-And-Place task249

(see Methods). We counted errors when users picked up any block that was not the next block or placed250

blocks at incorrect locations. These errors could be “corrected” by replacing the block at its original251

location, and picking up an incorrectly placed block and placing it at its assigned location, respectively.252

All participants successfully performed the task, placing each block at the final correct location either253

93% (S2) or 100% of the time (healthy participants) (Figure 5g). The median time it took to complete254

a sequence (requiring 8 goals) was 392 s for S2 and 136 s for healthy participants (Figure 5h), and the255

majority of actions were correct actions or corrected an incorrect action (Figure 5i). Supplementary256

Video 1 shows S2 successfully performing this task, with trajectories plotted in Figure 5j. Together, these257

results demonstrate that participants are able to use a copilot to autonomously and proficiently perform a258

sequential pick-and-place task with a non-invasive EEG AI-BMI.259

Discussion260

Our results demonstrate that AI copilots can help to significantly increase BMI control, enabling cursor261

and robotic arm control of a non-invasive BMI. We demonstrate a cursor and robotic arm copilot that262

helps users perform goal-oriented tasks. The AI-BMI increases cursor control hit rate (goals/min) by 4.3×263

for paralyzed participant S2 and enables him to perform a sequential pick-and-place robotic arm task that264

he was unable to do without a copilot. This approach provides a complementary axis to increase BMI265
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performance, and as AI methods improve, this has the potential to further improve AI-BMI performance.266

Our improved performance was also due to stable real-time EEG decoding through an adaptive CNN-267

KF. We found that we only needed to decode 4 classes reliably. The four classes we chose to decode268

predominantly reflected different combinations of hemispheric activity near motor cortex. However,269

EEG performance also exhibits significant differences in performance across participants31,32. Further,270

it may be possible that in patients with ALS or other diseases, there may not be strong activation for271

movement-related actions due to motor neuron death. For other participants who do not exhibit decodable272

activity for the 4 classes we prompted, it may be necessary to identify different behavior sets that can273

produce 4 decodable classes. There are many candidates to try to decode 4 classes, including different274

limbs, wrist motor imagery33,34, and even cognitive imagery35,36. Future work should characterize how275

reliably 4 classes can generally be decoded based on disease condition or severity of paralysis, and increase276

decoding robustness. Relatedly, we note that we were unable to achieve good decoding performance with277

S2 on one experimental day. S2 anecdotally commented that decoding performance is inversely related278

with pain and paresthesia sensations, and achieved the lowest performance when pain and paresthesia279

were especially noticeable. As pain and paresthesia may negatively impact BMI decoding, future work280

should investigate how to increase EEG robustness to these factors.281

We emphasize that AI copilots help reduce the required number of neurally-decoded DOFs to perform282

relatively high-dimensional tasks (such as the robotic arm sequential pick-and-place task). In the robotic283

arm task, for example, we did not require an additional click state to grasp an object; the copilot did284

this automatically when the robotic arm gripper was in the vicinity of the block. The use of AI copilots285

allows users to perform tasks beyond the complexity of a previously reported randomized grasp task37,286

where users grasped objects by holding the robotic arm’s position over each randomly placed block for287

2 seconds, whose positions were explicitly made known in their control paradigm (in contrast to how288

our task positions were inferred via CV). For more complex tasks than these, including interacting with289

particular objects, training an AI copilot to handle such interactions should reduce the DOF required to290

handle objects. For example, a copilot controlling a robotic hand to hold a cup may fully obviate the need291

to decode additional DOF for finger control, something that is likely prohibitively difficult for non-invasive292

EEG.293

Relatedly, we anticipate that future copilots may provide substantially more assistance. While our294

center-out copilot influenced cursor velocity at every time step, our robotic arm copilot only assisted with295

pick and place actions. Future copilots may also assist in executing robotic arm trajectories towards objects296

and precise manipulation based on the object’s dynamics. This is the goal of shared autonomy, which297

aims to use copilots to help increase human performance on various tasks by sharing control through298

task execution38–42. However, a limitation of these approaches is that they may potentially reduce user299

autonomy, leading to deleterious effects on performance and user frustration. Recently, we proposed a300

control sharing approach called interventional assistance that may facilitate user-copilot cooperation and301

increase performance on tasks43. Shared autonomy may enable more advanced robots, including those302

trained with large-scale datasets44–47, to act as copilots, enabling AI-BMIs to carry out even more complex303

movement tasks.304

Recent studies have demonstrated high-performance intracortical BCI communication by decoding305

speech48–50. Our work is complementary: we focus on restoration of movement, for two reasons. First,306

many with paralysis (e.g., spinal cord injury below C4) do not lose speech function, but still suffer loss307

of movement and would be helped by motor BMIs. Second, many tasks we perform are fundamentally308

motor, including controlling computer cursors and robotic arms. While speech-to-movement is possible, it309

is less precise and responsive, as well as less discreet. For example, controlling a computer cursor through310

speech commands (like “move left, left, up, up, down, right”) may be prone to error with relatively crude311
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online correction.312

Future work to build better decoders may also increase performance. For example, it may be possible313

that large-scale EEG recordings may increase the performance of decoders, as observed in decoding314

language51 and in EMG motor decoding52. Because EEG is non-invasive, it is relatively easier (compared315

to invasive BMIs) to collect larger-scale datasets that could result in new non-invasive BMI foundation316

models. This approach may both reduce calibration time and increase performance.317
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1 Methods336

1.1 EEG recording337

We recorded EEG signals from a 64-channel cap at a sampling rate of 1000 Hz with the eego rt amplifier338

(ANT Neuro, Waveguard Original, International 10/10 layout). We measured the impedance of each339

electrode at the start of every experimental day to ensure that none was over 200 kΩ, with a target of340

20 kΩ or less. M1 and M2 electrodes were omitted from recording. EOG, Fp1, Fpz, and Fp2 electrodes341

were recorded but omitted from decoding because they contain strong eye movement information. We342

filtered the EEG data (for details, see 1.5), which was then sent as inputs to our real-time system, named343

Real-time Synchronous Python (RASPy).344

11/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.09.615886doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.09.615886
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.2 Real-time experimental setup345

Our open loop task operated at 100 Hz (10 ms “ticks”) and our closed-loop tasks operated at 20 Hz (50 ms346

ticks). These tasks are described below. In tasks with real-time decoding, we decoded the most recent347

1000 available samples (1 second) of EEG data. Cursor control tasks were displayed on a 20-inch monitor348

(48 cm × 27 cm) with a refresh rate of 60 Hz. Each participant was seated with their eyes positioned349

approximately 55-76 cm from the screen. We recorded eye gaze position at 60 Hz (Tobii Pro Nano). The350

eye tracker was calibrated at the start of each day and whenever large changes in seating position occurred351

between sessions. Robotic arm control tasks were performed using the Panda arm (Franka Emika) running352

at 1000 Hz.353

1.3 Tasks354

Participants performed up to five tasks. Two tasks, “Open Loop Text” and “Decorrelated Closed Loop”355

were used to train decoders. One task, “Center-Out 8 Target Selection,” was used to quantify decoder356

performance for cursor control. Two tasks, “Robotic Arm Paired Pick-And-Place” and “Robotic Arm357

Sequence Pick-And-Place" were used to quantify decoder performance for robotic arm control. Participants358

were asked to sit up straight and rest their hands in a comfortable position for all tasks.359

Open Loop Text (referred to as the “open loop” task). We presented text corresponding to four360

actions. We randomized the presentation of the actions in groups of 4. We refer to the presentation of361

one action as a “trial.” Each trial was 20 seconds long. The participant was instructed to repetitively362

perform an action corresponding to the presented text. There was a 2 second inter-trial interval. During363

the inter-trial interval, a red box was displayed and the participant was asked to relax and not to perform364

any action. The presented texts for the healthy participants were: Left hand, Right hand, Both hands, or365

Feet. Healthy participants overtly moved the limb corresponding to the presented text (for more details on366

why we used overt movements in healthy participants, please see Methods 1.4). The presented texts for367

the spinal cord injury (SCI) participant were: Left leg, Right leg, Both legs, or Still. The SCI participant368

was asked to attempt to move the paralyzed limbs or to remain still during the respective prompts. The369

SCI participant displayed no observable limb movements.370

Decorrelated Closed Loop (referred to as the “decorrelated” task). The goal of this task is to371

decorrelate eye movements from motor actions. Removing the effect of eye movements is critical, since372

signals reflecting eye movements are present in EEG. The goal of our BMI was to decode motor activity,373

not eye movements. We therefore designed this task so that trained decoders could accurately decode374

motor activity but not eye movements. This task utilized a decoder trained from the open loop task that375

controlled the position of a cursor. We provided the user with real-time feedback of the cursor position.376

At the start of a decorrelated trial, a cursor was displayed at the center of the screen. A text prompt377

(from the same set used in the open loop task) appeared inside a rectangular box at one of eight target378

locations (from 0◦ to 315◦ in 45◦ increments, centered at a radius of 9.34 cm and width of 4.67 cm). The379

text prompt and its target location were uncorrelated. For example, ‘Left Leg’ could appear at any of380

the eight locations for that trial. The output from the decoder trained on the open loop data was used for381

the cursor’s movement in the decorrelated session. The decoder was continuously adapted (see Methods382

1.7 for more details). The cursor’s movement was restricted to move along the straight line segment383

connecting the center of the screen to the outer edge of the target. To do this, we decoded 2D velocity and384

rotated the velocities to be congruent so that the correct action moved the cursor towards the correct target.385

For example, if ‘Left Leg’ was at the up right target (45◦, Figure 2h) then any left cursor movements386

moved the cursor up right. The 2D velocities were subsequently projected onto the straight line segment387

connecting the center of the screen to the outer edge of the target. Intuitively, the cursor moved toward the388
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target if the decoded action was the same as the prompted action. The cursor moved away from the target389

if the decoded action was opposite.390

Although a target was presented in the decorrelated closed loop task, the target was not selectable,391

and remained onscreen for 7 seconds, with cursor movement occurring only in the last 5 seconds. We392

chose to not make targets selectable to acquire an equal number of samples per class in the training data.393

If targets were selectable, then actions that were more accurately decoded would be underrepresented in394

the decorrelated task data. If the decoder continued to decode the correct action, the cursor would hover395

within the target acceptance window for the duration of the trial.396

All decoders used for closed-loop control were trained using data from the decorrelated task to397

minimize the influence of eye position on decoding. A performant decoder must therefore ignore eye398

artifact, since eye movement signals more frequently correspond to classes other than the correct class,399

and would be detrimental to the decoder.400

Center-out 8 Target Selection (referred to as the “center-out 8” task). During the center-out 8 task,401

the user controls a cursor to acquire 8 targets equally spaced on the circumference of a circle. The cursor402

was displayed at the center of the screen in grey color. The position of the cursor was bounded to a square403

with x-position between [−1,1] units and y-position between [−1,1] units (total side length: 2 units). 1404

unit corresponded to 11.675 cm. The target appeared in green color at one of the 8 locations spaced405

0.7 units from the center at 45◦ intervals. The target diameter varied from 0.6 units (7 cm) to 0.2 units406

(2.3 cm). To acquire a target successfully, the decoded cursor had to be held contiguously over the target407

for 500 ms. The trial timed out if the participant was not able to acquire the target within 24 seconds.408

After each center-out target, the next prompted target was at the center of the screen. If the participant409

wasn’t able to acquire the center target, the cursor was reset to the center and the target was placed at one410

of the center-out locations. If a trial ended with target acquisition, it was counted as a success. If the trial411

ended after timeout, it was counted as a failure. Statistics for the center-out 8 task are only computed on412

the 8 center-out trials to be agnostic to target location and are averaged over each set of 8 trials.413

Robotic Arm Paired Pick-And-Place (referred to as the "Robotic paired" task). We setup four place414

locations (crosses, spaced approximately 13 cm apart along a line) and four pick locations (2.9×2.9×2.9415

cm3 blocks, also spaced approximately 13 cm apart, and approximately 28 cm away from each cross).416

We then generated a trial where a randomly chosen block was paired with a randomly chosen cross. To417

successfully complete a trial, the participant had to control the robotic arm to (1) move to the block, (2)418

grasp the block, (3) move the block to the correct cross, and (4) place the block on the cross. The trial419

was otherwise failed. The participant had 40 seconds to grasp the block before the trial was failed. If the420

participant grasped the block, they would then have 40 seconds to place the block before the trial was421

failed. Trials were performed in sets of 8. For the first 4 trials of each set, participants performed all 4422

trials with (or without) an AI copilot. For the last 4 trials of each set, participants received the same prompt423

as the first 4 trials of the set, and performed the trials without (or with) an AI copilot. Whether each set424

began with or without an AI copilot was randomly determined (by a coin flip with p = 0.5). Participants425

were informed whether they performed the task with or without an AI copilot.426

The user controlled the 2D endpoint of the robotic arm above the blocks and crosses, with altitude as a427

function of distance to the closest block/cross. Users were shown a live camera view from an overhead428

camera of the workspace (Figure 5a). Users were also given the option to rotate this top-down view of the429

workspace; S2 chose up and H1, H2, and H4 chose left to correspond to the direction pointing away from430

the base of the robot. The maximum 2D speed of the robotic arm was set to 5 cm/s. When the computer431

vision (CV) AI copilot was used, it would grasp (place) a block whenever it was within a 2.54 cm radius432

of any block (cross). When CV was not used, the robotic arm would attempt a grasp (or place) when it433
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stayed within a radius of 6 cm for 4 seconds. When the grasp was attempted over a region that did not434

have a block, the arm lowered, closed and opened its gripper, then returned to an altitude above the blocks.435

When the arm collided with a block while lowering, it stopped attempting the grasp (or place) and returned436

to an altitude above the blocks. When a place was attempted over a region that did not have a cross, the437

arm proceeded to place the block at that location. The time for a grasp or place attempt was not counted438

towards the 40 second timeout time for either grasping or placing a block; only time while the participant439

freely moved the arm counted toward the timeout time.440

Robotic Arm Sequence Pick-And-Place (referred to as the "Robotic sequence" task). During the441

pick-and-place task, the user controlled a robotic arm to pick and place 4 colored blocks (“pick” locations)442

onto 4 crosses (“place” locations). The 4 place locations were randomly selected. The 4 blocks were then443

randomly dropped on the table, and only moved if a block was out-of-bounds of the workspace. A random444

sequence was generated, assigning each of the 4 blocks uniquely to the 4 place locations in a particular445

order. The subject had to control the robotic arm endpoint to place each block at each cross in the specified446

correct order.447

1.4 Experimental Protocol448

Participant selection. All experiments were approved by the UCLA IRB. Three healthy participants and449

one paralyzed participant with spinal cord injury (SCI) (paraplegic, T5 complete) participated in the full450

duration of this study. As stated in the Results and Discussion, controlling the CNN-KF used 4 decodable451

classes to control right, left, up, and down 2D cursor movements. Further, participants demonstrate452

varying levels of EEG modulation for particular actions32 that can be affected by several factors, including453

mind-body awareness31. While any 4 decodable classes could be used to control our BMI, we only tested454

the set of prompted behaviors described in the task description of Open Loop Text (for healthy: left hand,455

right hand, both hands, legs; for SCI: left leg, right leg, both legs, still). If a participant did not achieve high456

decoding accuracy on these 4 actions from the open loop task, we did not perform subsequent experiments457

to identify a behavior set that generated 4 decodable states, as this search was open-ended. Rather, we458

decided to only perform experiments on participants whose activity for the prompted action set could be459

decoded by a CNN-KF.460

Two additional SCI paraplegic participants were evaluated for a single day, but did not achieve high461

decoding performance for attempted leg movements. This does not mean these participants could not462

control a BMI, but only that they did not exhibit substantial EEG modulation for the prompted behaviors. To463

be clear, we did not perform further experiments to identify a behavior set that could produce 4 decodable464

classes, since determining these behaviors requires an open-ended search over many experiments, a465

tangential question representing future work to make EEG BMIs more robust (see Discussion). Two466

additional participants (one SCI, the other healthy) conducted pilot experiments, achieving 2D cursor467

control, but did not complete experiments for personal reasons unrelated to the study.468

Training data collection. Each participant performed the open-loop task for approximately 20 minutes.469

EEG activity corresponding to each of the four possible motor actions was used to train a CNN-KF (see470

1.6, 1.7). There were two important differences between the open loop and the closed loop cursor control471

sessions. First, there was real-time feedback on the decoder’s output in the form of the cursor movement.472

Second, user’s eyes followed the cursor during closed loop cursor control, resulting in eye movement473

correlated to the task at hand. To ensure that the KF was not adapting to eye movement EEG artifact474

during the cursor control session, we included a decorrelated closed loop session so that the EEGNet CNN475

learned to ignore the eye movements.476
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Analysis showed that each user’s eye movements during the decorrelated task were minimally cor-477

related with cursor and target information (Extended Data Figures 3 and 4), thereby minimizing the478

effective contribution of eye movements to decoding. A new EEGNet was trained using the data from the479

decorrelated session. This trained EEGNet was used in the following center-out-8 closed-loop sessions. To480

control the movement of the cursor, the SCI participant was asked to do the action tasks: ‘Left leg’ for left,481

‘Right leg’ for right, ‘Both legs’ for up, and ‘Still’ for down. The healthy participants moved ‘Left hand’,482

‘Right hand’, ‘Both hands’, and ‘Legs’ to move the cursor to the left, right, up, and down respectively.483

Although our SCI participant did not have any overt movement of his paralyzed limbs during BMI484

control, we instructed healthy participants to overtly move their hands, in contrast to imagined movements.485

Overt movements have been previously used in several monkey BMI models11,53 that were successfully486

translated to paralyzed human participants2,3. Our choice of overt versus imagined movements for healthy487

participants centers around different considerations in using able-bodied participants to model paralyzed488

participants, something also considered in intracortical BMI animal models54. While overt movements489

are limited in that there is proprioceptive feedback55, a concern of imagined movements is that they490

correspond to significantly constrained motor cortical activity. Imagined movements do not produce491

movement, meaning they are constrained to a lower variance “output null space” of motor cortical neural492

population activity56. A significant proportion of motor cortex variance is related to neural activity493

that generates movements57. In attempted movements, paralyzed participants can generate activity that494

would have produced movement but does not ultimately result in movement due to their injury or disease495

(e.g., spinal cord injury, meaning movement generating neural signals do not reach the muscles). To not496

significantly constrain motor cortex activation, we decided to record “output potent” neural activity that497

produces movement, a signal still present in paralyzed participants. We therefore decoded EEG activity498

corresponding to overt movements (healthy participants) or attempted movements with no overt behavior499

(paralyzed participant). Please note that all of our BMI experiments worked with S2, who displayed no500

overt movement of his paralyzed limbs during BMI control.501

1.5 Data preprocessing502

We filtered EEG data using a 4th order Butterworth low-pass filter (cutoff 40 Hz) cascaded with a 5th order503

Butterworth high-pass filter (cutoff 4 Hz) and notch filters at [60 Hz, 60 Hz, 120 Hz, 180 Hz] with quality504

factors of [10,4,5,2] respectively. Following this, we applied a band-pass 5th order Butterworth filter505

to each of the remaining channels, allowing frequencies between 4−40 Hz to pass through. This range506

contains the typical brain oscillations of interest, such as theta, alpha, and beta waves, while attenuating507

slow drifts and high-frequency noise. We then employed a next nearest neighbors Laplacian spatial filter508

over decoded electrodes. Finally, we normalized the data for each channel to have unit root-mean-square509

(RMS) for faster convergence in the subsequent neural network. This normalization aims to increase510

robustness to signal amplitude variance that occurs across recording sessions.511

1.6 EEGNet (CNN) training512

We used a convolutional neural network, EEGNet21, to classify EEG signals. First, the preprocessed EEG513

data was fit with 8 temporal filters of size (1,51), outputting 8 feature maps containing the EEG signal at514

different band-pass frequencies. The filter size of 51 was chosen to be just over half of the downsampled515

EEG frequency of 100 Hz (scipy.signal.resample). This convolution layer was followed by a516

batch-norm layer. We then used 2 spatial filters of size (C,1) where C = 58 is the number of channels in517

the EEG signals. This spatial layer was followed by a batch-norm, average pool, and dropout layer. The518

filter size for the average pool layer was set to (1,3) to reduce the sampling rate of the signal to around519

33 Hz. The output from the average pool layer was fed into a separable convolution layer - depthwise520
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convolution (size (1,16)) followed by a (1,1) pointwise convolution. This separable convolution layer521

was followed by a batch-norm, average pool (1,16), and dropout layer.522

Custom Python code was used to implement and train the EEGNet. We split the data into 5 folds at the523

trial level, and performed 5-fold cross-validation over these folds. The learning rate was set to 10−3 at524

the start, and reduced the learning rate by a factor of 0.1 if the accuracy on the held-out validation fold525

did not improve for 10 consecutive epochs. We also halted training if the minimum validation loss did526

not improve for 10 consecutive epochs. From the 5-fold cross-validation, we chose the model for online527

control based on the validation confusion matrix and overall accuracy.528

Additionally, for compatibility with the Kalman Filter so that error distributions more closely resembled529

the Gaussian distribution, the EEGNet models were trained with a scaled mean-squared error (MSE)530

loss with targets corresponding to one-hot vectors of each class. The MSE loss was scaled by a factor531

of 100 to improve training stability. Accuracy for models trained with the one-hot mean-squared error532

loss was defined by labeling the prediction of each data point as the argmax over the four classes. This533

method is equivalent to a Linear Discriminant Analysis classifier with fixed mean and covariance and with534

trained feature maps. Data used to train the EEGNet was also used to train a seed Kalman Filter for later535

closed-loop sessions.536

1.7 Kalman filtering537

The discrete-time linear Kalman filter (KF) with no inputs assumes a state-observation linear dynamical538

system defined as:539

st = Ast−1 +wt (1)
yt = Cst +qt , (2)

In this instance, st is the cursor (or robotic arm) kinematic state vector at time step t representing position540

and velocity, yt is the observation vector (EEGNet hidden state), A and C are the state transition and541

observation matrices, respectively, and wk and qk are state and observation noise. The KF decodes542

according to543

ŝt = (A−KtCA)ŝt−1 +Ktyt , (3)

where Kt is the Kalman gain at time t. The linear KF is minimum MSE optimal when noise wt and qt are544

Gaussian and independent of time.545

To adapt this formulation to four-class decoding, we separate velocity into 2 components per axis: v+x,546

v−x, v+y, and v−y. A positive v+x corresponds to a positive x axis velocity while a positive v−x corresponds547

to a negative x axis velocity. The kinematic state vector is then defined as548

st =
[

px
t , py

t ,v
+x
t ,v−x

t ,v+y
t ,v−y

t ,1
]T

(4)

for x position px and y position py (a.u.). At each time step, we additionally clip the L1 norm of velocity549

components [v+x
t ,v−x

t ,v+y
t ,v−y

t ]T to be at most 1.550
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We set A and W to551

A =



1 0 γ ·dt −γ ·dt 0 0 0
0 1 0 0 γ ·dt −γ ·dt 0
0 0 a 0 0 0 0
0 0 0 a 0 0 0
0 0 0 0 a 0 0
0 0 0 0 0 a 0
0 0 0 0 0 0 1


(5)

W =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 w 0 0 0 0
0 0 0 w 0 0 0
0 0 0 0 w 0 0
0 0 0 0 0 w 0
0 0 0 0 0 0 0


. (6)

The gain γ was set to 0.5, dt was the tick length 50 ms, a was set to (0.8251/0.2)(dt), consistent with552

Silversmith et al.14, and w was set to the MSE loss averaged over all dimensions from training EEGNet.553

Additionally, for stability during decoding, we normalized the L1 norm of velocity components to have a554

maximum value of 1 prior to performing the state update. This effectively sets a maximum velocity of555

5.84 cm/s (0.5 a.u./s).556

1.8 Closed loop decoder adaptation557

The hidden state of the EEGNet trained from the decorrelated task was used for the observations of558

a linear KF, whose state represented the position and velocity of the displayed cursor. We performed559

closed-loop decoder adaptation to adapt the Kalman Filter through the course of each session58. While560

internal statistics were updated at each tick, online decoder parameters were only updated after each trial561

of an adaptation block or after the end of the first evaluation block. Except for some earlier sessions (H2562

Day 1-5, S2 Day 1), the position information was removed from the inferred state prior to adaptation, so563

that the Kalman Filter was effectively a Velocity Kalman Filter11,15. Later sessions for S2 were readapted564

to past data with all position information removed from the inferred state. For all sessions, the rows of565

the observation matrix C corresponding to position were set to zero. As with Gilja et al.11, the rows and566

columns of the a posteriori estimate covariance matrix were set to zero at every iteration.567

Retraining or CLDA for continuous BMIs significantly benefits from a ReFIT-KF innovation that568

augments the trianing data by defining the velocity component of the inferred state as a vector pointing569

from cursor to target. However, in our context, when the user is commanding one of four actions rather570

than continuously attempting to move their arm, this may not be optimal. For example, when trying to571

reach the up right target (45◦) from the origin, both an up and right command are equally correct. Instead572

of a single state at each timestep, the inferred state is represented by a probability distribution over up to573

2 plausible states. For example, when the cursor is at coordinates (0, 0) and the target is at coordinates574

(0.15, 0.35), we assign probability of 0.3 to the state [0,0,1,0,0,0,1]T (right) and probability 0.7 to state575

[0,0,0,0,1,0,1]T (up). Formally, and dropping the time step subscript for convenience, the inferred state576
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was defined by577

∆p = ptarget −pcursor (7)

∆p =
p

||∆p||1
(8)

εH = cos(θsnap) εL = sin(θsnap) (9)

Px =


0, if |∆px|< εL

sign(∆px
), if |∆px| ≥ εH

∆px
, otherwise

Py =


sign(∆py

), if |∆py| ≥ εH

0, if |∆py|< εL

∆py
, otherwise

(10)

η = min(||∆p||1/α,1.0) (11)

sx =



0
0

η · (Px ≥ 0)
η · (Px < 0)

0
0
1


sy =



0
0
0
0

η · (Py ≥ 0)
η · (Py < 0)

1


(12)

where ptarget and pcursor are the (x,y) positions of target and cursor, θsnap = 22.5◦ is the angle under578

which vectors are snapped to the nearest direction, sx and sy are the states corresponding to velocities579

on the x and y axis, respectively, and η acts as a scale factor parameterized by α = 0.2 a.u. The x-axis580

state sx was represented with probability |Px|, and sy was represented with probability |Py|. During the581

decorrelated closed loop session, inferred states were set as [0,0,I(right),I(left),I(up),I(down),1]T , e.g.582

[0,0,0,0,0,1,1]T for a prompt corresponding to the down action. Future work to optimize the inferred583

state could further improve performance.584

On some days, closed-loop performance of a previous day’s decoder dropped significantly during a585

center-out-8 session. On those days, we collected data from a new decorrelated training session to train a586

new EEGNet. We then adapted the KF resulting from the new EEGNet to a center-out-8 dataset that had587

already been collected (S2 Day 4 decoder adapted to Day 3 data). This reduced the amount of recalibration588

time needed when a new EEGNet was trained. The authors note that while past data from center-out and589

other 2D tasks could be used to train an EEGNet with more data, they did not do so in this work in order590

to minimize the effect of eye movements on decoding.591

1.9 Cursor copilot592

1.9.1 Overview593

The cursor copilot aids the user’s cursor control by directly influencing cursor movement with its own594

copilot output velocity
(

vCP,x
t ,vCP,y

t

)
which is added to the cursor velocity derived from CNN-KF595 (

vKF,x
t ,vKF,y

t

)
=
(

vKF,+x
t − vKF,−x

t ,vKF,+y
t − vKF,−y

t

)
.596

(ṽx, ṽy) = αKF ·
(

vKF,x
t ,vKF,y

t

)
+αCP ·

(
vCP,x

t ,vCP,y
t

)
, (13)

with αKF = 0.6 and αCP = 0.3.597

The copilot used a Long Short-Term Memory (LSTM) recurrent neural network to learn representations598

over historical inputs. The input to the copilot network was the cursor’s current position and velocity. The599
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goal information (i.e., the prompted target) was not known to the copilot. Rather, the copilot had to infer600

the user’s goal (one out of the 9 candidate center-out 8 targets) from the user’s past movements. Given the601

dynamic task information, the copilot therefore implicitly inferred the user’s intended goal and influenced602

the cursor’s velocity to move more efficiently toward the goal.603

1.9.2 Input and output604

For our experiment, we made a design choice of using a policy network that input the CNN-KF velocity605

and the cursor’s trajectory to output copilot velocity
(

vCP,x
t ,vCP,y

t

)
. The LSTM component of the policy606

network has recurrence, enabling it to model reperesentations of the cursor trajectory. The copilot thus607

only observed the cursor positions and the current KF velocity, scopilot
t =

(
px

t , py
t ,v

KF,x
t ,vKF,y

t

)
at every608

timestep. At the beginning of each trial, the LSTM hidden state was reset to zeros. These values updated as609

the cursor moved. Overall, the LSTM network mapped an observation scopilot
t ∈ R4 to an action in at ∈ R9.610

This action influenced the movement of the cursor by using a charge-based system with electric charges on611

all 9 target positions. To define this charge-based system, we first define a matrix ptargets ∈ R2×9 defining612

the (x,y) positions of all 9 targets:613

ptargets =

[
0.7 −0.7 0 0 · · · 0
0 0 0.7 −0.7 · · · 0

]
. (14)

As described in the main manuscript, the center-out 8 task has 9 defined targets that are fixed. Our design614

incorporates this task specific information, however, in general computer usage, this copilot can use615

candidate target locations ptargets inferred via computer vision. We let ai
t denote the ith element of the and616

note that every element of at , output by the LSTM. Each element ai
t ∈ [−1,1]. We then define the “charge”617

assigned to target i at time t be618

ci
t =

ai
t +1
2

(15)

meaning each charge ci
t ∈ [0,1]. We then use these charges to define a “force” that each target exerts on the619

cursor, mimicking Coulomb’s law. We let hyperparameter q denote the charge of the cursor, and compute620

the force exerted by each of the 9 targets via:621

F i
t = K

q · ci
t

∥pi
targets −pcursor,t∥2 + ε

(16)

where pi
targets is the ith column of ptargets, pcursor,t is the current cursor position at time t, hyperparameter622

K is a fixed constant, and hyperparameter ε avoids division by zero. The value of all hyperparameters are623

given in Extended Data Table 3. We then compute the charge exerted by the ith target on the cursor at time624

t as625

vCP,i
t = F i

t ·
(
pi

targets −pcursor,t
)

(17)

which is a vector ∈ R2. The total influence of all targets on the cursor is626

vCP
t =

9

∑
i=1

vCP,i
t . (18)

This sum was the copilot output velocity, vCP
t =

(
vCP,x

t ,vCP,y
t

)
that influenced the cursor towards the627

inferred goal.628
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1.9.3 Cursor task rewards629

The policy network was trained via Proximal Policy Optimization (PPO)29. The reward signal at each630

timestep, rt , was defined by the proximity of the cursor to the target, where631

dt = ||pcorrect target −pcursor,t ||2 (19)
rt = k(dt −dt−1). (20)

The hyperparameter k was chosen so that the reward, rt , in each trial was between −1 and 1. Please note632

that the cumulative reward is a state function. Future rewards were discounted at γ = 0.989 to encourage633

the copilot to acquire the target in the fewest number of steps. The copilot value network (V (s)) estimated634

the expected rewards-to-go from state s.635

1.9.4 Network architecture and training hyperparameters636

The value, V (s), and policy, π(s), networks were composed of a two-layer multi-layer perceptron (MLP)637

with 64 hidden units, followed by an LSTM with a 256-dimensional hidden state. The copilot was trained638

using PPO with a fixed learning rate of 3×10−4 with a rollout buffer size of 2048 and a batch size of 64.639

Copilots were trained for a total of 1,200,000 steps.640

1.9.5 Training641

Training the copilot involves generating decoded velocities, vKF
t , from the CNN-KF. However, optimizing642

the copilot with online human-in-the-loop experiments is very expensive in time. We therefore modeled643

CNN-KF decoded velocities to accelerate copilot training. We call the model that generates CNN-KF644

decoded velocities the “surrogate human control policy” because it models decoded velocities from human645

BMI users. The surrogate human control policy, denoted psurrogate(vKF
t ), approximates the distribution of646

human cursor control velocities, phuman(vKF
t ), when performing the center-out 8 task. We designed the647

surrogate policy to mimic four features of the human policy:648

1. The human attempts to move the cursor in the correct direction. To model this, we defined an649

intended velocity,650

vint
t = 0.5 ·

pcorrect target −pcursor,t

∥pcorrect target −pcursor,t∥2
. (21)

2. Due to the slow dynamics of EEG activity, changing cursor directions only occurred after a modest651

delay. We therefore modeled a switch in decoded direction at time t as occurring over an interval652

between [t, t +delay] and linearly interpolated velocities between
[
vint

t ,vint
t+delay

]
. The random delay653

was drawn from a uniform distribution, U [300ms,600ms].654

3. When a new direction is decoded, the CNN-KF decoded velocities can be erroneous, which we655

modeled via angular noise in the decoded velocity. We modeled this as:656

vunintended
t =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
vint

t , θ ∼ N (0,σ). (22)

over the switch direction interval [t, t +delay]. In our simulations, σ = π/3.657

4. Even when CNN-KF decoded velocities go in the correct direction, there is stochasticity in cursor658

movements. We modeled this via independent additive Gaussian noise. This produced the final659

surrogate simulated velocity,660

vKF
t = vunintended

t + ℓt , ℓt ∼ N (0,Σ) (23)
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In our simulations, Σ = 0.03I.661

With this model of psurrogate(vKF
t ), we trained the copilot without a human-in-the-loop. In copilot training,662

we also increased the hold time to 2 s to encourage the copilot to hold the cursor close to the target even663

after acquiring it. All hyperparameters are reported in Extended Data Table 3.664

1.10 Center-out 8 performance metrics665

We report how each performance metric for center-out 8 was computed.666

• Trial Time (s): the time from trial initiation to trial completion.667

• Success %: the percentage of correctly acquired radial targets.668

• Hit rate (goals per minute): The number of successfully acquired radial targets (goals) per minute.669

No part of the trial was excluded.670

• Time to first touch (s): the time it takes the cursor to first touch the prompted radial target.671

• Dial-in time (s): the time between when the cursor first acquires and last acquires the prompted672

radial target11. If the BCI user successfully holds the target when first acquiring it (i.e., stays on it673

for 500 contiguous ms after first touching it), the dial-in time is zero. If the cursor moves off the674

target after first touching it, then the dial-in time will be greater than zero because the time when675

it last acquires the target (prior to the 500 ms contiguous hold time) is different from when it first676

acquired the target. To be clear, dial-in time does not include the 500 ms hold time; it only includes677

the time spent “dialing in” on the target to acquire it.678

• Path efficiency (%): the straight line distance between the targets divided by the total distance679

traveled by the cursor, multiplied by 100%. Its maximum value, 100%, occurs when the cursor680

takes the shortest path between targets.681

• Fitts’ Information Transfer Rate (ITR, bits per second): Fitts’ ITR59 is defined as682

ITR = log2

(
D+S

S

)/
total time (24)

1.11 Spatial saliency maps683

To visualize the contribution of each EEG channel’s activity toward decoding, we computed saliency maps684

over channels. Saliency maps represent the importance of input channels for driving the cursor in one685

of the four cardinal directions (right, left, up, and down). Spatial saliency maps for each direction were686

calculated as687

δhi =
∂ (eT

i (∆s))
∂κ

(κ ⊙h) |κ=1 (25)

= h⊙ ∂ (eT
i (∆s))
∂h

(26)

∆s = (A−KkCA)y (27)

where h is an input or intermediate layer activation of the decoder, ei is the unit vector for index i, κ is a688

unit scaling factor to collect gradients, and ⊙ is the broadcasted Hadamard product operator. We averaged689

δhi over the time dimension to produce saliency maps for preprocessed inputs and for inputs to the690

EEGNet depthwise layer. Saliency maps were then projected using MNE’s plot_topomap function60.691
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1.12 Robotic arm and computer vision copilot692

We interfaced with the Franka Emika Panda 3 robotic arm using the frankalib and liborl C++ libraries with693

custom C++ and Python code, mounted above a table. A camera (Intel RealSense D455, 1280x800px,694

30Hz, RGB) was positioned with a tripod such that it viewed the working space of the robotic arm. We695

calibrated the computer vision system using 4 marked locations on the table, and masked the image696

corresponding to the working space. A separate process used GroundingDINO30 to find the pixel locations697

corresponding to the "small cube" and "cross" text prompts. This typically took 350-400ms on an RTX698

A4000 and can be extended to arbitrary objects. For safety, the robot’s (x,y) position was limited to be699

between the polygon defined by vertices (0.3,−0.31)m, (0.6,−0.31)m, (0.75,−0.15)m, (0.75,0.15)m,700

(0.6,0.31)m, and (0.3,0.31)m. Participants performed two tasks: a fixed location pick-and-place control701

task with or without computer vision and a 4-block-target sequence pick-and-place task. In each task,702

participants placed 4 colored cubes (green, blue, yellow, red, 2.9 cm width) on colored cross markers703

(yellow, orange, pink, blue, 5.4 cm width). We use the term “goal” to refer to both pick locations (blocks)704

and place locations (crosses).705

In the control task, for each trial, participants received a prompt of which color cube to place at which706

color target cross location. The user had to perform the task for each of two conditions: hover, in which707

remaining within a horizontal radius of 6 cm of the robot’s average (x,y) position over 4 seconds initiated708

a pick/place at the average location, and computer vision copilot, in which entering within a 2.54 cm radius709

of a goal initiated a pick/place action at the goal’s location. In the hover condition, the average location was710

continuously updated, allowing for minor finetuning of the final pick/place location. A 5-second cooldown711

for initiating a new pick/place action was enforced after the end of each pick/place action. 4 blocks712

and 4 target crosses were placed at [(0.675,−0.179),(0.674,−0.058),(0.672,0.075),(0.674,0.207)]m713

and [(0.387,−0.174),(0.388,−0.052),(0.392,0.087),(0.395,0.210)]m and were reset in between trials714

(12-14cm between adjacent blocks/targets, and 28cm between each block and the closest target). The715

robotic arm’s end effector was reset to (0.3,−0.021,0.081)m before each trial. The z-position of the716

robotic arm was approximately (−0.03+0.11 ·min(5 · (d −0.0254),1))m, with the distance to closest717

eligible block/target d in meters. Each trial began when a button to allow movement was pressed and718

ended when the user placed a block at any location or when 40 seconds of moving time (time not dedicated719

to a pick/place action) accumulated. We interleaved pairs of sets of 4 trials for hover and computer vision720

copilot conditions, with the order of each pair randomly generated, and with the same 4 prompts for each721

condition. Users were informed of which condition was active so that they could adjust their control722

strategy accordingly.723

For each trial of the sequences task, after resetting the robotic arm’s position, 4 targets (colored crosses)724

were randomly positioned within the working space, then 4 colored blocks were randomly dropped onto725

the table. If any of the blocks was outside of the reachable area of the arm, or was too close to any other726

block or target (approximately 5 cm), the block was moved to a nearby valid location. The computer vision727

system detected each block and target’s position on the table. These positions were set once movement728

began and were updated according to the robotic arm’s state, i.e. keeping track of the current locations729

of blocks and if targets were occupied. The system did not allow placement of new blocks onto already730

occupied targets, but did allow blocks to be placed at the location from which they were picked up. We731

then generated a list of block-target pairs, and instructed the user to place each block at its respective732

target in that order. If the user picked up a block out of order, they were instructed to replace the block at733

its original location. If this was subjectively too difficult or not possible (due to the occupation of place734

locations), they were instead instructed to place the out-of-order block at its respective target location.735

Whenever the (x,y) position of the robotic arm was within 2.54 cm of the detected center of each block736

or target location, the robotic arm automatically picked up or placed the block on the table. Trials ended737
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when all 4 blocks were placed, when 40 s of moving time elapsed and the trial timed out, or when users738

declined to finish the trial. On some trials, the gripper dropped the block or failed to place the block due to739

improper calibration. These trials were excluded from analysis.740

On earlier trials for S2 sequence task (4/7 trials), the maximum speed was only 4 cm/s, and the robotic741

arm only picked/placed the block when the end effector was within 2.54 cm of the block/target and the742

block/target had the highest score = (rtarget − rrobot) ·∠(v,rtarget − rrobot), where ∠(v,rtarget − rrobot) is743

the angle between the 2D KF velocity v and 2D displacement rtarget − rrobot . This resulted in 2 instances744

on 2 trials where the robotic arm failed to place a block on a target which it entered the radius of (time745

difference 18.4 s, 10.7 s) and 1 instance on the first of the aforementioned trials where the robotic arm746

failed to pick up the correct next block in the sequence and instead picked up an incorrect block (time747

difference 5.3 s). Since these instances decreased performance, we did not modify statistics for these trials.748
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