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Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death
in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system
under the control of the proinsulin promoter to selectively overexpress GPR39 in the β cells in a double transgenic mouse strain
and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in
nonfasting glucose levels and glucose intolerance observed during both food intake and OGTT. Although the overexpression of the
constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance
slightly and to decrease the β-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin-
treated animals. It is concluded that GPR39 functions in a β-cell protective manner and it is suggested that it is involved in some
of the beneficial, β-cell protective effects observed for Zn++ and that GPR39 may be a target for antidiabetic drug intervention.

1. Introduction

GPR39 is a member of the ghrelin receptor family, all of
which are peptide receptors described to be involved in
the peripheral and/or central control of appetite, GI tract
function, energy homeostasis, and metabolism [1–5]. The
GPR39 locus is rather complex with an overlapping antisense
gene LYPD1 and the occurrence of alternative splicing [6].
Importantly, however, the full-length, functional GPR39
receptor is expressed exclusively in peripheral, endocrine,
and metabolic organs such as the endocrine pancreas, the
liver, the kidney, the GI tract, and the white adipose tissue
[6, 7].

GPR39 functions as a zinc sensor being activated by
physiological concentrations of Zn++ which is particularly
interesting in the pancreatic islets where Zn++ is released
in relatively large amounts together with insulin [8, 9].

Although it was reported that a peptide fragment of the
ghrelin precursor called obestatin could act as an agonist
for GPR39 [10], this could not be confirmed [11–14] and
the original report was later retracted [15]. As observed for
key members of this receptor family such as the ghrelin
receptor and the neurotensin NT2 receptor, GPR39 signals
with high ligand independent or constitutive activity [2, 3].
This is observed in the Gq pathway as measured by inositol
phosphate accumulation and, for example, in activation of
serum-responsive-element- (SRE-) regulated transcriptional
activity mainly mediated through the G12/13 pathway [2].

Unchallenged Gpr39-deficient mice have a rather modest
overall phenotype [7, 14]. However, more careful studies
both by Tremblay and coworkers and by our group revealed
that GPR39 deficiency is associated with β-cell dysfunction
including decreased expression of key regulatory genes and
impaired glucose-induced insulin secretion, for example
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from isolated perifused pancreatic islets as well as moderate
glucose intolerance in vivo [16, 17]. The mechanism by which
GPR39 is important for β-cell function is unclear; however,
it could be related to the recently described, general cell
protective effect of GPR39 [18].

In the present study, we exploit the Tet-On system to
create a “knock-in” transgenic mouse strain with inducible
overexpression of human GPR39 selectively in pancreatic
β cells. The mice express the human GPR39 gene under
the control of the tetracycline operator and the reverse
tetracycline-controlled transactivator (rtTA) driven by the
rat insulin promoter (RIP) [19, 20]. Because GPR39 displays
a high degree of constitutive activity an increased expression
of GPR39 will be directly associated with an increased
receptor signaling activity in the β cells independently of an
endogenous ligand.

2. Materials and Methods

2.1. The Transgenic Mouse. B6-TgH(tetGPR39/RIP-rtTA) tr-
ansgenic mice were generated by crossing heterozygous RIP-
rtTA transgenic mice (kindly provided by Dr. Yuval Dor)
with heterozygous tetGPR39 transgenic mice (Figure 1). The
tetGPR39 mice were acquired from Nucleis, and briefly a
construct consisting of an N-terminal FLAG tag linked to the
total coding region for human GPR39 followed by the SV40
polyA signal was inserted into the HPRT locus through target
homologous recombination.

The double transgenic mice were backcrossed into
C57BL/6 for at least three generations and littermates were
used as control.

To verify doxycycline- (DOX-) induced GPR39 expres-
sion, 3 tetGPR39/RIP-rtTA transgenic mice and 6 WT lit-
termates were given DOX in the drinking water (1 mg/mL),
whilst 3 tetGPR39/RIP-rtTA mice were given normal water
(mock) to evaluate leakiness of the system. After 6 days of
DOX or mock treatment, mice were sacrificed and pancreas
was isolated for immunohistochemistry and real-time quan-
titative PCR (QPCR).

2.2. Outline for the Experimental Setup. Mice were treated
with multiple low-dose STZ to induce hyperglycemia [21].
Briefly, intraperitoneal injection (IP) of 40 mg/kg STZ
(diluted in citric acid pH = 4) was carried out on five con-
secutive days.

Two groups consisting of 11 tetGPR39/RIP-rtTA trans-
genic mice and 11 wild-type littermates were treated with
low-dose STZ injections. In parallel two groups consisting
of 7 tetGPR39/RIP-rtTA transgenic mice and 6 wild-type
littermates were mock treated with vehicle injections for
5 days. DOX treatment was initiated 3 days prior to the
injection and maintained throughout the whole experiment
for all four groups.

Using a glucometer (Ascensia Elite XL Diabetes Care Sys-
tem, Bayer HealthCare) nonfasting blood glucose was meas-
ured twice a week in tail blood to follow the development
of hyperglycemia. The nonfasting blood glucose levels were
analyzed by repeated measures (mixed model) ANOVA using
GraphPad Prism version 5.0a.

At day 30, blood glucose and insulin levels in response to
feeding were measured. Mice were fasted for 16 hours prior
to ad libitum feeding whilst tail blood was obtained at times
−30, 0, 20, 40, and 85 minutes to monitor blood glucose
levels, and blood from the orbital sinus was collected at times
0, 20, and 40 minutes to measure plasma insulin levels using
the Sensitive Rat Insulin RIA kit (Millipore). Insulin and
glucose levels were analyzed by repeated measures (mixed
model) ANOVA using GraphPad Prism version 5.0a.

At day 35, oral glucose tolerance test (OGTT) was
performed, glucose (1.5 g/kg body weight) was administered
by oral gavage, at times −30, 0, 10, 20, 30, 60, 90, and 120,
minutes and blood glucose levels were measured in tail blood
using a glucometer. Glucose levels were analyzed by repeated
measures (mixed model) ANOVA and by a Mann-Whitney
t-test using GraphPad Prism version 5.0a.

At day 40, the mice were sacrificed and pancreas was
exsected for immunocytochemistry.

All mice used in this study were male; they were housed
in a light/dark cycle of 12 hours with free access to food
and water. All animal studies were conducted in accordance
with international guidelines and approved by the Animal
Experiments Inspectorate in Denmark, which follows the EU
(86/609/EEC) guidelines.

2.3. QPCR. QPCR was performed using the Mx3000P
(Stratagene), and the SYBR Premix Ex Taq (Takara) was used
for SYBR green-based QPCR. Cycle threshold values were
obtained using Stratagene Mx3000P software, and the delta-
delta Ct method was used to calculate the relative fold change
of RNA levels compared to a calibrator sample. Tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein, zeta polypeptide (Ywhaz) was used as reference
gene. Primer sequences for human GPR39, mice Gpr39,
and Ywhaz were 5′-TCC TGA GGC TGA TTG TTG TG-3′,
5′-GTG TAC AGG AGC GGG TTG AT-3′, 5′-AGT GAG
GAG AGC CGG ACA G-3′, 5′-CAG TCA TGT TTG GGT
TTT GC-3′, 5′-AGA CGG AAG GTG CTG AGA AA-3′ and
5′-GAA GCA TTG GGG ATC AAG AA-3′, respectively.

Exsected tissue was snap-frozen in liquid nitrogen and
stored at −80◦C until RNA was extracted using the SV Total
RNA Isolation System (Promega) followed by cDNA synthe-
sis using the ImProm-II Reverse Transcriptase (Promega).

2.4. Immunohistochemistry and Morphometry. The protocol
has been reported [22]. Briefly, pancreata were fixed in
Stefanini’s solution (2% formaldehyde and 0.2% picric acid
in 0.1 M PBS (pH 7.2)), rinsed in sucrose-enriched (10%)
buffer, and frozen on dry ice. Thereafter sections were cut
(10 μm) and mounted on slides. The sections were stained
for insulin (code 9003, dilution 1 : 1280; Euro-Diagnostica,
Malmö, Sweden), glucagon (code 7811, dilution 1 : 5120;
Euro-Diagnostica), and FLAG (code F7425, dilution 1 : 800,
Sigma-Aldrich) as previously [16].

To quantify β-cell area, 4 sections were taken through
the whole pancreas, with a distance of >100 μm between
each, according to the previously published protocols [23].
Thereafter images of all immunostained islets in each section
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Figure 1: Overview of the generation of the tetGPR39/RIP-rtTA transgenic mice and demonstration of the β-cell specific expression
of GPR39. (a) Schematic diagram of the generation of the tetGPR39/RIP-rtTA transgenic mice by crossing of the RIP-rtTA mouse
with the tetGPR39 mouse. (b) QPCR specific for the transgenic FLAG-tagged human GPR39 performed on whole pancreas. (c, d)
Immunohistochemistry of pancreatic islets from tetGPR39/RIP-rtTA transgenic mice, in (c, d) GPR39 was detected using the M1 anti-FLAG
antibody (green). (c) Antiinsulin antibody (red). (d) Antiglucagon antibody (red).

were taken with a digital camera (Nikon DS-2Mv). The
stained area was measured using BioPix iQ 2.0 software
(BioPix AB, Göteborg, Sweden). β-cell areas were analyzed by
a Mann-Whitney t-test using GraphPad Prism version 5.0a.

3. Results

The double transgenic mice strain B6-TgH(tetGPR39/RIP-
rtTA) displayed tetracycline, that is, DOX inducible expres-
sion of the FLAG-tagged human GPR39 selectively in the
pancreatic β cells as determined by immunohistochemistry
after 6 days of DOX treatment (Figure 1). As often described
in general and specifically for the proinsulin-promoter-
driven Tet-On system some degree of leakiness was observed
[24, 25]. In our case the leakiness corresponded to one fifth
of the expression of the human GPR39 in the pancreas before
DOX administration (Figure 1(b)). In accordance with this,
wild-type littermates were used as controls in the functional
studies.

Repeated low doses of STZ normally induce a gradual
damage of β cells resulting in nonfasting hyperglycemia
[21, 26, 27]. As shown in Figure 2(a), treatment of wild-
type animals with 40 mg/kg STZ for five days as expected
resulted in an increase in nonfasting glucose appearing
after approximately 10 days (open squares) as compared to
vehicle-treated animals (open circles)—all receiving DOX in

the drinking water throughout the experiment. In contrast,
no clear increase in blood glucose was observed after STZ
treatment in the GPR39 transgenic animals (Figure 2(a),
red squares). When compared to the STZ treated wild-
type littermates (open squares) the GPR39 transgenic mice
displayed lower blood glucose throughout the experiment
(P = 0.0007, n = 11, two-way ANOVA).

A controlled feeding experiment was performed on day
30, which demonstrated that fasting blood glucose was nor-
mal and similar in all four groups, that is, around 5 mmol/L
(Figure 2(b)). However, postprandial hyperglycemia was
observed in the STZ treated wild-type animals as com-
pared to the STZ-treated GPR39 transgenic littermates after
presentation of food and eating ad libitum (P = 0.037,
n = 11, two way ANOVA). In fact, the STZ-treated GPR39
transgenic mice displayed a postprandial glucose increase
similar to that observed in the two non-STZ-treated control
groups (Figure 2(b)). The fasting insulin levels were also
similar in all four groups of animals (Figure 2(c)). Although
the postprandial serum insulin 20 min. after food intake
apparently was lower in the STZ-treated wild-type animals
(0.86 ± 0.11 ng/mL, n = 11) compared to the non-STZ
treated control group (1.10±0.09 ng/mL, n = 6), this did not
reach statistical significance (P = 0.15, t-test). Importantly,
just like the glucose level the serum insulin level of the STZ-
treated transgenic GPR39 animals was similar to that of the



4 International Journal of Endocrinology

−5 0 5 10 15 20 25 30 35 40

Time (Days)

7
6
8
9

10
11
12
13
14
15

WT + STZ
TG + STZ TG − STZ

WT − STZ

exp. OGTTSTZ

∗∗∗

Feeding

DOXB
lo

od
gl

u
co

se
(m

m
ol

/L
)

(a)

Time (minutes)

−25 0 25 50 75 100
0

5

10

15

20
Food

presented
∗

B
lo

od
gl

u
co

se
(m

m
ol

/L
)

(b)

Time (minutes)

0 10 20 30 40
0

0.25

0.5

0.75

1

1.25

Food
presented

P
la

sm
a

in
su

lin
(n

g/
m

L)

(c)

Figure 2: Protection against STZ-induced hyperglycemia by β-cell specific overexpression of GPR39 in the tetGPR39/RIP-rtTA mice. (a)
Nonfasting blood glucose levels measured twice a week. DOX was given in the drinking water to all four groups of animals from day 3.
A group of tetGPR39/RIP-rtTA transgenic mice (TG + STZ (red square), n = 11) and a group of wild-type littermates (WT + STZ (open
square), n = 11) were treated with low-dose STZ injections, 40 mg/kg daily from day 0 to day 4. A group of tetGPR39/RIP-rtTA transgenic
mice (TG−STZ (black circles), n = 7) and a group of wild-type littermates (WT−STZ (open circles), n = 6), were mock treated with vehicle
injections from day 0 to day 4. (b, c) At day 28, all animals were fasted for 18 hours before given access to food at time 0: the blood glucose
(b) and insulin (c) were monitored at times indicated. ∗P < 0.05, ∗∗∗P < 0.001 (repeated measures (mixed model) ANOVA performed on
WT + STZ versus TG + STZ).

non-STZ-treated control groups (1.2 ± 0.13 ng/mL, n = 11,
Figure 2(c), red squares).

OGTT performed on day 35 revealed that the low-dose
STZ treatment as expected rendered the wild-type mice
glucose intolerant but not diabetic as their fasting glucose
levels were normal (Figure 3(a), open squares versus open
circles)—as also observed during the food test (Figure 2(b)).
The transgenic over expression of GPR39 in the β cells by
itself seemed to impair the glucose tolerance as determined
during the OGTT (Figure 3(a), black versus open circles).
Nevertheless, the glucose excursions of the STZ-treated
GPR39 transgenic animals appeared to be lower as compared
to their STZ-treated wild-type littermates (Figure 3(a), red
squares versus open squares). Except for the effect of STZ
on the wild-type animals none of these differences reached
statistical significance.

Immunohistochemical analysis after 40 days of treatment
demonstrated a similar but opposite pattern of effects
of STZ treatment on β-cell area as observed for blood
glucose during the OGTT. That is, STZ severely reduced
the β-cell area to 32% in the wild-type animals (P =
0.005, n = 11 STZ treated, n = 6 mock treated,
Mann Whitney), and, like the transgenic overexpression of
GPR39 in itself impaired the glucose tolerance, it apparently
also reduced the β-cell area, that is, to approximately
60%—although the effect was not statistically significant
(Figure 4). The area of β-cells determined in the pan-
creas after STZ treatment of the transgenic animals was
similar to that observed in the STZ-treated wild-type
littermates. Thus, the relative effect of STZ was smaller
in the GPR39 transgenic animals than in the wild-type
animals.
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Figure 3: Effect of β-cell specific overexpression of GPR39 on oral glucose tolerance test (OGTT) after low-dose STZ treatment. (a) OGTT
performed 35 days after STZ treatment (see Figure 2) in tetGPR39/RIP-rtTA transgenic (TG) mice with STZ treatment (red square) n = 11,
in wild-type littermates (WT) with STZ treatment (open squares) n = 11, in WT mock-treated mice (open circles) n = 6, and in TG mock-
treated mice (black circles) n = 7. ∗∗P < 0.01 (repeated measures (mixed model) ANOVA performed WT + STZ versus WT− STZ). (b) area
under the curve, ∗∗∗P < 0.001 (Mann-Whitney t-test). a.u.: arbitrary units.

0

0.25

0.5

0.75

1

WT

−
TG

+

WT TG

−

∗

STZ +

(a
.u

.)

(a)

WT

TG + STZTG

WT + STZ

(b)

Figure 4: Quantification of the β-cell area in pancreatic islets by immunohistochemistry. (a) WT mock-treated mice (empty bars − STZ)
n = 7 and tetGPR39/RIP-rtTA transgenic (TG) mock-treated mice (black filled bars − STZ) n = 6. WT STZ treated (empty bars + STZ) n =
5, tetGPR39/RIP-rtTA transgenic (TG) STZ-treated mice (red filled bars + STZ) n = 5. ∗P < 0.05 (Mann-Whitney t-test). (b) Representative
islets stained with anti-insulin (green) and anti-glucagon antibodies (red). a.u.: arbitrary units.

4. Discussion

It has previously been demonstrated that Gpr39 deficiency
leads to impaired β-cell function with decreased glucose
induced insulin secretion and moderate glucose-intolerance
[16, 17]. GPR39 was in the present study overexpressed in
a β-cell specific, inducible manner in a double transgenic
strain of mice using the Tet-On system under the control
of the proinsulin promoter. Although the overexpression in
itself appeared to affect the β-cell mass and impaired the
glucose tolerance slightly, it nevertheless totally protected
against the gradual hyperglycemia observed after low-dose

STZ treatment of wild-type littermates. Thus, the zinc-sensor
GPR39 appears to function in a β-cell protective manner
and could accordingly be a target for antidiabetic drug
intervention. It was recently shown by transgenic expression
of a specifically designed 7TM receptor, which could be
activated by a pharmaceutical compound that acute, selective
Gαq activation in the β cells leads to improved glucose
tolerance and increased insulin secretion [28]. Since the
GPR39 receptor signals mainly through Gαq [2] and is
normally expressed in the β cells, the observation of Guettier
and coworkers together with the previous studies in Gpr39-
deficient mice [16, 17] and the present study with β-cell
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specific overexpression of GPR39 all support the notion that
GPR39 could function as an interesting antidiabetic drug
target.

GPR39 and Zinc in Islet Protection. GPR39 was originally
discovered by simple homology screening for novel members
of the ghrelin receptor family [29]. Interestingly, however,
GPR39 was recently “rediscovered” as one out of two,
highly upregulated 7TM receptors in a naturally occurring,
apoptosis-resistant cell line [18]. Subsequent transfection
of GPR39 into other cell lines protected these cells against
oxidative and endoplasmatic reticulum stress, which was
not the case with the other receptors [18]. The notion
that the zinc-sensor GPR39 particularly in the endocrine
pancreas could be involved in the adaptive, protective
response to stress and cell damage is supported by the fact
that apoptosis of pancreatic islet cells is associated with
the release of intracellular storages of zinc from the dying
cells [30]. Importantly, as we in the present study find
that GPR39 overexpression protects against the development
of nonfasting hyperglycemia, zinc-sulfate-enriched drinking
water has been reported to prevent STZ-induced diabetes
in mice [31, 32] and, importantly, to protect against the
spontaneous development of diabetes in both NOD mice
and biobreeding rats [31, 33]. It is tempting to suggest that
the zinc-sensor GPR39 with its cell protective properties
could be involved in some of these beneficial effects of zinc.
However, GPR39 may not only protect islets from apoptosis
but may also be involved in proliferative, adaptive responses
of the islets as Tremblay and coworkers found that Gpr39-
deficient mice do not display the normal pancreatic islet
hyperplasia in response to diet-induced obesity [17]. In view
of the documented islet protective properties of GPR39, an
agonist of GPR39 could potentially be useful in the treatment
of diabetes where the β cells are under oxidative stress [34,
35].

Transgenic Overexpression as a Model of Agonist Action.
Overexpression of GPR39 is in the present study employed
as a tool trying to mimic a situation with continuous GPR39
agonist treatment. An issue in this approach in general
is whether you obtain appropriate receptor signaling and
in the appropriate situation. With GPR39 we do obtain
a protection of the β cells when they are challenged as
judged from the prevention of the increase in nonfasting
blood glucose after STZ treatment (Figure 2). However,
the transgenic overexpression of GPR39 apparently in itself
impairs glucose tolerance and affects β-cell mass—albeit
not significantly (Figures 3 and 4). This situation, where
a signal obtained through transgenic overexpression can
function as both “friend and foe,” is not atypical and has,
for example, been suggested for the G protein subunit αq

(Gαq) where the effect of the signaling also is balancing
between promoting cell survival and apoptosis [36, 37].
This could be relevant for the GPR39 receptor which
signals through Gαq but probably also through G12/13
[2]. However, because GPR39 displays high constitutive
signalling, the increased transgenic expression of the receptor
will in itself directly lead to increased signaling activity

independent of the presence of agonist. In other words, it
is possible that a high level of receptor expression will lead
to an inappropriate degree of signaling in the unchallenged
situation, that is, when the β cells are not in a stress situation.
Likewise, counter regulatory effects from constitutively Gs
signaling in the β cells have been observed [28]. Post-
transcriptional regulation renders the correlation of RNA to
protein very complicated even when comparing the same
RNA transcript under various conditions [38, 39]. Thus,
predicting protein levels based on the two very different RNA
transcripts endogenous Gpr39 and the transgenic GPR39 is
inherently flawed. So although the expression level of the
transgenic, human GPR39 appears to be rather moderate,
that is, only approximately 1.5-fold on top of the endogenous
mouse Gpr39 expression (data not shown), the protein
level could be much higher. At least it appears that care
should be taken in increasing GPR39 signaling in the β cells
in the unchallenged situation as this may impair glucose
tolerance in itself. However, at the end of the day when
pharmacological agonist tools for GPR39 are available it may
simply be a question of using the right dose and treating at
the right time.
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