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a b s t r a c t 

The outbreak of COVID-19 around the world has caused great pressure to the health care system, and 

many effort s have been devoted to artificial intelligence (AI)-based analysis of CT and chest X-ray images 

to help alleviate the shortage of radiologists and improve the diagnosis efficiency. However, only a few 

works focus on AI-based lung ultrasound (LUS) analysis in spite of its significant role in COVID-19. 

In this work, we aim to propose a novel method for severity assessment of COVID-19 patients from LUS 

and clinical information. Great challenges exist regarding the heterogeneous data, multi-modality infor- 

mation, and highly nonlinear mapping. To overcome these challenges, we first propose a dual-level su- 

pervised multiple instance learning module (DSA-MIL) to effectively combine the zone-level represen- 

tations into patient-level representations. Then a novel modality alignment contrastive learning module 

(MA-CLR) is presented to combine representations of the two modalities, LUS and clinical information, 

by matching the two spaces while keeping the discriminative features. To train the nonlinear mapping, 

a staged representation transfer (SRT) strategy is introduced to maximumly leverage the semantic and 

discriminative information from the training data. 

We trained the model with LUS data of 233 patients, and validated it with 80 patients. Our method 

can effectively combine the two modalities and achieve accuracy of 75.0% for 4-level patient severity 

assessment, and 87.5% for the binary severe/non-severe identification. Besides, our method also provides 

interpretation of the severity assessment by grading each of the lung zone (with accuracy of 85.28%) 

and identifying the pathological patterns of each lung zone. Our method has a great potential in real 

clinical practice for COVID-19 patients, especially for pregnant women and children, in aspects of progress 

monitoring, prognosis stratification, and patient management. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

To date, the COVID-19 pandemic has led more then 200 mil- 

ion confirmed cases and 743,487 reported deaths as of August 
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Age: 46
Medical history: None
Symptom: None

Pa�ent severity: mild, moderate, severe, cri�cal severe

Age: 61
Medical history: None
Symptom: Fever, Fa�gue, Cough, Dyspnea, Chest 
�ghtness, Sore throat
Pa�ent severity: mild, moderate, severe, cri�cal severe
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Fig. 1. Two examples for patient LUS data and clinical information. Unknown number of missing lung zones and the different format of LUS videos and images for the rest 

zones make the data highly heterogeneous; the clinical information provides helpful cues for analysis and also brings difficulty of combining two totally different sources of 

modalities; Learning the highly nonlinear mapping between the patient severity and the input LUS data is of great challenge. 
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3, 2020 ( WHO ). Given the high contagious rate, long incubation 

eriod and relatively high mortality rate, both early identification 

f infected patients and effective monitoring of critically severe 

atients are very important to control the pandemic and reduce 

ortality. While viral nucleic acid detection using real-time poly- 

erase chain reaction (RT-PCR) remains the standard of reference, 

hest CT has been proved of high sensitivity ( Ai et al., 2020; Fang

t al., 2020 ) and become an important tool for early diagnosis of 

OVID-19. However, CT scan is not suitable for children and preg- 

ant women, and is inconvenient for severely ill patients, due to 

ts radiation and non-portability. 

Lung ultrasound (LUS), due to its portability, real-time imag- 

ng capability and avoidance of radiation exposure, has become 

 safe bedside alternative imaging method for COVID-19 pa- 

ients ( Smith et al., 2020 ). LUS refelecting the state of lung aeration

y the generated acoustic artifacts can be used as a diagnostic and 

espiratory monitoring tool in the ICU ( Via et al., 2012 ). It has been

roved to be highly sensitive and specific( Laursen et al., 2014 ) for 

atients with respiratory symptoms, and has been used for daily 

onitoring of patients ( Mongodi et al., 2017; Laursen et al., 2014 ), 

nd for diagnosis and follow up of community acquired pneumo- 

ia (CAP) ( Reissig et al., 2012 ). 

During the pandemic, LUS has been employed for combating 

he spreading of COVID-19 across the world. A review of these 

arly experiences in LUS in the diagnosis and management of 

OVID-19 can be found in ( Sultan and Sehgal, 2020 ). LUS is sen-

itive for detecting COVID-19 lung abnormalities and has similar 

ccuracy compared to chest CT ( de Gracia et al., 2020; Fiala, 2020 ).

orrelated characteristic findings between CT and ultrasound were 

lso summarized in Sultan and Sehgal (2020) . 

In summary, LUS can be used for 1) diagnosing symptomatic 

atients ( Buonsenso et al., 2020b; Poggiali et al., 2020; Bar et al., 

020 ), 2) prognostic stratification and monitoring ( Buonsenso 

t al., 2020b; Tung-Chen, 2020 ), 3) management of ICU patients 

ith regard to treatment resources ( Via et al., 2012; Volpicelli 

t al., 2020 ), and 4) monitoring the effect of therapeutic mea- 

ures ( Via et al., 2012; Tung-Chen, 2020; Soldati et al., 2020b ). Be-

ides, LUS is also a favorable techinique for pregnant women and 
2 
hildren ( Buonsenso et al., 2020a ). Given the role of LUS for COVID-

9, standardization ( Soldati et al., 2020a ), protocol ( Manivel et al., 

020 ) and guidelines ( Moore and Gardiner, 2020 ) of the use of LUS

or COVID-19 patients are proposed. 

When the imaging data are available, efficient analysis is a key 

actor for rapid decision making and treatment. To reduce the 

eavy workload of radiologists and improve the efficiency of the 

iagnosis pipeline, artificial-intelligence (AI) has been quickly in- 

roduced for analyzing COVID-19 images. Many effort s have been 

evoted into this area ( Shi et al., 2020a; Dong et al., 2020 ) and

chieved promising results. However, most of them focused on CT 

mages, while only a few work contributed to intelligent analysis 

f LUS. Due to the dynamic scanning procedure of ultrasound, AI- 

ased analysis for LUS can not only improve the work efficiency 

nd alleviate the pressure on sonographers, but also reduce the ob- 

erver variation and provide stable results to clinicians. 

In this work, we build a systematic framework for severity as- 

essment of COVID-19 patients from LUS data and clinical informa- 

ion. Specifically, when given the LUS images/videos from 12 (or 

ess) lung zones and the clinical information of a COVID-19 patient 

 Fig. 1 ), the system is capable of 1) identifying the characteristic 

US patterns associated with COVID-19 infection; 2) evaluating the 

US zone score from these patterns, and 3) assessing the patient’s 

everity by integration of LUS findings of all lung zones and clinical 

nformation. The first two tasks are auxiliary tasks and help extract 

iscriminative features from the LUS data for the third task. Great 

hallenges exist for this task, which can be summarized as: 

• Data heterogeneous of LUS data for patients with various dis- 

tributions and degrees of lung infection ( Fig. 1 ). The LUS data 

for each lung zone can either be a dynamic video sequence, a 

static image or even no image. The system should be capable 

of dealing with the incomplete and inconsistent LUS data, and 

evaluating patient severity from them. 
• Multi-modality of system input, which includes both the LUS 

data and the clinical information for each patient. Leveraging 

both, other than using one of them alone, can help improve the 

system performance. 
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• Highly nonlinear mapping between the high dimensional in- 

put of LUS data and the scalar output of patient severity. Ef- 

fective learning of discriminative features from LUS data is the 

key point to achieve accurate predictions. 

In this work, we overcome these challenges and make the fol- 

owing contributions: 

• We conducted the first large scale research for AI-based LUS 

analysis of COVID-19 and built an effective framework, which 

can assess the clinical severity of patients into four types with 

accuracy of 75.0%, and into severe/non-severe types with ac- 

curacy of 87.5%. From the intermediate results, our method can 

identify the critical infected lung zones with LUS zone score (2- 

way accuracy of 85.28%) and indicate the characteristic patho- 

logical patterns (Hit Ratio of 80.4 for B-line). 
• We designed a dual-level supervised attention-based multiple 

instance learning (DSA-MIL) module, which can flexibly com- 

bine the heterogeneous LUS images and videos, while leverag- 

ing supervision from both the LUS zone scores and the patient 

severity, therefore leading to discriminative LUS features. 
• We proposed a modality alignment contrastive learning of rep- 

resentation (MA-CLR) module, which can force the representa- 

tions of LUS data and clinical information to align with each 

other while keeping their respective discriminativeness, there- 

fore combining the two modalities effectively for patient sever- 

ity prediction; 
• We learned the framework following a staged representation 

transfer (SRT) pipeline, which explores pixel-level semantic 

space, zone-level discriminative space, and then patient-level 

representations sequentially, therefore greatly alleviating and 

accelerating the learning procedure of the highly nonlinear 

mapping. 

The rest of the paper is organized as follows. We first introduce 

xisting work for AI-based analysis of COVID-19 imaging data in 

ection 2 . Then in Section 3 we describe the materials we use for

atient severity assessment, including the fundamentals of LUS for 

iagnosis of COVID-19, the clinical information, and the annotation 

rocedure. In Section 4 , the whole system for patient severity as- 

essment is first briefed. Then details of the system, including the 

ultiple instance learning, the contrastive learning and the staged 

raining procedure, are given. Section 5 demonstrate the experi- 

ents and analyze the results. Section 6 concludes the paper and 

iscusses the limitations. 

. Related work 

Since the high sensitivity of CT image for diagnosis of COVID- 

9, the heavy load of the reading work, and the shortage of ra- 

iologists, urgent needs of reliable automatic systems for diag- 

osis of COVID-19 emerge across the whole world to combat 

he virus. Existing work of AI-based COVID-19 diagnosis from CT 

cans can be categorized into two groups: 1) identification of 

OVID-19 disease from other pneumonia or normal cases; 2) lesion 

uantification and severity assessment. We recommend the reader 

hi et al. (2020a) and Dong et al. (2020) for more comprehensive 

eview of existing AI applications for COVID-19. 

.1. Identification of COVID-19 

By making use of the clinical diagnosis result, as well as ex- 

sting CT images, much effort s have been devoted into identi- 

cation of the novel pneumonia from normal cases and other 

ypes of pneumonia, either by deep learning models or by apply- 

ng classifiers on hand-crated features. Wang et al. (2020a) con- 

uct a proof-of-principle work for classification of CT images of 
3 
OVID-19 versus viral pneumonia with Inception transfer learn- 

ng on CT images. Xu et al. (2020) established a screening model 

o distinguish CT samples of COVID-19 from Influenza-A viral 

neumonia and healthy cases, through a 3D convolution neu- 

al network (CNN) for candidate region segment ion and another 

ocation-attention model for classification. Shi et al. (2020b) pro- 

osed to screen COVID-19 from CAP based on handcrafted fea- 

ures from thin-section CT images. They designed an infection size 

ware random forest for patients with different range of infec- 

ion size and obtained accurate results on a large scale dataset. 

ai et al. (2020) utilized an EfficientNet B4 network ( Tan and 

e, 2019 ) for identification of COIVD-19 from other pneumonia 

ith abnormal CT slices from a large dataset of 1186 patients, and 

chieved a test accuracy of 96%, sensitivity of 95%, and specificity 

f 96%. The system also helped improve radiologists’ performance 

rom accuracy of 85% to 90%. 

There are models that take advantages of existing dataset for 

ung region segmentation, with which more discriminative fea- 

ures can be obtained, thereby leading to improved classification 

erformance. Zheng et al. (2020) proposed COVID-19 detection 

ethod that predict the infectious probability from 3D CT vol- 

mes, with a pre-trained lung segmentation UNet and another 

D probability prediction network. Wang et al. (2020b) developed 

 DL system with large scale of CT scans to identify COVID-19 

rom other pneumonia and stratify patients into high-risk and 

ow-risk groups, with a DenseNet121-FPN for lung segmentation 

nd another DenseNet-like structure for diagnosis and prognosis. 

i et al. (2020) employed a deep network to classify chest CT im- 

ges from 3322 patients into COVID-19, CAP, and non-pneumonia 

NP). The methods employed a U-net for lung ROI segmentation 

nd a ResNet50 as the backbone for the prediction. 

Without fine grained ground truth annotations, lung le- 

ions can also be detected in the classification method as 

lass activation map (CAM) through a gradient-based method. 

n Song et al. (2020) a pre-trained ResNet50 that equipped with 

he Feature Pyramid Network (FPN) and an attention module 

as used to the discriminating COVID-19 patients from oth- 

rs, and localize the GGO in CT images. The obtained image- 

evel predictions were aggregated by mean pooling to achieve 

he final patient-level prediction. Hu et al. (2020) proposed to 

etect the infection region by identifying COVID-19 CT images 

rom CAP and NP in a weak-supervised manner. A multi-view 

-net trained with an open dataset was first used for infer- 

ncing the delineation of the lung area, which was then used 

or multi-scale classification. Categorical-specific saliency map 

as obtained through gradient method for lesion localization. 

u et al. (2020) proposed a joint classification and segmenta- 

ion method to achieve explainable COVID-19 detection system 

y learning from image-level classification labels and pixel-level 

esion annotations. Ouyang et al. (2020) proposed an online at- 

ention module in 3D CNN to identify COVID-19 from CAP with 

 dual sample strategy to tackle the imbalanced distributions of 

he size of infection regions. Di et al. (2020) proposed a uncer- 

ainty vertex-weighted hypergraph learning method for identifying 

OVID-19 from CAP with image features and radiometric features. 

ther classification work includes detection of COVID-19 from neg- 

tive cases ( Jin et al., 2020b; 2020a; Liu et al., 2020a ), image-level

nd patient-level detection of COVID-19 ( Chen et al., 2020a ), ra- 

iomics models for prediction of hospital stay (long term or short 

erm) ( Qi et al., 2020 ). 

Our work shares a similarity with the recent work 

ei et al. (2020) , which used artificial intelligence (AI) algo- 

ithms to integrate chest CT findings with clinical symptoms, 

xposure history, and laboratory testing for diagnosis of COVID-19. 

n their work, only directly concatenation of the CNN features 

or CT image and the clinical data was used. In our work, we 
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daptively combine clinical information (age, symptoms, medical 

istory) with a bag of LUS image/video for the severity assessment 

f COVID-19 patients. It’s worth to note that the exposure history, 

nd laboratory testing are not included in our work. This makes 

ur task more difficult. 

.2. Quantification and severity assessment 

Once the suspected cases are confirmed, it’s important to as- 

ess the patient’s severity, monitor the progress, and evaluate 

he effect of the treatment. Severity assessment therefore play 

ignificant role in these condition. Automatic AI-based severity 

ssessment from imaging data can make the task more effi- 

ient. Shan et al. (2020) developed a deep learning (DL) based 

ethod VB-Net for automatic segmentation and quantification 

f infection lung regions from chest CT scans. A human-in-the- 

oop strategy was used to accelerate the manual delineation. 

haganti et al. (2020) proposed a deep learning method that can 

etect and quantify the abnormal tomographic patterns present in 

OVID-19, which include ground glass opacities (GGO) and consol- 

dations. Two severity measure were also introduced for the ex- 

ent of COVID-19 abnormalities and the presence of high opaci- 

ies. Liu et al. (2020b) proposed to synthesize COVID-19 CT im- 

ges by inpainting the main patterns of the disease on to CT 

mages from control patients with 3D generative adversarial net- 

ork. The obtained data were than used for performance improve- 

ent of lung segmentation, lesion segmentation and percentage 

f opacity prediction. Tang et al. (2020) proposed a random forest 

odel to assess the severity (non-severe or severe) of 176 COVID- 

9 patients from of chest CT images using 63 quantitative fea- 

ures that were obtained by a COVID-19 chest CT analysis tool. In 

hen et al. (2020) , a scheme including segmentation of the lung 

nd the pulmonary vessels, and detection of pneumonia was used 

o quantify parameters of lung volume, lesion volume, lesion per- 

entage, and mean lesion density of the whole lung, right lung, left 

ung, and each lobe, which were then used to evaluate the severity 

f COVID-19. Gozes et al. (2020) proposed a pipeline for COVID-19 

T image analysis, which include a UNet architecture for lung seg- 

entation, a ResNet-50 for classification of normal and abnormal 

ases, and a gradient-based method for lesion localization. Based 

n the 3D localization map, they proposed a quantitative corona 

core for severity estimation. He et al. (2020) proposed a combi- 

ation framework of lung lobe segmentation and severity assess- 

ent, where volumetric CT image was represented by multiple 2D 

mage patches, U-net structure was used for patch-wise segmenta- 

ion, and hierarchy multiple instance learning was used for sever- 

ty. Zhang et al. (2020) developed an AI system for classification of 

OVID-19 from CAP and normal controls, and analyzed important 

linical markers that correlation with the lung lesions of COVID-19 

atients. Zhu et al. (2020) predicted whether and when a COVID-19 

atient would develop a severity symptoms from disease-related 

and-crafted features using a sparse logic regression with class 

alancing strategy. 

.3. AI-based LUS analysis for COVID-19 

No large scale research for AI-based LUS analysis of COVID-19 

ave been reported. Karaku ̧s et al. (2020) proposed a algorithm for 

etection of B-line, which provides vital information for the stage 

nd progression of COVID-19, through a non-convex regulariza- 

ion problem in the Radon transform domain, with a Cauchy-based 

enalty function. The method was validated with LUS images from 

 patients only, and cannot be used for detection of other artifacts 

ssociated with COVID-19. Roy et al. (2020) proposed a deep neu- 

al network based on Spatial Transformer network to predict the 

rame-level severity of LUS videos, and then aggregate them into 
4 
ideo-level severity score. A separate UNet was trained for seg- 

entation of COVID-19 lesion. In this work, an LUS dataset con- 

aining 277 videos from 35 patients was used, among which 80 

ideos from 11 patients were kept for test. It’s worth to note that 

o patient-level severity score was obtained in this work, which 

lays critical role for treatment decision, progression monitoring, 

nd management of medical resources (e.g, mechanical ventilator). 

Our work differs from this work a lot and takes more ambi- 

ious steps toward AI-based LUS analysis in the following aspects: 

) Combination of multi-modality information, i.e., LUS and clinical 

nformation is used to achieve more reliable severity assessment; 

) Highly nonlinear mapping is build from the imperfect high di- 

ensional heterogeneous LUS data to the scalar of patient sever- 

ty; 3) Incorporating 313 COVID-19 patients (images or videos from 

791 lung zones), which is the largest scale of research on AI-based 

US analysis of COVID-19 patients. 

. Materials 

.1. Image acquisition 

The dataset was retrospectively collected from multiple cen- 

ers in Wuhan, including Cancer Center of Union Hospital, West 

f Union Hospital, Jianghan Cabin Hospital, Jingkai Cabin Hospital, 

eishenshan Hospital, and with various ultrasound devices (Min- 

ray M7, M8, M9 and GE Logiq E9, Logiq e Portable Ultrasound 

achine). All the patients were previously diagnosed as COVID- 

9, with different degrees of severity. For each patient, up to 

welve lung zones were examined, following the 12-zone proto- 

ol Kruisselbrink et al. (2017) , with six chest areas per side based 

n a division of each hemithorax into anterior/lateral/posterior and 

pper/lower zones ( Fig. 1 ). To improve the speed of examination 

or COVID-19 patients, it’s assumed that none or only one static 

mage was saved if a lung zone shows no abnormal findings. For 

hose lung zones with abnormal findings, an ultrasound video with 

 duration of up to 3 respiratory cycles (about 10 s at 30 frames 

er second) was saved. Therefore, the collected LUS data is highly 

eterogeneous across different patients. 

.2. Fundamentals of LUS for COVID-19 

The fundamental of LUS is based on the relative amounts of air 

nd fluid, i.e, air/fluid ratio, which determines the characteristics of 

he image, and may vary according to the state of aeration of the 

ung. For normally aerated lung, the visceral pleura-lung air bound- 

ry reflects amost all of the incident ultrasound and generates a 

hite hyperechoic horizontal line (pleura line). The reverberation 

etween the pleural line and the probe yields transverse artifacts 

A lines) parallel to the pleural line. Partial loss of aeration gen- 

rates discrete 3D aerated structures that yield longitudinal laser- 

ike artifacts (B lines). Complete absence of air beneath the vis- 

eral pleural makes favorable conditions for ultrasound transmis- 

ion and generates a representation of lung tissue as consolidation. 

or COVID-19 patients, characteristics findings include thickened 

r unsmooth pleura line, discontinuous/fused B lines, and multiple 

onsolidations ( Sultan and Sehgal, 2020; Peng et al., 2020; Volpi- 

elli et al., 2020 ). 

.3. Annotation 

A total of 473 laboratory confirmed COVID-19 pneumonia pa- 

ients were initially collected, among which 313 patients (male: 

69; female: 144) were included in our work. The patients’ age is 

rom 17 to 97, with median of 59 years old. According to Chinese 

linical Guidance for COVID-19 Pneumonia Diagnosis and Treat- 
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Fig. 2. Overall architecture. The representation learning follows a pipeline of LUS pattern segmentation, LUS zone score prediction, and patient-level severity assessment, 

during which the representation of LUS data transfers progressively into a discriminative feature. The variable at the bottom-right of the rectangle means the repetitions of 

the operation inside that rectangle. For video with N frames, the segmentation has to be repeated N times; for patients with data of K lung zones available, the LUS zone 

score prediction has to be repeated K times. The dashed line represents the two representation transfer in our training procedure. 
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ent 2 issued by the China National Health Commission, all pa- 

ients were classified into four types (please refer to the guideline 

or more details): 

• Mild: the clinical symptoms are mild, with no sign of pneumo- 

nia on chest imaging; 
• Moderate: fever and respiratory symptoms, with positive radio- 

logical assessment of pneumonia; 
• Severe: shortness of breath, less oxygen saturation, less alveo- 

lar oxygen partial pressure/fraction of inspiration or significant 

progression of lesion from pulmonary imaging with 24–48 h; 
• Critical severe: respiratory failure requiring mechanical ventila- 

tion, shock, or failure of other ograns requiring ICU monitoring 

and treatment. 

We denote this as patient severity ( ps ). 

For each lung zone, an LUS zone score ( zs ) was given by 

linicians to indicate the severity of that lung zone following 

he standard of: 0, normal; 1, presence of 3 ∼5 B-lines; 2, ≥6 

-lines or irregular pleura line; 3, fused B-lines or thickening 

leura line; 4, consolidation. Similar scoring standard can be found 

n ( Smith et al., 2020; Soldati et al., 2020a ). For 173 of the pa-

ients, characteristic ultrasound patterns in each lung zone were 

anually delineated for up-to 10 frames of the video or for the 

tatic image. These patterns include pleura line, A-line, B-line, 

nd lung consolidation. Detail introduction of them can be found 

n Kruisselbrink et al. (2017) . Examples can be found in Fig. 7 . 
2 http://kjfy.meetingchina.org/msite/news/show/cn/3337.html , accessed May 1, 

020. 

t

t
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5 
.4. Clinical information 

Clinical information was also collected along with the LUS data 

or 443 patients, with records of patient’s age, medical history of 

isease of cardiovascular, digestive, respiratory, and nervous sys- 

ems, and symptom presence of fever, cough, dyspnea, pharyngal- 

ia, diarrhea, headache, etc. This clinical information can provide 

omplementary information to LUS for the task of patient sever- 

ty assessment, and is included as part of the criterion for patient 

lassification according to the guideline. 

. Method 

To assess patient severity accurately using the challenging het- 

rogeneous LUS data along with clinical information, we propose 

 staged representation transfer (SRT) framework to transfer dis- 

riminative features in a bottom-up manner. The whole pipeline 

onsists of three sequentially training procedures: 1) frame-level 

US pattern segmentation, 2) zone-level LUS score prediction, and 

) patient severity assessment (see Fig. 2 ). Details of these proce- 

ures are presented below. The subscripts i, k, n indicate the n th 

rame of the k th lung zone of the i th patient. For the patient i, the

umber of lung zone is denoted as K i , and the frame number of 

one k is denoted as N ik . 

.1. Pipeline of staged representation transfer for LUS 

Utilizing high dimensional LUS data and clinical information to 

lassify patients into four types of different severity is a non-trivial 

ask. To tackle this, we propose to break down the problem into 

hree tasks with increasing difficulty. The features and information 

earned from earlier tasks provide a scaffolding for later and more 

hallenging task. Fig. 2 shows the overall architecture of our frame- 

ork. 

http://kjfy.meetingchina.org/msite/news/show/cn/3337.html
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Fig. 3. Dual-level supervised multiple instance learning. Both the instance-level and 

the bag-level supervision are used to help patient representation learning. 
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LUS pattern segmentation The characteristic findings, such as 

leural line, B-line and lung consolidation, are indispensable to ac- 

urate diagnosis of COVID-19. To embed this knowledge in the fi- 

al decision-making, we design a model to segment these LUS pat- 

erns. The model deploys a VGG encoder as the backbone for rep- 

esentation learning, on top of which three different heads are at- 

ached. The first one is a decoder head for semantic segmentation 

f these patterns. The encoder and decoder form a UNet-like ar- 

hitecture, and is trained with combination of Dice loss and cross- 

ntropy loss. By this way, the obtained latent frame-level repre- 

entation f i,n for the n th frame of patent i is endowed with rich 

emantic information and could be beneficial to the following LUS 

one score prediction and patient severity assessment. To make the 

etwork capable of processing the huge amount of LUS data for 

ne patient, we make the network a light-weight model. 

LUS zone score prediction A lung can be partitioned into 12 

ones ( Kruisselbrink et al. (2017) ), and it is important to recog- 

ize the impairment of each of them. To achieve this, we de- 

ise a classification model, within which a optional aggregating 

odule is used to transform the obtained frame-level features 

 f i,k, 1 , f i,k, 2 , . . . f i,k,N ik 
] into the same space as the image-level fea-

ure, therefore make our method capable of dealing with hetero- 

eneous data in a mixture of images and videos. Temporal average 

ooling is used to aggregating frame-level features into zone-level 

eatures, which is denoted as x i,k . Finally, x i,k is passed to a fully-

onnected layer and categorizes the input into five class. Through 

his procedure, the infection degree of each zone is further incor- 

orated into x i,k and could be transfer to the next level. A bag of

one-level representations can be obtained for each patient to pre- 

ict the patient severity. Details of this model can be found in the 

iddle part of Fig. 2 . 

Patient severity assessment The last model predict the severity of 

 patient using both LUS data and clinical information. The zone- 

evel features of all available zones, i.e, x i,k for all zones, are first 

used together with a multiple instance learning module (DSA- 

IL). The resulted patient-level LUS feature is then aligned and 

ombined with the clinical information by a contrastive learning 

CMA-CLR) module to predict the patient severity. These two novel 

odules will be explained in details below. 

.2. Dual-level supervised attention-based multiple instance learning 

Predicting the patient severity ps i of patient i from a bag of 

ung zone representation X i = { x i,k , k = 1 . . . K i } can be viewed as

 classical multiple instance learning (MIL) problem ( Chen et al., 

006 ): 

ps i = g(σ ({ f (x i, 1 ) , f (x i, 2 ) , . . . , f (x i,K i ) } )) . (1)

here σ is a permutation-invariant MIL operator that give the bag 

rediction or representation from the instance score or represen- 

ations, and can be implemented as max-pooling, average-pooling 

r recurrent neural network. Two different cases exist for f . When 

f is a instance-level classifier, g is an identity function. When f is 

 nonlinear function that transforms input feature into a low di- 

ensional space, g acts as a bag-level classifier. MIL has been em- 

loyed in CT-based COVID-19 patient screening ( Han et al., 2020 ) 

nd severity assessment ( He et al., 2020 ), with 2D CT patches and

D CT patches respectively. In He et al. (2020) , two-level MIL was 

sed to obtain the volume feature for severity assessment. 

In the work of Ilse et al. (2018) , the attention mechanism was 

ntroduced into MIL model and used for average-pooling of the in- 

tance representation with adaptive weights. The weight of each 

nstance was obtained through an attention module and provided 

nterpretation of the instance-bag relationship. The attention-based 
6 
IL can be formulated as: 

 i = 

K i ∑ 

k =1 

a k f (x i,k ) (2) 

here 

 k = 

exp ( W 

T 
a ma x ( V a f ( x i,k ) , 0)) ∑ K i 

l=1 
exp (W 

T 
a max (V a f (x i,l ) , 0)) 

(3) 

s the attention vector and can be used for interpreting the im- 

ortance of each instance. W a and V a are the parameters of two 

iner transformations, between which the ReLU nonlinear function 

s used. 

In our work, we aim to learn a bag-level representation with 

aximal discriminativeness from patient’s LUS data of all lung 

ones to achieve a reliable severity assessment. To this end, we 

ropose a dual-level supervised attention-based MIL module, or 

SA-MIL, as shown in Fig. 3 . Different from existing MIL method 

hat only predict the bag label from b i , we propose to supervise 

he learning of MIL with both the bag label and instance labels, 

.e, ps and zs in our case. Therefore, a prediction of LUS zone score 

robability ˆ zs i,k from each f (x i,k ) can be obtained by a linear map- 

ing W z and a softmax function. The probability of patient severity 

ˆ ps i can be obtained from b i by a linear mapping W p1 and a softmax 

unction.The loss function of the dual-level supervision is: 

 

DS = 

1 

S 

S ∑ 

i =1 

[ 

CE(ps i , ˆ ps i ) + 

1 

K i 

K i ∑ 

k =1 

CE(zs i,k , ˆ zs i,k ) 

] 

(4) 

here CE is the cross-entropy loss for classification, S is the to- 

al number of patients. Note that when the clinical information 

s used, ˆ ps i is obtained from combination of the two modali- 

ies, which is described below. The key difference between the 

IL module of our method and He et al. (2020) is that both the 

nstance-level and bag-level supervision are used in our MIL mod- 

le. 

.3. Modality alignment contrastive learning of representation 

While LUS itself can provide a good severity assessment, we try 

ur best to combine both the patient’s LUS data and the clinical 

nformation, with the expectation of further improving the perfor- 

ance. However, the clinical information is very different from the 

US data and may be recorded at a different time from the acqui- 

ition of LUS. Misalignment may exist between the two modalities 

nd undermine the combination of them, as can be seen in row 

ONCAT of Table 4 that direct concatenation leads to obvious per- 

ormance decrease. Thus it’s important to design a module that can 

ffectively combine them. 

We propose a novel modality alignment contrastive learning 

f representation (MA-CLR), which can make the two modali- 

ies align to each other, and in the meantime maintain the dis- 
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Fig. 4. Modality alignment contrastive learning of representation. Patients i, j, k 

are of different severities. The blue arrow maximizes the agreement between LUS 

and clinical information of the same patient, therefore make the two modalities 

aligned; the red arrow minimize the inter-class agreement of two patients with 

different severities, therefore keep the discriminativeness; an additional constraint 

sim (v i , v k ) ≤ sim (v i , v j ) makes this contrastive pattern consistent. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Table 1 

Dataset splitting for patient severity assessment. 

Patient severity 1 2 3 4 

Training 12 145 63 13 

Test 20 20 20 20 

Table 2 

Distribution of LUS zone score for the training and test dataset. According to the 

split in Table 1 , the LUS zone score also follow an even distribution. 

Zone severity 0 1 2 3 4 

Training 697 476 206 113 34 

Test 55 53 53 52 52 

Table 3 

Numbers of images/frames with presence of the corresponding ultrasound patterns. 

A: A-line; P: pleural line; B: B-line; C: consolidation. 

LUS patterns A P B C Total 

Training 666 4338 3611 340 4398 

Test 205 2438 2295 481 2528 
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riminativeness of themselves. The module is inspired by the re- 

ent research on self-supervised contrastive learning of representa- 

ion ( Chen et al., 2020b ), where discriminative representations are 

earned by maximizing the agreement between positive pair sam- 

les. Differing from this work that learn effective representation 

n a self-supervised way from one modality, we employ the idea 

f contrastive learning for combination of two modalities, with 

he contrastive learning guided by the label information. Details 

f MA-CLR can be found in Fig. 4 . The LUS feature and the clin-

cal feature are first transformed with a linear mapping into the 

ame space, which are denoted as u i , v i for patient i, respectively. 

hen the probability of patient severity ˆ ps i is predicted from con- 

atenation of them [ u i , v i ] via a linear mapping W p2 and a softmax

unction. The contrastive loss in our proposed MA-CLR contains to 

hree parts, which respectively cope with the modality alignment 

 

MA , inter-class contrastive learning L 

CL , and contrastive continu- 

ty L 

CC . The proposed MA-CLR can be implemented by optimizing 

he following objective: 

 

MACLR = 

1 

S 

S ∑ 

i =1 

[
L 

MA 
i + L 

CL 
i + L 

CC 
i 

]
(5) 

here 

 

MA 
i = 1 − sim (u i , v i ) (6) 

 

CL 
i = [ sim (u i , v j ) + sim (u i , v k )] 

+ [ sim (v i , v j ) + sim (v i , v k )] (7) 

∀ i, ∃ j, | ps i − ps j | = 1 

 

CC 
i = max (sim (v i , v k ) − sim (v i , v j ) , 0) , (8) 

∀ i, ∃ j, k, | ps i − ps j | < | ps i − ps k | 
here sim (u , v ) = 

u T v 
‖ u ‖‖ v ‖ denotes the cosine similarity between 

wo vectors u and v . The first term aims to maximize the agree-

ent between LUS and clinical representations. The second term 

inimizes the inter-class agreement for, either LUS or clinical in- 

ormation, therefore maintaining the discriminativeness. The third 

erm keeps the continuity of this discriminativeness across differ- 

nt classes. For the second term and the third term, clinical infor- 

ation of two additional patients with different patient severities 
7 
ill be randomly sampled to help the contrastive learning during 

ach training step. 

The total objective function of patient severity assessment is 

herefore summation of L 

DS and L 

MACLR . 

. Experiments and analysis 

.1. Configurations 

Following the stages representation transfer procedure, we split 

he dataset into training set and test set and then apply them for 

ll of the three tasks. In our experiments, LUS data from 313 pa- 

ients are used and augmented to keep the data distribution bal- 

nce. The details of the splitting and the data distributions of pa- 

ient severity, LUS zone score, and LUS patterns are demonstrated 

n Tables 1, 2, 3 . The augmentation we used include affine trans- 

ormations (translation, rotation, scaling, shearing), reflection, con- 

rast change, Gaussian noise, and Gaussian filtering. 

During the training procedure of LUS zone score and patient 

everity, we randomly sampled 30 frames from each video. For 

he segmentation task, we sampled the 10 key frames where 

hese patterns were manually delineated by clinicians, and their 

wo neighboring frames. For inference, we randomly sampled 30 

rames from each video. Each patient is tested five times and the 

ax-vote is used for final assessment. 

In our experiments, we focus on the main task of patient sever- 

ty assessment. We first conduct extensive ablation studies for our 

ethod with different configurations to validate the role of the 

taged representation transfer learning procedure, the benefits of 

he dual-level supervision of DSA-MIL and the contrastive learning 

f MA-CLR. Besides the four-way severity assessment task, we also 

emonstrate the results of the 2-way task, i.e., whether the patient 

s non-severe or severe, as commonly did in existing work ( Tang 

t al., 2020; Shen et al., 2020; He et al., 2020 ). Evaluation crite- 

ia include accuracy, precision, recall and macro F1-score. We also 

emonstrate the results of LUS zone score and pattern segmenta- 

ion, which can provide more detailed indications of which zone 

nd where in that zone COVID-19 infections can be found. 

.2. Evaluation of patient severity assessment 

We design the following ablation studies to validate the effec- 

iveness of staged learning procedure, the dual-level supervised 

IL module and the contrastive learning module. Specifically, the 
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Table 4 

Patient severity results (%). For each configuration, average performance of 10 learned model is reported. The standard deviations of the accuracies 

are also displayed. These results reveal the effectivenesses of the staged learning procedure, the DSA-MIL module, and the MA-CLR module. CI: 

clinical information. 

config. modality Patient severity Severe or non-severe 

accuracy F1-score accuracy recall precision F1-score 

MZS LUS 49.38 ±1.35 45.89 79.50 ±0.87 78.50 80.11 79.29 

A-MIL1 LUS 64.25 ±1.34 66.05 84.0 ±2.99 76.75 90.13 82.57 

A-MIL2 LUS 64.25 ±1.47 64.57 84.75 ±2.02 86.25 83.77 84.91 

DSA-MIL LUS 67.63 ±1.38 67.91 84.88 ±1.50 78.75 89.83 83.84 

MLP CI 56.75 ±0.65 56.15 79.88 ±1.24 80.75 79.60 80.03 

CONCAT LUS and CI 55.25 ±0.99 57.37 83.13 ±1.47 80.25 85.36 82.52 

MA-CLR LUS and CI 72.75 ±0.53 72.31 86.5 ±0.53 82.25 89.91 85.90 

MA-CLR (max-vote) LUS and CI 75.00 74.44 87.5 85.00 89.47 87.18 
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ollowing different configurations are employed during our experi- 

ents: 

• MZS: inferring the patient severity by averaging the predicted 

zone severity ˆ ps . 
• A-MIL1: prediction of patient severity from a bag of zone- 

level representations with the attention-based multiple in- 

stance learning module. No pretrained model is used here. 
• A-MIL2: pre-trained network weights from the task of LUS zone 

score (which also employs pre-trained weights from the seg- 

mentation task) is used. 
• DSA-MIL: dual-level supervised information is used in the A- 

MIL2 module. 
• MLP: prediction of patient severity from the clinical informa- 

tion only using a multilayer perceptron (MLP). 
• CONCAT: directly concatenate the representations of LUS and 

clinical information for prediction of patient severity. 
• MA-CLR: combine the two modality with the proposed con- 

trastive learning module MA-CLR for prediction of patient 

severity. 
• MA-CLR (max-vote): MA-CLR is repeated five times for test, and 

the max-vote result is adopted as the final prediction. 

In Table 4 we demonstrate the performance for patient severity 

ssessment with these configurations. The results were obtained by 

veraging of 10 repetitions. Overall, our method can predict the pa- 

ient severity from combination of LUS data and clinical informa- 

ion very well, with accuracy of 75.0% for severity assessment, and 

7.5% for binary severe/non-severe classification. The small stan- 

ard deviations indicate that the performance of our method is of 

ow variation. 

From the table, we can have a clear observation of how the SRT 

rocedure and the DSA-MIL module alternatively improve the per- 

ormance of the 4-way and the 2-way classification tasks. Firstly, 

nly 49.38% accuracy can be obtained by MZS, which implies the 

ecessity of learning the instance combination adaptively. A-MIL 

earns the weight parameter for each instance and therefore leads 

o improvement with large margin. Secondly, the LUS zone score 

re-trained weights can bring clearly improvement for the 2-way 

ask with the transferred discriminative information, while keep- 

ng the performance of the more difficult 4-way task. It also makes 

he learning curve converge more quickly (reduce 50% of training 

pochs, from 60 epochs to 30 epochs) and stable. Then, the pro- 

osed DSA-MIL, which learns the instance combination procedure 

ith two-level supervision, can enhance the discriminativeness of 

he instance presentation first, and then combine them with the 

ttention vector. Therefore, the performance of the 4-way task is 

mproved by a large margin, while the performance of the 2-way 

ask is maintained. 

The effectiveness of the proposed MA-CLR module can be re- 

ealed by the last four rows of the table. Due to the inconsis- 
8 
ency of acquisition time, the representation of LUS and clinical 

nformation may be not well aligned and make it extremely hard 

o effectively combine them to improve the performance of pa- 

ient severity prediction. As can be seen in the table, CONCAT even 

eads to a significant performance decrease for the 4-way classifi- 

ation performance, and a mild decrease for the binary task. This 

eveals that the two modalities may align well at that border of the 

evere/non-severe group, but compromise each other for the fine- 

rained discrimination of mild/moderate groups, and severe/critical 

evere groups. This can be clearly revealed by the off-diagonal ele- 

ents of the confusion matrices. With MA-CLR, the representations 

f the two modalities can be well-aligned, and the inter-class con- 

rastive pattern and intra-class consistency can be well enhanced, 

herefore performances of both the 4-way and the 2-way tasks 

re significantly improved. It’s worth noting that the LUS images 

n our dataset were acquired with multiple devices, which usually 

aises the issue of style difference for learning-based methods. MA- 

LR can be used not only as a general multi-modality combination 

ethod, but also as a domain adaption way to alleviate the style 

ifferences for medical images. 

In Table 5 , the p -values of paired t-test were demonstrated for 

he accuracy in Table 4 . p -value less then 0.05 means the perfor-

ance difference of the two methods is significant. We can clearly 

bserve that the differences between our method MA-CLR and the 

est methods are significant, which further validates the effective- 

ess of the modules in our method. 

From the confusion matrix in Fig. 5 , more interesting observa- 

ions can be drawn: 1) when only clinical information is used, MLP 

an identify well the severe patients from the non-severe ones, 

ut cannot probe the minor difference between mild and moder- 

te groups, and between severe and critical severe groups. 2) di- 

ect concatenation of the representations of LUS data and clini- 

al information cannot help differentiate these minor differences. 

herefore, the proposed MA-CLR greatly reduces these misclassifi- 

ations with the contrastive learning mechanism. It’a also interest- 

ng to note that when combined with LUS and age, the symptom 

nformation delivers better accuracy than medical history (71.25% 

s. 70.38%). 

The performance of existing work on binary COVID-19 sever- 

ty prediction from CT images is listed in Table 6 . Our method 

chieved better accuracy than Yang et al. (2020) , and comparable 

erformance with Tang et al. (2020) , revealing the great potential 

or AI-based LUS analysis. 

The inference time of our severity assessment model was tested 

n a platform with Intel(R) Xeon(R) Silver 4114 CPU, RTX2080Ti 

PU, and Ubuntu 180.04. Given the fact that the LUS data is a 

ixture of images and videos of unknown number, two cases are 

ested. For patients with 12 static images, the average inference 

ime is 6.74 ms. For patients with 12 LUS videos (each with 30 

rames), the average inference time is 76.98 ms. 
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Table 5 

p -value of significant test of the severity assessment performance for different configuration. p -value less then 0.05 means the performance differ- 

ence of the two methods is significant. 

p -value MZS A-MIL1 A-MIL2 DSA-MIL MLP CONCAT 

accuracy of patient severity 

A-MIL1 3.12E-11 

A-MIL2 1.64E-10 1 

DSA-MIL 4.54E-10 1.97E-04 7.72E-05 

MLP 2.61E-07 2.96E-07 2.96E-07 3.36E-10 

CONCAT 8.42E-07 1.35E-07 1.35E-07 1.60E-09 2.56E-03 

MA-CLR 2.15E-12 5.37E-08 1.47E-08 1.84E-06 2.80E-13 1.24E-12 

accuracy of severe/non-severe 

A-MIL1 1.73E-03 

A-MIL2 5.74E-05 5.09E-01 

DSA-MIL 7.81E-06 4.42E-01 9.06E-01 

MLP 3.94E-01 6.29E-03 1.18E-04 3.18E-06 

CONCAT 3.13E-05 3.90E-01 7.68E-02 4.45E-02 7.46E-04 

MA-CLR 1.96E-08 1.68E-02 2.05E-02 1.33E-02 3.01E-07 2.09E-05 

Fig. 5. Confusion matrix for patient severity assessment under different configurations. 1, mild; 2, moderate; 3, severe; 4, critical severe. 

Table 6 

Performance comparison with existing work for binary severe/non-severe pre- 

diction (%). 

References Modality Patient accuracy recall precision 

Yang et al. (2020) CT 102 - 83.3 75.0 

Tang et al. (2020) CT 176 87.5 93.3 - 

He et al. (2020) CT 242 98.5 95.2 97.5 

ours LUS + CI 313 87.5 85.0 89.47 
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Table 7 

Evaluation of LUS segmentation task. A: A-line; P: pleural 

line; B: B-line; C: consolidation. 

Hit Ratio 50 Dice mIoU Precision Recall 

A 0.284 0.258 0.302 0.444 0.280 

P 0.704 0.620 0.649 0.730 0.645 

B 0.804 0.715 0.695 0.743 0.737 

C 0.160 0.170 0.201 0.379 0.173 
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.3. Evaluation of LUS zone score prediction 

The LUS zone score indicates which regions the lung are in- 

ected, and to which extent the infection is. This provides more in- 

erpretation of the patients overall severity. We evaluated the per- 

ormance of our method for LUS zone score prediction with and 

ithout the pre-trained segmentation model. Similar to the task of 

atient severity, we merge the zone scores { 0 , 1 } as 0 represent-

ng non-severity and { 2 , 3 , 4 } as 1 representing severity. Then the

erformance for this binary classification is also reported here. 

From Fig. 6 , it can be seen that when the pre-trained seg- 

entation model is used, the accuracy of both 5-way and 2-way 

lassification tasks can be obviously improved: from 43.02% to 

6.60% for the 5-way task, and from 73.21% to 85.28% for the bi- 

ary severity/non-severity task. The F1-score is also improved from 

4.20% to 56.39% for the 5-way task. The reduce of the off-diagonal 

lements prove that representation transfer can greatly reduce the 

is-classifications between groups of 1, 2,3 and groups of 3, 4. This 

gain validates the effectiveness of our SRT training procedure. For 

omparison, the only one existing work on AI-based LUS severity 
9 
ssessment ( Roy et al., 2020 ) achieved F1-score of 57.9% for 4-way 

ideo based classification. 

For identifying the severely infected zones (binary classifica- 

ion), our method can obtain a high accuracy of 85.28%, recall of 

2.99%, precision of 83.90%, and F1-score of 88.21%. 

.4. Evaluation of LUS pattern segmentation 

Here we show the result for segmentation of ultrasound pat- 

erns, which can provide a clearly identification of the patholog- 

cal regions that are associated with the COVID-19. Examples of 

ve LUS images with LUS zone score from 0 to 4 are illustrated 

n Fig. 7 . The segmentation head of our method can provide ac- 

urate segmentations of B-lines, and pleural lines. For A-lines and 

onsolidation, they only appear in an extremely small portion of 

ur training set, therefore the network failed to output good con- 

ours. 

In Table 7 the quantitative evaluation for different type of pat- 

erns is demonstrated. The metrics include the commonly used 

nes for segmentation, such as Dice, mIoU, precision, recall, and 

he Hit Ratio, which indicate how frequently the method can de- 

ect the corresponding pattern, with IoU more than 50%. For the 
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5-way 2-way

Accuracy 56.60% 85.28%

Precision 56.48% 83.90%

Recall 56.30% 92.99%

F1-score 56.39% 88.21%

5-way 2-way

Accuracy 43.02% 73.21%

Precision 45.88% 82.01%

Recall 42.64% 70.06%

F1-score 44.20% 75.57%

Fig. 6. Performance and confusion matrix for LUS zone score prediction with (right) and without (left) the pre-trained segmentation model. Both 5-way and 2-way clas- 

sifications are evaluated. It’s obvious that including the rich semantic information in the pre-trained model brings great performance improvement for LUS zone score 

prediction. 

Fig. 7. Segmentation examples for a representative frame from five lung zones with different severity. Cyan: pleural line, Green: A-line, Brown: B-line, Purple: consolidation. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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l

wo prevalence patterns in our dataset, the method can achieve 

ood segmentation, with Dice of 0.620, and Hit Ratio of 0.704 for 

leural line, and Dice of 0.715, Hit Ratio of 0.804 for B-line. For the 

wo rare ones, the method detects them with very low Hit Ratio. 

e leave this to our future work. 

. Conclusion and discussion 

To improve the efficiency and reliability of LUS in assessing 

nd monitoring patients with COVID-19 while the novel corona- 

irus is still spreading worldwide, we proposed a novel and effec- 

ive method that can accurately predict the patient severity, ac- 
10 
ording to the non-standard heterogeneous LUS images and videos, 

nd as while with combination of the clinical information, such 

s age, medical history, symptoms. A DSA-MIL module was pro- 

osed to predict the patent severity from heterogeneous LUS data 

f multiple lung zones, and a contrastive learning module MA- 

LR was proposed for combination of the LUS data and the clin- 

cal information. When validated with 80 patients, the method can 

chieve high accuracy for both 4-way severity assessment (75.0%) 

nd two-way classification (87.5%). As the by-product, our method 

an provide interpretable clues for the patient severity, by predict- 

ng the LUS zone scores and identifying the infected regions (B- 

ines) in each lung zone. This endows the method a great potential 
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n progress monitoring, treatment planning, therapy evaluation and 

atient management in clinical practice. 

There are still limitations that the proposed method failed to 

vercome. Firstly, the distribution of lung zone information is ig- 

ored in our method, which reflects the evolvement of infection 

cross different lung zones and is beneficial for patient assessment. 

n our dataset, unknown number of images and videos constitute 

he LUS data of a patient, therefore the distribution of the lung 

one information can not be well represented and modeled. When 

US data from all lung zones are available, such information can 

e incorporated by prior-based constraints, correlation modeling or 

raph networks. Secondly, quantitative analysis of the characteris- 

ic patterns in LUS data may correlate well with the zone score. For 

xample, a quantitative measure of the B lines with proper normal- 

zation may be an effective indicator of the infection extent. We 

eave this to future work. 
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