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Health care is shifting toward become proactive according to the concept of P5

medicine–a predictive, personalized, preventive, participatory and precision discipline.

This patient-centered care heavily leverages the latest technologies of artificial intelligence

(AI) and robotics that support diagnosis, decision making and treatment. In this paper,

we present the role of AI and robotic systems in this evolution, including example use

cases. We categorize systems along multiple dimensions such as the type of system, the

degree of autonomy, the care setting where the systems are applied, and the application

area. These technologies have already achieved notable results in the prediction of sepsis

or cardiovascular risk, the monitoring of vital parameters in intensive care units, or in the

form of home care robots. Still, while much research is conducted around AI and robotics

in health care, adoption in real world care settings is still limited. To remove adoption

barriers, we need to address issues such as safety, security, privacy and ethical principles;

detect and eliminate bias that could result in harmful or unfair clinical decisions; and build

trust in and societal acceptance of AI.
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THE NEED FOR AI AND ROBOTICS IN TRANSFORMED HEALTH
ECOSYSTEMS

“Artificial intelligence (AI) is the term used to describe the use of computers and technology to
simulate intelligent behavior and critical thinking comparable to a human being” (1). Machine
learning enables AI applications to automatically (i.e., without being explicitly programmed for)
improving their algorithms through experiences gained by cognitive inputs or by the use of data. AI
solutions provide data and knowledge to be used by humans or other technologies. The possibility
of machines behaving in such a way was originally raised by Alan Turing and further explored
starting in the 1950s. Medical expert systems such as MYCIN, designed in the 1970s for medical
consultations (2), were internationally recognized a revolution supporting the development of AI
in medicine. However, the clinical acceptance was not very high. Similar disappointments across
multiple domains led to the so-called “AI winter,” in part because rule-based systems do not allow
the discovery of unknown relationships and in part because of the limitations in computing power
at the time. Since then, computational power has increased enormously.

Over the centuries, we have improved our knowledge about structure and function
of the human body, starting with the organs, tissues, cells sub-cell components etc.
Meanwhile, we could advance it up to the molecular and sub-molecular level, including
protein coding genes, DNA sequences, non-coding RNA etc. and their effects and
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behavior in the human body. This has resulted in a continuously
improving understanding of the biology of diseases and disease
progressions (3). Nowadays, biomedical research and clinical
practice are struggling with the size and complexity of the data
produced by sequencing technologies, and how to derive from it
new diagnoses and treatments. Experiment results, often hidden
in clinical data warehouses, must be aggregated, analyzed, and
exploited to derive our new, detailed and data-driven knowledge
of diseases and enable better decision making.

New tools based on AI have been developed to predict
disease recurrence and progression (4) or response to treatment;
and robotics, often categorized as a branch of AI, plays an
increasing role in patient care. In a medical context, AI means
for example imitating the decision-making processes of health
professionals (1). In contrast to AI that generates data, robotics
provides touchable outcomes or realize physical tasks. AI and
robotics use knowledge and patient data for various tasks such as:
diagnosis; planning of surgeries; monitoring of patient physical
and mental wellness; basic physical interventions to improve
patient independence during physical or mental deterioration.
We will review concrete realizations in a later section of
this paper.

These advances are causing a revolution in health care,
enabling it to become proactive as called upon by the concept of
P5medicine –a predictive, personalized, preventive, participatory
and precision discipline (5). AI can help interpret personal health
information together with other data to stratify the diseases to
predict, stop or treat their progression.

In this paper, we describe the impact of AI and robotics
on P5 medicine and introduce example use cases. We then
discuss challenges faced by these developments. We conclude
with recommendations to help AI and robotics transform health
ecosystems. We extensively refer to appropriate literature for
details on the underlying methods and technologies. Note that
we concentrate on applications in the care setting and will
not address in more detail the systems used for the education
of professionals, logistics, or related to facility management–
even though there are clearly important applications of AI in
these areas.

CLASSIFICATION OF AI AND ROBOTIC
SYSTEMS IN MEDICINE

We can classify the landscape of AI and robotic systems in
health care according to different dimensions (Figure 1): use,
task, technology. Within the “use” dimension, we can further
distinguish the application area or the care setting. The “task”
dimension is characterized by the system’s degree of autonomy.
Finally, regarding the “technology” dimension, we consider the
degree of intrusion into a patient and the type of system. Clearly,
this is a simplification and aggregation: AI algorithms as such will
not be located in a patient etc.

Classification Based on Type of System
We can distinguish two types of such systems: virtual and
physical (6).

• Virtual systems (relating to AI systems) range from
applications such as electronic health record (EHR) systems,
or text and data mining applications, to systems supporting
treatment decisions.

• Physical systems relate to robotics and include robots
that assist in performing surgeries, smart prostheses for
handicapped people, and physical aids for elderly care.

There can also be hybrid systems combining AI with robotics,
such as social robots that interact with users or microrobots that
deliver drugs inside the body.

All these systems exploit enabling technologies that are data
and algorithms (see Figure 2). For example, a robotic system
may collect data from different sensors–visual, physical, auditory
or chemical. The robot’s processor manipulates, analyzes, and
interprets the data. Actuators enable the robot to perform
different functions including visual, physical, auditory or
chemical responses.

Data
Two kinds of data are required: data that captures the
knowledge and experience gained by the system during
diagnosis and treatment, usually through machine learning;
and individual patient data, which AI can assess and
analyze to derive recommendations. Data can be obtained
from physical sensors (wearable, non-wearable), from
biosensors (7), or from other information systems such
as an EHR application. From the collected data, digital
biomarkers can be derived that AI can analyze and
interpret (8).

Algorithms
AI-specific algorithms and methods allow data analysis,
reasoning, and prediction. AI consists of a growing number of
subfields such as machine learning (supervised, unsupervised,
and reinforcement learning), machine vision, natural language
processing (NLP) and more. NLP enables computers to process
and understand natural language (written or spoken). Machine
vision or computer vision extracts information from images. An
authoritative taxonomy of AI does not exist yet, although several
standards bodies have started addressing this task.

AI methodologies can be divided into knowledge-based AI
and data-driven AI (9).

• Knowledge-based AI models human knowledge by asking
experts for relevant concepts and knowledge they use to solve
problems. This knowledge is then formalized in software (9).
This is the form of AI closest to the original expert systems of
the 1970s.

• Data-driven AI starts from large amounts of data, which are
typically processed by machine learning methods to learn
patterns that can be used for prediction. Virtual or augmented
reality and other types of visualizations can be used to present
and explore data, which helps understand relations among
data items that are relevant for diagnosis (10).

To more fully exploit the knowledge captured in computerized
models, the concept of digital twin has gained traction in the
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FIGURE 1 | Categorization of systems based on AI and robotics in health care.

medical field (11). The terms “digital patient model,” “virtual
physiological human,” or “digital phenotype” designate the same
idea. A digital twin is a virtual model fed by information coming
from wearables (12), omics, and patient records. Simulation, AI
and robotics can then be applied to the digital twin to learn
about the disease progression, to understand drug responses,
or to plan surgery, before intervening on the actual patient or
organ, effecting a significant digital transformation of the health
ecosystems. Virtual organs (e.g., a digital heart) are an application
of this concept (13). A digital twin can be customized to an
individual patient, thus improving diagnosis.

Regardless of the specific kind of AI, there are some
requirements that all AI and robotic systems must meet. They
must be:

• Adaptive. Transformed health ecosystems evolve rapidly,
especially since according to P5 principles they adapt
treatment and diagnosis to individual patients.

• Context-aware. They must infer the current activity state of
the user and the characteristics of the environment in order
to manage information content and distribution.

• Interoperable. A system must be able to exchange data and
knowledge with other ones (14). This requires common
semantics between systems, which is the object of standard
terminologies, taxonomies or ontologies such as SNOMED
CT. NLP can also help with interoperability (15).

Classification Based on Degree of
Autonomy
AI and robotic systems can be grouped along an assistive-
to-autonomous axis (Figure 3). Assistive systems augment
the capabilities of their user by aggregating and analyzing
data, performing concrete tasks under human supervision
[for example, a semiautonomous ultrasound scanner (17)], or
learning how to perform tasks from a health professional’s
demonstrations. For example, a robot may learn from a
physiotherapist how to guide a patient through repetitive
rehabilitation exercises (18).

Autonomous systems respond to real world conditions, make
decisions, and perform actions with minimal or no interaction
with a human (19). They be encountered in a clinical setting
(autonomous implanted devices), in support functions to provide
assistance1 (carrying things around in a facility), or to automate
non-physical work, such as a digital receptionist handling patient
check-in (20).

Classification Based on Application Area
The diversity of users of AI and robotics in health care implies an
equally broad range of application areas described below.

1https://cmte.ieee.org/futuredirections/2019/07/21/autonomous-systems-in-
healthcare/
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FIGURE 2 | Types of AI-based systems and enabling technologies.

FIGURE 3 | Levels of autonomy of robotic and AI systems. [following models proposed by (16)].

Robotics and AI for Surgery
Robotics-assisted surgery, “the use of a mechanical device to
assist surgery in place of a human-being or in a human-like
way” (21) is rapidly impacting many common general surgical
procedures, especially minimally invasive surgery. Three types of
robotic systems are used in surgery:

• Active systems undertake pre-programmed tasks while
remaining under the control of the operating surgeon;

• Semi-active systems allow a surgeon to complement the
system’s pre-programmed component;

• Master–slave systems lack any autonomous elements; they
entirely depend on a surgeon’s activity. In laparoscopic
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TABLE 1 | Classification by care setting.

Care setting Description Example

L
o
n
g
e
r
te
rm Home care Personal living

environment

Remote monitoring of

individuals for

identifying early

indications of heart

failure

decompensation,

which allows for

optimization of therapy

to prevent

hospitalizations (56)

Assisted living

facility

Residential facility with

self-contained living

units; site support 24 x

7 and capacity to

arrange health care

services

A smart kitchen for

ambient assisted living

(57)

Nursing home Facility providing

residential

accommodation with

health care

Social robots to treat

individuals with

dementia in order to

improve symptoms (58)

S
h
o
rt
e
r
te
rm Inpatient

hospital

Provides diagnostic,

therapeutic and

rehabilitation services

by or under supervision

of physicians

Virtual nurse for

hospital discharge

planning (59)

Hospice Facility that offers

palliative and

supportive care for

terminally ill persons

and their families

Conversational agent to

collect patient reported

outcome measures

from individuals in

palliative care (60)

Inpatient

psychiatric

facility

Inpatient psychiatric

services for the

diagnosis and

treatment of mental

health disorders

AI to predict risk or

severity of depression

(61)

Selected care settings where robotic systems may be used [adapted from (62)].

surgery or in teleoperation, the surgeon’s hand movements are
transmitted to surgical instruments, which reproduce them.

Surgeons can also be supported by navigation systems, which
localize positions in space and help answer a surgeon’s anatomical
orientation questions. Real-time tracking of markers, realized
in modern surgical navigation systems using a stereoscopic
camera emitting infrared light, can determine the 3D position of
prominent structures (22).

Robotics and AI for Rehabilitation
Various AI and robotic systems support rehabilitation tasks
such as monitoring, risk prevention, or treatment (23). For
example, fall detection systems (24) use smart sensors placed
within an environment or in a wearable device, and automatically
alert medical staff, emergency services, or family members if
assistance is required. AI allows these systems to learn the
normal behavioral patterns and characteristics of individuals over
time. Moreover, systems can assess environmental risks, such as
household lights that are off or proximity to fall hazards (e.g.,

stairwells). Physical systems can provide physical assistance (e.g.,
lifting items, opening doors), monitoring, and therapeutic social
functions (25). Robotic rehabilitation applications can provide
both physical and cognitive support to individuals by monitoring
physiological progress and promoting social interaction. Robots
can support patients in recovering motions after a stroke using
exoskeletons (26), or recovering or supplementing lost function
(27). Beyond directly supporting patients, robots can also assist
caregivers. An overview on home-based rehabilitation robots
is given by Akbari et al. (28). Virtual reality and augmented
reality allow patients to become immersed within and interact
with a 3D model of a real or imaginary world, allowing them
to practice specific tasks (29). This has been used for motor
function training, recovery after a stroke (30) and in pain
management (31).

Robotics and AI for Telemedicine
Systems supporting telemedicine support among others the
triage, diagnostic, non-surgical treatment, surgical treatment,
consultation, monitoring, or provision of specialty care (32).

• Medical triage assesses current symptoms, signs, and test
results to determine the severity of a patient’s condition and
the treatment priority. An increasing number of mobile health
applications based on AI are used for diagnosis or treatment
optimization (33).

• Smart mobile and wearable devices can be integrated into
“smart homes” using Internet-of-Things (IoT) technologies.
They can collect patient and contextual data, assist individuals
with everyday functioning, monitor progress toward
individualized care and rehabilitation goals, issue reminders,
and alert care providers if assistance is required.

• Telemedicine for specialty care includes additional tools to
trackmood and behavior (e.g., pain diaries), AI-based chatbots
can mitigate social isolation in home care environments2

by offering companionship and emotional support to users,
noting if they are not sleeping well, in pain or depressed, which
could indicate a more complex mental condition (34).

• Beyond this, there are physical systems that can deliver
specialty care: Robot DE NIRO can interact naturally, reliably,
and safely with humans, autonomously navigate through
environments on command, intelligently retrieve or move
objects (35).

Robotics and AI for Prediction and Precision

Medicine
Precision medicine considers the individual patients, their
genomic variations as well as contributing factors (age, gender,
ethnicity, etc.), and tailors interventions accordingly (8). Digital
health applications can also incorporate data such as emotional
state, activity, food intake, etc. Given the amount and complexity
of data this requires, AI can learn from comprehensive
datasets to predict risks and identify the optimal treatment
strategy (36). Clinical decision support systems (CDSS) that
integrate AI can provide differential diagnoses, recognize early

2https://emag.medicalexpo.com/ai-powered-chatbots-to-help-against-self-
isolation-during-covid-19/
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TABLE 2 | Mapping of use cases to our classification.

Use case Application area Autonomy Intrusion Care setting

Sepsis onset prediction Prediction and precision

medicine

Technology assistance Outside the body Shorter term

Monitoring in the ICU Surgery Technology assistance Outside the body Shorter term

Tumor detection from image

analysis

Prediction and precision

medicine

Technology assistance Outside the body Shorter term

COVID-19 detection Prediction and precision

medicine

Technology assistance Outside the body Shorter term

Patient triage and symptom

checker

Prediction and precision

medicine

Task autonomy Outside the body Shorter term

Cardiovascular risk prediction Prediction and precision

medicine

Technology assistance Outside the body Shorter term

Gait analysis Prediction and precision

medicine, Rehabilitation

Technology assistance Outside the body Shorter term

Home care robots Telemedicine Technology assistance,

task autonomy

Outside the body Longer term

Biomechatronics Rehabilitation Task autonomy On the body Longer term

warning signs of patient morbidity or mortality, or identify
abnormalities in radiological images or laboratory test results
(37). They can increase patient safety, for example by reducing
medication or prescription errors or adverse events and can
increase care consistency and efficiency (38). They can support
clinical management by ensuring adherence to the clinical
guidelines or automating administrative functions such as
clinical and diagnostic encoding (39), patient triage or ordering
of procedures (37).

AI and Agents for Management and Support Tasks
NLP applications, such as voice transcription, have proved
helpful for clinical note-taking (40), compiling electronic health
records, automatically generating medical reports from patient-
doctor conversations or diagnostic reports (41). AI algorithms
can help retrieving context-relevant patient data. Concept-based
information retrieval can improve search accuracy and retrieval
speed (42). AI algorithms can improve the use and allocation of
hospital resources by predicting the length of stay of patients (43)
or risk of re-admission (44).

Classification Based on Degree of
Intrusion Into a Patient
Robotic systems can be used inside the body, on the body
or outside the body. Those applied inside the body include
microrobots (45), surgical robots and interventional robots.
Microrobots are sub-millimeter untethered devices that can be
propelled for example by chemical reactions (46), or physical
fields (47). They can move unimpeded through the body and
perform tasks such as targeted therapy (localized delivery of
drugs) (48).

Microrobots can assist in physical surgery, for example by
drilling through a blood clot or by opening up obstructions in
the urinary tract to restore normal flow (49). They can provide
directed local tissue heating to destroy cancer cells (50). They can

be implanted to provide continuous remote monitoring and early
awareness of an emerging disease.

Robotic prostheses, orthoses and exoskeletons are examples
of robotic systems worn on the body. Exoskeletons are wearable
robotic systems that are tightly physically coupled with a human
body to provide assistance or enhance the wearer’s physical
capabilities (51). While they have often been developed for
applications outside of health care, they can help workers with
physically demanding tasks such as moving patients (52) or assist
people with muscle weakness or movement disorders. Wearable
technology can also be used to measure and transmit data about
vital signs or physical activity (19).

Robotic systems applied outside the body can help avoid
direct contact when treating patients with infectious diseases
(53), assist in surgery (as already mentioned), including remote
surgical procedures that leverage augmented reality (54) or assist
providers when moving patients (55).

Classification Based on Care Setting
Another dimension of AI and robotics is the duration of their
use, which directly correlates with the location of use. Both can
significantly influence the requirements, design, and technology
components of the solution. In a longer-term care setting,
robotics can be used in a patient’s home (e.g., for monitoring
of vital signs) or for treatment in a nursing home. Shorter-term
care settings include inpatient hospitals, palliative care facilities
or inpatient psychiatric facilities. Example applications are listed
in Table 1.

SAMPLE REALIZATIONS

Having seen how to classify AI and robotic systems in health
care, we turn to recent concrete achievements that illustrate their
practical application and achievements already realized. This list
is definitely not exhaustive, but it illustrates the fact that we’re
no longer purely at the research or experimentation stage: the
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FIGURE 4 | Physician-patient-AI relationship.

FIGURE 5 | Roadmap for transformed health care.

technology is starting to bear fruit in a very concrete way–that is,
by improving outcomes–even when only in the context of clinical
trials prior to regulatory approval for general use.

Sepsis Onset Prediction
Sepsis was recently identified as the leading cause of death
worldwide, surpassing even cancer or cardiovascular diseases.3

And while timely diagnosis and treatment are difficult in other
care settings, it is also the leading cause of death in hospitals in the

3https://www.med.ubc.ca/news/sepsis-leading-cause-of-death-worldwide/

United States (Sepsis Fact Sheet4) A key reason is the difficulty of
recognizing precursor symptoms early enough to initiate effective
treatment. Therefore, early onset prediction promises to save
millions of lives each year. Here are four such projects:

• Bayesian Health5, a startup founded by a researcher at Johns
Hopkins University, applied its model to a test population
of hospital patients and correctly identified 82% of the 9,800
patients who later developed sepsis.

• Dascena, a California startup, has been testing its software
on large cohorts of patients since 2017, achieving significant
improvements in outcomes (63).

• Patchd6 uses wearable devices and deep learning to predict
sepsis in high-risk patients. Early studies have shown that this
technology can predict sepsis 8 h earlier, and more accurately,
than under existing standards of care.

• A team of researchers from Singapore developed a system
that combines clinical measures (structured data) with
physician notes (unstructured data), resulting in improved
early detection while reducing false positives (64).

Monitoring Systems in the Intensive Care
Unit
For patients in an ICU, the paradox is that large amounts of data
are collected, displayed on monitors, and used to trigger alarms,
but these various data streams are rarely used together, nor can
doctors or nurses effectively observe all the data from all the
patients all the time.

This is an area where much has been written, but most
available information points to studies that have not resulted in
actual deployments. A survey paper alluded in particular to the
challenge of achieving effective collaboration between ICU staff
and automated processes (65).

In one application example, machine learning helps resolving
the asynchrony between a mechanical ventilator and the patient’s
own breathing reflexes, which can cause distress and complicate
recovery (66).

Tumor Detection From Image Analysis
This is another area where research has provided evidence of
the efficacy of AI, generally not employed alone but rather as
an advisor to a medical professional, yet there are few actual
deployments at scale.

These applications differ based on the location of the tumors,
and therefore on the imaging techniques used to observe
them. AI makes the interpretation of the images more reliable,
generally by pinpointing to the radiologists areas they might
otherwise overlook.

• In a study performed in Korea, AI appeared to improve
the recognition of lung cancer in chest X-rays (67). AI
by itself performed better than unaided radiologists, and

4https://www.sepsis.org/wp-content/uploads/2017/05/Sepsis-Fact-Sheet-2018.
pdf
5https://medcitynews.com/2021/07/johns-hopkins-spinoff-looking-to-build-
better-risk-prediction-tooing,ls-emerges-with-15m/
6https://www.patchdmedical.com/
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the improvement was greater when AI was used as an
aid by radiologists. Note however that the sample size was
fairly small.

• Several successive efforts aimed to use AI to classify
dermoscopic images to discriminate between benign nevi and
melanoma (68).

AI for COVID-19 Detection
The rapid and tragic emergence of the COVID-19 disease, and its
continued evolution at the time of this writing, have mobilized
many researchers, including the AI community. This domain is
naturally divided into two areas, diagnostic and treatment.

An example of AI applied to COVID-19 diagnostic is based
on an early observation that the persistent cough that is one of
the common symptoms of the disease “sounds different” from the
cough caused by other ailments, such as the common cold. The
MIT Opensigma project7 has “crowdsourced” sound recordings
of coughs from many people, most of whom do not have the
disease while some know that they have it or had it. Several
similar projects have been conducted elsewhere (69).

Another effort used AI to read computer tomography images
to provide a rapid COVID-19 test, reportedly achieving over
90% accuracy in 15 s (70). Curiously, after this news was widely
circulated in February-March 2020, nothing else was said for
several months. Six months later, a blog post8 from the University
of Virginia radiology and medical department asserted that “CT
scans and X-rays have a limited role in diagnosing coronavirus.”
The approach pioneered in China may have been the right
solution at a specific point in time (many cases concentrated
in a small geographical area, requiring a massive detection
effort before other rapid tests were available), thus overriding
the drawbacks related to equipment cost and patient exposure
to radiation.

Patient Triage and Symptom Checkers
While the word triage immediately evokes urgent decisions about
what interventions to perform on acutely ill patients or accident
victims, it can also be applied to remote patient assistance
(e.g., telehealth applications), especially in areas underserved by
medical staff and facilities.

In an emergency care setting, where triage decisions can result
in the survival or death of a person, there is a natural reluctance to
entrust such decisions to machines. However, AI as a predictor of
outcomes could serve as an assistant to an emergency technician
or doctor. A 2017 study of emergency room triage of patients
with acute abdominal pain only showed an “acceptable level of
accuracy” (71), but more recently, the Mayo Clinic introduced
an AI-based “digital triage platform” from Diagnostic Robotics9

to “perform clinical intake of patients and suggest diagnoses and
hospital risk scores.” These solutions can now be delivered by a
website or a smartphone app, and have evolved from decision
trees designed by doctors to incorporate AI.

7https://hisigma.mit.edu
8https://blog.radiology.virginia.edu/covid-19-and-imaging/
9https://hitinfrastructure.com/news/diagnostic-robotics-mayo-clinic-bring-
triage-platform-to-patients

Cardiovascular Risk Prediction
Google Research announced in 2018 that it has achieved
“prediction of cardiovascular risk factors from retinal fundus
photographs via deep learning” with a level of accuracy similar
to traditional methods such as blood tests for cholesterol levels
(72). The novelty consists in the use of a neural network to
analyze the retina image, resulting in more power at the expense
of explainability.

In practice, the future of such a solution is unclear: certain
risk factors could be assessed from the retinal scan, but those
were often factors that could be measured directly anyway–such
as from blood pressure.

Gait Analysis
Many physiological and neurological factors affect how someone
walks, given the complex interactions between the sense of touch,
the brain, the nervous system, and the muscles involved. Certain
conditions, in particular Parkinson’s disease, have been shown
to affect a person’s gait, causing visible symptoms that can help
diagnose the disease or measure its progress. Even if an abnormal
gait results from another cause, an accurate analysis can help
assess the risk of falls in elderly patients.

Compared to other applications in this section, gait analysis
has been practiced for a longer time (over a century) and
has progressed incrementally as new motion capture methods
(film, video, infrared cameras) were developed. In terms of
knowledge representation, see for example the work done at MIT
twenty years ago (73). Computer vision, combined with AI, can
considerably improve gait analysis compared to a physician’s
simple observation. Companies such as Exer10 offer solutions
that physical therapists can use to assess patients, or that can help
monitor and improve a home exercise program. This is an area
where technology has already been deployed at scale: there are
more than 60 clinical and research gate labs11 in the U.S. alone.

Home Care Robots
Robots that provide assistance to elderly or sick persons
have been the focus of research and development for several
decades, particularly in Japan due to the country’s large aging
population with above-average longevity. “Elder care robots” can
be deployed at home (with cost being an obvious issue for many
customers) or in senior care environments (74), where they will
help alleviate a severe shortage of nurses and specialized workers,
which cannot be easily addressed through the hiring of foreign
help given the language barrier.

The types of robots used in such settings are proliferating.
They range from robots that help patients move or exercise, to
robots that help with common tasks such as opening the front
door to a visitor or bringing a cup of tea, to robots that provide
psychological comfort and even some form of conversation.
PARO, for instance, is a robotic bay seal developed to provide
treatment to patients with dementia (75).

10https://www.exer.ai
11https://www.gcmas.org/map
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Biomechatronics
Biomechatronics combines biology, mechanical engineering, and
electronics to design assistive devices that interpret inputs from
sensors and send commands to actuators–with both sensors and
actuators attached in some manner to the body. The sensors,
actuators, control system, and the human subject form together a
closed-loop control system.

Biomechatronic applications live at the boundary of
prosthetics and robotics, for example to help amputees achieve
close-to-normal motion of a prosthetic limb. This work has been
demonstrated for many years, with impressive results, at the MIT
Media Lab under Prof. Hugh Herr12 However, those applications
have rarely left the lab environment due to the device cost. That
cost could be lowered by production in large quantities, but
coverage by health insurance companies or agencies is likely to
remain problematic.

Mapping of Use Cases to Classification
Table 2 shows a mapping of the above use cases to the
classification introduced in the first section of this paper.

ADOPTION CHALLENGES TO AI AND
ROBOTICS IN HEALTH CARE

While the range of opportunities, and the achievements to date,
of robotics and AI are impressive as seen above, multiple issues
impede their deployment and acceptance in daily practice.

Issues related to trust, security, privacy and ethics are
prevalent across all aspects of health care, andmany are discussed
elsewhere in this issue. We will therefore only briefly mention
those challenges that are unique to AI and robotics.

Resistance to Technology
Health care professionals may ignore or resist new technologies
for multiple reasons, including actual or perceived threats to
professional status and autonomy (76), privacy concerns (77) or
the unresolved legal and ethical questions of responsibility (78).
The issues of worker displacement by robots are just as acute
in health care as in other domains. Today, while surgery robots
operate increasingly autonomously, humans still perform many
tasks and play an essential role in determining the robot’s course
of operation (e.g., for selecting the process parameters or for the
positioning of the patient) (79). This allocation of responsibilities
is bound to evolve.

Transparency and Explainability
Explainability is “a characteristic of an AI-driven system allowing
a person to reconstruct why a certain AI came up with the
presented prediction” (80). In contrast to rule-based systems,
AI-based predictions can often not be explained in a human-
intelligible manner, which can hide errors or bias (the “black box
problem” of machine learning). The explainability of AI models
is an ongoing research area. When information on the reasons
for an AI-based decision is missing, physicians cannot judge the
reliability of the advice and there is a risk to patient safety.

12https://www.media.mit.edu/groups/biomechatronics/overview/

Responsibility, Accountability and Liability
Who is responsible when the AI or robot makes mistakes or
creates harm in patients? Is it the programmer, manufacturer,
end user, the AI/robotic system itself, the provider of the training
dataset, or something (or someone) else? The answer depends
on the system’s degree of autonomy. The European Parliament’s
2017 Resolution on AI (81) assigns legal responsibility for an
action of an AI or robotic system to a human actor, which may
be its owner, developer, manufacturer or operator.

Data Protection
Machine learning requires access to large quantities of data
regarding patients as well as healthy people. This raises issues
regarding the ownership of data, protection against theft,
compliance with regulations such as HIPAA in the U.S. (82)
or GDPR for European citizens (83), and what level of
anonymization of data is necessary and possible. Regarding the
last point, AI models could have unintended consequences, and
the evolution of science itself couldmake patient re-identification
possible in the future.

Data Quality and Integration
Currently, the reliability and quality of data received from sensors
and digital health devices remain uncertain (84)–a fact that future
research and development must address. Datasets in medicine
are naturally imperfect (due to noise, errors in documentation,
incompleteness, differences in documentation granularities, etc.),
hence it is impossible to develop error-free machine learning
models (80). Furthermore, without a way to quickly and reliably
integrate the various data sources for analysis, there is lost
potential for fast diagnosis by AI algorithms.

Safety and Security
Introducing AI and robotics into the delivery of health care is
likely to create new risks and safety issues. Those will exist even
under normal functioning circumstances, when they may be due
to design, programming or configuration errors, or improper
data preparation (85).

These issues only get worse when considering the probability
of cyberattacks:

• Patient data may be exposed or stolen, perhaps by scammers
who want to exploit it for profit.

• Security vulnerabilities in robots that interact directly with
patients may cause malfunctions that physically threaten the
patient or professional. The robot may cause harm directly,
or indirectly by giving a surgeon incorrect feedback. In case
of unexpected robot behavior, it may be unclear to the
user whether the robot is functioning properly or is under
attack (86).

The EU Commission recently drafted a legal framework13

addressing the risks of AI (not only in health care) in order
to improve the safety of and trust in AI. The framework
distinguishes four levels of risks: unacceptable risk, high risk,
limited risk and minimal risk. AI systems with unacceptable

13https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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risks will be prohibited, high-risk ones will have to meet strict
obligations before release (e.g., risk assessment and mitigation,
traceability of results). Limited-risk applications such as chatbots
(which can be used in telemedicine) will require “labeling” so
that users are made aware that they are interacting with an
AI-powered system.

Biases
While P5 medicine aims at considering multiple factors–
ethnicity, gender, socio-economic background, education, etc.–
to come up with individualized care, current implementations
of AI often demonstrate potential biases toward certain patient
groups of the population. The training datasets may have
under-represented those groups, or important features may be
distributed differently across groups–for example, cardiovascular
disease or Parkinson’s disease progress differently in men and
women (87), so the corresponding features will vary. These
causes result in undesirable bias and “unintended of unnecessary
discrimination” of subgroups (88).

On the flip side, careful implementations of AI could explicitly
consider gender, ethnicity, etc. differences to achieve more
effective treatments for patients belonging to those groups.
This can be considered “desirable bias” that counteracts the
undesirable kind (89) and gets us closer to the goals of
P5 medicine.

Trust–An Evolving Relationship
The relationship between patients and medical professionals has
evolved over time, and AI is likely to impact it by inserting
itself into the picture (see Figure 4). Although AI and robotics
are performing well, human surveillance is still essential. Robots
and AI algorithms operate logically, but health care often
requires acting empathically. If doctors become intelligent users
of AI, they may retain the trust associated with their role,
but most patients, who have a limited understanding of the
technologies involved, would have much difficulty in trusting AI
(90). Conversely, reliable and accurate diagnosis and beneficial
treatment, and appropriate use of AI and robotics by the
physician can strengthen the patient’s trust (91).

This assumes of course that the designers of those systems
adhere to established guidelines for trustworthy AI in the first
place, which includes such requirements as creating systems that
are lawful, ethical, and robust (92, 93).

AI AND ROBOTICS FOR TRANSFORMED
HEALTH CARE–A CONVERGING PATH

We can summarize the previous sections as follows:

1. There are many types of AI applications and robotic systems,
which can be introduced in many aspects of health care.

2. AI’s ability to digest and process enormous amounts of data,
and derive conclusions that are not obvious to a human, holds
the promise of more personalized and predictive care–key
goals of P5 medicine.

3. There have been, over the last few years, a number of proof-
of-concept and pilot projects that have exhibited promising
results for diagnosis, treatment, and healthmaintenance. They

have not yet been deployed at scale–in part because of the time
it takes to fully evaluate their efficacy and safety.

4. There is a rather daunting list of challenges to address,
most of which are not purely technical–the key one being
demonstrating that the systems are effective and safe enough
to warrant the confidence of both the practitioners and
their patients.

Based on this analysis, what is the roadmap to success for these
technologies, and how will they succeed in contributing to the
future of health care? Figure 5 depicts the convergent approaches
that need to be developed to ensure safe and productive adoption,
in line with the P5 medicine principles.

First, AI technology is currently undergoing a remarkable
revival and being applied to many domains. Health applications
will both benefit from and contribute to further advances.
In areas such as image classification or natural language
understanding, both of which have obvious utility in health care,
the rate of progress is remarkable. Today’s AI techniques may
seem obsolete in ten years.

Second, the more technical challenges of AI–such as privacy,
explainability, or fairness–are being worked on, both in the
research community and in the legislative and regulatory world.
Standard procedures for assessing the efficacy and safety of
systems will be needed, but in reality, this is not a new concept:
it is what has been developed over the years to approve new
medicines. We need to be consistent and apply the same hard-
headed validation processes to the new technologies.

Third, it should be clear from our exploration of this subject
that education–of patients as well as of professionals–is key to the
societal acceptance of the role that AI and robotics will be called
upon to play. Every invention or innovation–from the steam
engine to the telephone to the computer–has gone through this
process. Practitioners must learn enough about how AI models
and robotics work to build a “working relationship” with those
tools and build trust in them–just as their predecessors learned
to trust what they saw on an X-ray or CT scan. Patients, for their
part, need to understand what AI and robotics can or cannot do,
how the physician will remain in the loop when appropriate, and
what data is being collected about them in the process. We will
have a responsibility to ensure that complex systems that patients
do not sufficiently understand cannot be misused against them,
whether accidentally or deliberately.

Fourth, health care is also a business, involving financial
transactions between patients, providers, and insurers (public or
private, depending on the country). New cost and reimbursement
models will need to be developed, especially given that when AI
is used to assist professionals, not replace them, the cost of the
system is additive to the human cost of assessing the data and
reviewing the system’s recommendations.

Fifth and last, clinical pathways have to be adapted and
new role models for physicians have to be built. Clinical paths
can already differ and make it harder to provide continuity
of care to a patient who moves across care delivery systems
that have different capabilities. This issue is being addressed
by the BPM+ Health Community14 using the business process,

14https://www.bpm-plus.org/
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case management and decision modeling standards of the
Object Management Group (OMG). The issue will become more
complex by integrating AI and robotics: every doctor has similar
training and a stethoscope, but not every doctor or hospital will
have the same sensors, AI programs, or robots.

Eventually, the convergence of these approaches will help to
build a complete digital patient model–a digital twin of each
specific human being – generated out of all the data gathered
from general practitioners, hospitals, laboratories, mHealth apps,
and wearable sensors, along the entire life of the patient. At
that point, AI will be able to support superior, fully personal
and predictive medicine, while robotics will automate or support
many aspects of treatment and care.
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