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Sensorimotor transformation is indispensable to the accurate motion of the human body in daily life. For
instance, when we grasp an object, the distance from our hands to an object needs to be calculated by
integrating multisensory inputs, and our motor system needs to appropriately activate the arm and hand
muscles to minimize the distance. The sensorimotor transformation is implemented in our neural systems,
and recent advances in measurement techniques have revealed an important property of neural systems: a
small percentage of neurons exhibits extensive activity while a large percentage shows little activity, i.e.,
sparse coding. However, we do not yet know the functional role of sparse coding in sensorimotor
transformation. In this paper, I show that sparse coding enables complete and robust learning in
sensorimotor transformation. In general, if a neural network is trained to maximize the performance on
training data, the network shows poor performance on test data. Nevertheless, sparse coding renders
compatible the performance of the network on both training and test data. Furthermore, sparse coding can
reproduce reported neural activities. Thus, I conclude that sparse coding is necessary and a biologically
plausible factor in sensorimotor transformation.

W hen we grasp a cup on a table, we need to calculate the distance between the cup and our hands, and
thus minimize the distance. In this case, inputs to our motor system include visual information (the
distance between the head and the cup) and proprioceptive information (the distance between the

head and the hand). To calculate the distance between the cup and our hands, the visual and proprioceptive
information should be appropriately integrated, i.e., the multisensory integration is indispensable to calculating
the distance1. Tominimize the distance, our motor system needs to appropriately activate arm and handmuscles,
which requires complex nonlinear computation because muscles show highly complicated responses2,3. Thus, the
computation of both multisensory integration and complex muscular activity, which are the so-called sensor-
imotor transformations, are indispensable to proper body movements in daily life.

One solution to sensorimotor transformations is provided by a basis function framework4–7. In this framework,
when a neural activity Ai (i5 1,..., N, where N is the number of neurons) is determined by multisensory inputs x
(e.g., visual information) and y (e.g., proprioceptive information), a neural network can generate an arbitrary
function of x and y, not by using a form of an additive interaction,Ai(x, y)5 f(x)1 g(y), but one of amultiplicative
interaction,Ai(x, y)5 f(x)g(y), where f (?) and g (?) are nonlinear functions, e.g., Gaussian functions or hyperbolic
tangential functions. Since the activity of neurons in the premotor cortex can be explained by the form of
multiplicative interaction8 previous research has suggested that the motor cortex implements sensorimotor
transformations in a similar manner to the basis function6–8.

On the other hand, recent advances in measurement techniques have enabled the simultaneous recording of the
activities of several neurons, which has revealed an important property of neural activities: a small portion of neurons
exhibits extensive activity while a large portion shows little activity, i.e., sparse coding9–12. Sparse coding has been
theoretically and experimentally investigated primarily in sensory cortices and subcortical regions.Marr13 and Albus14

suggested that cerebellar learning is facilitated by sparse coding and some previous studies have suggested that the
sparse coding can actually enhance adaptive control15 and classification learning16 in the cerebellum. Other theoretical
studies have suggested some functional roles of sparse coding in sensory information processing: sparse coding helps
reduce metabolic cost (the summation of the activities of all task-related neurons) and reproduce reported neural
activities in the visual cortex17. As well as sensory cortices and subcortical regions, there is some experimental
evidence of sparse coding in motor cortices9,10. Due to the universality of sparse coding in our neural system and
some theoretically suggested functional roles of sparse coding in the cerebellar learning and sensory information
processing, sparse coding is expected to play significant functional roles in sensorimotor transformations.

However, the functional roles of sparse coding in sensorimotor transformations remain unclear. In this paper, I
discuss the functional roles of sparse coding in sensorimotor transformations by using a threshold linear
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model18,19, which can control the sparseness of neural activities using
a single parameter. Computer simulations were conducted of visually
guided wrist movements in various postures8,20,21. The inputs in this
task consisted of the visual targets and posture information, whereas
the outputs were the motor commands used to activate nonlinear
muscle units. This means that the task required multisensory integ-
ration as well as the computation of complicated motor commands,
or sensorimotor transformation. Under constant metabolic cost
regardless of the sparsity of neural activities, I prove the following
results: 1) sensorimotor transformation cannot be learned when a
large portion of neurons exhibit extensive activity (dense coding) but
can be learned in sparse coding conditions; 2) there is an optimal
sparseness required to attain sensorimotor transformation; 3) The
learning performance to training data as well as to test data (general-
ization performance) is better in sparse coding than in dense coding;
and 4) neural activity in sparse coding conditions is similar to prev-
iously reported neural activities21 or the multiplicative interaction
form.

Results
Following previous studies8,20,21, this study focuses on visually guided
wrist movements in various postures (see Figure 1a for a schematic
diagram of the following computational model and the Methods
section for the summarized procedures of the following computer
simulations). In the assumed task, subjects were required to move a
cursor toward a target vt 5 (cos Hv,k(t), sin Hv,k(t)) on a computer

screen at the t-th trial, where Hu,k(t)~{pz2p
k(t)
K

. k(t) was ran-

domly sampled from 1,..., K in each trial and K is the number of
targets (I assumed K5 8). The cursor movements were determined
by subjects’ wrist movements (e.g., the cursor moved up if a subject
moved his/her wrist upward). Subjects thus needed to appropriately
move their wrists to carry out the task with wrist posture pt 5 (cos
Hp,k9(t), sin Hp,k9(t)), where I assumed (cos Hp,k9, sin Hp,k9) to be
(1,3)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z32

p
in pronation (k9 5 1), (2,2)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22z22

p
in midrange

(k9 5 2), and (3,1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32z12

p
in supination (k9 5 3). Notably, the

results were independent of these values. The target position vt was
treated as visual information and the posture pt was taken to be
proprioceptive information.
The task was thus to determine an executedmovement x5Pk9(t)M

that minimizes movement error e5 v2 x, where Pk9(t) is a posture-
dependent transformation matrix from muscle activity M to exe-
cuted movement x. Muscle activity was determined nonlinearly by
neural activities A: M 5 [WA]1, where W represents adaptable
connectivities between neurons and muscles, and [?]1 is a linear

threshold function ([y]1 5 y when y . and [y]1 5 0 otherwise).
The product ofWt andAtwas amotor command in this case because
it determined muscle activity. When movement error e5 v2 x was
observed,W was modified to minimize the squared movement error

E~
1
2
eTe (detailed descriptions regarding the learning rule and each

parameter were provided in the Methods section).
To investigate the functional roles of sparse coding, a linear

threshold function was assumed to represent neural activity follow-
ing previous models of visual or parietal cortices18,19:

A~
1
Z
½J uuzJ pp{h�z, ð1Þ

where Z is a normalization constant, Jv and Jp are fixed random
matrices. The threshold h 5 (h1,...,hN) was a crucial factor because
it can control the sparseness of neural activity: when a small value of
hi was chosen, a large portion of neurons showed activity (dense
coding), but only a small portion of neurons exhibited activity
(sparse coding) when hi was large. Although a homogeneous thresh-
old value was mainly assumed, hi 5 h, heterogeneous threshold
values did not affect any results (Figures 2d and e, see below). The
above function was used because it allowed to control the sparsity of
neural activities using only the parameter h (Figure 1b; sparseness in
this figure was defined as NNA/N, where NNA is the number of neu-
rons whose activities are always 0). The normalization constant Z

was determined to satisfy
XN

i~1
(Ai)

2~1, i.e., themetabolic cost was
fixed across all values of h. Notably, some previous studies have
suggested a functional role of sparse coding is to reduce metabolic
cost17. The normalization constant thus permitted the investigation
of the functional roles of sparse coding other than reducing meta-
bolic cost.

Sensorimotor transformation via sparse coding. Figure 2a denotes
representative learning curves in dense (blue line) and sparse coding
(red line). The above-mentioned sensorimotor transformation task
can be achieved only by sparse coding (Figure 2a). The task cannot be
achieved by dense coding, which suggests that a linear integration of
visual and proprioceptive inputs without any threshold operation
is not sufficient to achieve the task. By contrast, a sparse coding
network permits the learning of sensorimotor transformations
possibly because of the nonlinear thresholding operation. Figure 2b
shows average movement error across 10 simulation runs, and
Figure 2c shows the standard deviation of the movement error.
Sparse coding recorded better average movement error as well as
better standard deviation than dense coding. Thus, sparse coding

Figure 1 | Neural networkmodel. (a): A schematic diagram of a neural networkmodel used to learn a sensorimotor transformation task. (b): Sparseness

of neural activities. The horizontal axis denotes the threshold h in equation (1) and the vertical axis denotes sparseness of neural activities. Sparseness was

defined as NNA/N, where NNA is the number of neurons whose activities are always 0 and N is the number of neurons.
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enables outstanding and robust learning in sensorimotor
transformation. It is important to note that there was an optimal
sparsity in completing the task: h 5 3 was the best sparsity value
for this threshold linear network model and sensorimotor
transformation task.
Neurons show diverse features, and it is not plausible that the

threshold hi has the same value across all neurons. Therefore, I ana-
lyzed the cases where hiwas different in each neuron (i.e., hi5 h1 ji,
where ji was sampled from a Gaussian distribution whose mean was
0 and standard deviation was 0.1). Although optimal values of h
shifted from 3 to 3.4 because of the heterogeneity of the threshold
value, my conclusion was not affected by this manipulation
(Figures 2d and e): sparse coding enables outstanding and robust
learning in sensorimotor transformation, even when each neuron
has a different threshold value.
Although the significance of sparse coding in sensorimotor trans-

formation could be found by using the threshold linear function, it
remains unclear whether the significance of sparse coding is valid
when the neural activities are modeled by other nonlinear functions
(see theMethods section for a detailed description). The significance
of sparse coding was found to be invariant given that neural activities
were determined by a hyperbolic tangential function or a sigmoidal
function (Figures 2f and g). Taken together, the significance of
sparse coding in the sensorimotor transformation is a solid result.
Hereafter, neural activities were determined by a threshold linear
function, and the threshold values were homogeneous across all
the neurons.
Sensorimotor transformation was realized only in the sparse cod-

ing network, but the reason for this remains unclear. Since some
previous studies have suggested that sparse coding can decorrelate
neural activities, which can facilitate the decoding of information
from the neural population11,22, I expected similar effects in sensor-
imotor transformation. I used a principal component analysis
(PCA)23 for the covariance matrix of neural activities. Particularly
in Equation (1), no correlation between neural activities was defined
(no noise correlation was defined, and each component of J was
randomly and independently sampled from aGaussian distribution),

but visual and proprioceptive information were common inputs for
all neurons, thus leading to considerable correlation between neural
activities. PCA enables the determination of the extent of correlation
between neural activities by calculating the number of dimensional
subspaces that can be observed in neural activity patterns. Since there
are 24 inputs in the current sensorimotor transformation task (eight
visual inputs and three proprioceptive inputs), the maximal number
of dimensions is 24. If the activities of all neurons are completely
independent, there is no constraint with regard to neural activities,
and the number of dimension can achieve its maximal value. When
the subspace consists of 24 dimensions, all 24 inputs can be encoded
independently in each dimension, resulting in each input being easily
distinguishable, and for it to be expected that the corresponding
neural network can generate an appropriate motor command for
each input. On the other hand, if the neural activities are strongly
correlated, there are strong constraints of neural activities, and the
number of dimensions is small. When the subspace consists of one
dimension, 24 inputs are encoded confusingly in the dimension, such
that each input is not easily distinguishable, and it can be expected
that the neural network cannot generate an appropriate motor com-
mand for each input. As expected, the number of dimensions show-
ing a large percentage of contributions was greater in sparse coding
than in dense coding (Figure 3), thus suggesting that sparse coding
decorrelated neural activities and facilitated learning. Hence, decorr-
elation was a reason for why a sparse coding network enabled the
learning of the sensorimotor transformation task.

Advantages of sparse coding. I also investigated the functional roles
of sparse coding in the sensorimotor transformation task except for
complete and robust learning. In the subsection Sensorimotor
transformation via sparse coding, I investigated learning ability
using sparse coding when K 5 8, and sparse coding proved
superior to dense coding with regard to learning ability. In general,
the performance of a network on training data and that on test data
cannot be compatible23: when trained neural networks overfit to
training data, the network shows poor generalization performance
on test data. I refer to this generally accepted fact about machine

Figure 2 | Learning ability in sensorimotor transformation task. (a): Learning curves when the threshold h 5 21 and 3 (these threshold values

correspond to the circled values in Figures 2(b) and (c)). (b): Average squared error across 10 simulation runs. Notably, in each simulation run, the

connectivity matrix J was fixed to be the same matrix across all values of h. The horizontal axis denotes the threshold value and the vertical axis denotes

log-scaled squared movement error. (c): Standard deviation of the squared error in the 10 simulation runs. The vertical axis denotes log-scaled standard

deviation of the squared movement error. (d): Average squared error when threshold value is heterogeneous. (e): Standard deviation of the squared error

when threshold value is heterogeneous. (f): Average squared error when neural activities were determined by a hyperbolic tangential function.

(g): Standard deviation of the squared error when neural activities were determined by a hyperbolic tangential function.
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learning as the ‘‘incompatibility of specialization and generalization’’
because overfitting to training data can be regarded as a specializa-
tion of the network to the data. Based on this knowledge, one can
predict that the use of sparse coding leads to worse generalization
performance than that of dense coding.
I investigated generalization performance using dense and sparse

coding with the weight matrixW, which was fixed after learning, and

a new target sequence vl 5 (cos Hv,l, sin Hv,l) and Hu,l~2p
l
L
(l 5

1,..., L, where L 5 500). As shown in Figure 4, the sparse coding
network showed better generalization performance than the dense
coding network, which contrasted with the incompatibility of spe-
cialization and generalization. Thus, sparse coding can achieve com-
patibility between specialization and generalization in sensorimotor
tasks.

Multiplicatively modulated neural activities. I also investigated
whether sparse coding can reproduce reported neural activities.
Figures 5a and 5b show representative neural activities in sparse
and dense coding, respectively. In dense coding, the neural activity
was additively modulated when proprioceptive information changed
(i.e., Ai 5 f (v) 1 g(p)), which contrasted with reported neural
activities21. This is natural because when the threshold h was low,
no thresholding operation was necessary and neural activities were
linearly affected by visual and proprioceptive inputs. In contrast, in the
sparse coding network, neural activity seemed to be multiplicatively
modulated as Ai 5 f (v)g(p), which corresponded to previously
reported neural activities. When the threshold h was high, a nonlinear
thresholding operation was required, which could reproduce a
multiplicative interaction of visual and proprioceptive information
as reported by previous neurophysiological experiments. Hence, not
only did a sparse coding network attain complete and robust learning
and the compatibility between specialization and generalization,
it also reproduced previously reported neural activities in the
sensorimotor transformation task.

Comparisons with nonlinear network models. In addition to the
above, I investigated whether sparse coding has advantages over
other nonlinear network models. Although a linear network (dense
coding) cannot facilitate learning in the sensorimotor task, some
nonlinear network models are expected to do so. To show this, I
first simulated a nonlinear network model where neural activities
were determined by a hyperbolic tangential function, hi 5 0 (dense
coding), W was fixed, and J was modified to minimize the squared
movement error. These settings contrasted to the threshold linear
network because Jwas fixed andWwasmodified in the network. The
hyperbolic tangential networkmodel failed to learn the sensorimotor
transformation task, which suggests that nonlinearity alone in neural
activities is not sufficient to learn the task (Figure 6a). Following this,
I simulated a nonlinear network model in which neural activities
were also determined by a hyperbolic tangential function, hi 5 0,
and both J and W were modified to minimize the movement error.
This network model could learn the sensorimotor transformation
task; however, in two of the 10 simulation runs, the network model
failed to learn the task (Figure 6b). These failures were possibly due
to a high degree of parameter sensitivity because the initial values,
including the value of each parameter, significantly affected learning
performance in this network model24. In contrast, in sparse coding,
robust learning was possible because only W was adaptable, which
led to low parameter sensitivity. Furthermore, the nonlinear net-
work models failed to reproduce multiplicatively modulated neural
activities (Figures 6c). Thus, sparse coding has advantages over other
nonlinear network models in that it has lower parameter sensitivity
and can reproduce reported neural activities.

Discussion
In this paper, by assuming a threshold linear network and studying
visually guided wrist movements in various postures, I revealed that
sparse coding is superior for learning a sensorimotor transformation
task than dense coding and other nonlinear networks. When the
sparsity of the neural firing was optimal, the neural network could
completely and robustly learn the sensorimotor transformation task
(Figure 2), by decorrelating neural activities (Figure 3). The signifi-
cance of sparse coding was invariant when neural activities were
modeled by a threshold linear functionwith the same threshold value
across all neurons (Figures 2a–c), with a functionwith heterogeneous
threshold (Figures 2d and e), or hyperbolic tangential nonlinear
function (Figures 2f and g). Although overfitting to training data
(specialization) and performances on test data (generalization) are
incompatible in general, sparse coding successfully rendered the two
compatible (Figure 4). Previous studies suggested that a functional
role of sparse coding is to reduce metabolic cost17. However, by

Figure 3 | Principal component analysis of covariance matrix of neural
activities. The horizontal axis denotes the number of dimensions and the

vertical axis denotes the percentage of contribution, i.e., how large the i-th
eigenvalue of the covariance matrix is compared to other eigenvalues.

Figure 4 | Generalization error. The horizontal axis denotes the threshold
in Equation (1) and the vertical axis denotes log-scaled generalization

error. The generalization error represents the averaged movement error

across the 1,500 trials with 500 new visual targets and 3 postures. During

the investigation of the generalization error, an adaptable matrix W was

fixed after learning the training data.
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keeping the cost constant for both dense and sparse coding, this study
revealed that sparse coding also has other significant roles in sensor-
imotor transformation: better learning ability, robust learning, and
rendering specialization and generalization compatible in sensori-
motor transformation. Furthermore, sparse coding enabled the
reproduction of previously reported neural activities (Figure 5a),
which were impossible by dense coding (Figure 5b) and other non-
linear neural networks (Figure 6).
The compatibility of specialization and generalization was also

previously reported for a similar network model by assuming a bin-
ary neuron model and a discrimination task25. The study also
reported that sparse coding facilitates the decorrelation of neural
activities, resulting in better discrimination performance in sparse
coding than in dense coding. My research here facilitated a compar-
ison between neural activities in a sparse coding network and prev-
iously reported neural activities in sensorimotor transformation, and
showed that a sparse coding network can reproduce previously
reported neural activities. Hence, my work here showed another
advantage of sparse coding networks, and revealed the biological

plausibility of sparse coding from a different aspect: the reproduction
of actual neural activities. Furthermore, although the previous and
this study assumed different tasks, a discrimination and a sensori-
motor transformation task, respectively, both studies found an
optimal sparsity value of 0.9 (the definition of sparsity is different
between the two studies). At a glance, 0.9 seems to be amagic number
of sparsity; however, further analyses are necessary to rigorously
discuss the optimal sparsity in various tasks. Notably, the compat-
ibility of specialization and generalization appears to be an attractive
feature of an artificial and analog neural network model, on which I
focused in the current study, but further investigation is required for
a competent discussion of its compatibility in more biologically
plausible neural network models.
Although previous research in the area assumed that multiplic-

ative modulation in neural activities was the crucial factor in sensor-
imotor transformation tasks6,8,26, my research here showed that
sparse coding is critical to sensorimotor transformation. In fact, this
network can even learn a sensorimotor transformation task after
eliminating neurons whose activities are multiplicatively modulated

Figure 5 | Neural activities. (a): A representative neural activity when h5 3 (sparse coding network). The horizontal axis denotes visual target direction

and the vertical axis denotes neural activity. Yellow, grey, and black lines denote neural activities when k95 1,2, and 3, respectively. (b): A representative

neural activity when h 5 21 (dense coding network).

Figure 6 | Other nonlinear networks. (a): A representative learning curve when J is adaptable in a hyperbolic tangential neural network. The horizontal

axis denotes the number of trials and and the vertical axis denotes squared movement error. (b): Representative learning curves when both J andW are

adaptable in a hyperbolic tangential neural network. The blue and green lines denote learning curves in different simulation runs. (c): A

representative neural activity in a hyperbolic tangential neural network when both J and W are adaptable. The horizontal axis denotes visual target

direction and the vertical axis denotes neural activity. Yellow, grey, and black lines denote neural activities when k9 5 1,2, and 3, respectively.
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(data not shown). Furthermore, while some studies have suggested
neural implementation of multiplicative modulation19,27, I have in this
paper proposed a different framework to reproduce modulation that
can seamlessly connect sparse coding, the achievement of sensorimo-
tor transformation, and reported neural activities. Furthermore, my
study suggests that multiplicative modulation is a sub-phenomenon
of sparse coding, and that sparse coding is an essential factor in
sensorimotor transformation.

Methods
Learning rule. When movement error et 5 vt 2 xt is observed at the t-th trial, the
connectivities from neurons to musclesW t[RNM|N is modified to minimize the cost

function Et~
1
2
(et)

Tetz
l

2
(M t)

TM t , which consists of the squared movement error

and the squared sum of muscle activities:

W tz1~W t{g
LEt
LW t

, ð2Þ

or

W tz1~W tzg(Pk’(t),z)Tet(At)
T{glM t(At)

T , ð3Þ

where l is a regularization parameter, g is the learning rate, and Pk9(t),1 is a matrix
whose m-th column was set to 0 when the m-th muscle activity was 0. The
minimization of the squared sum of muscle activities is an important factor to discuss
muscle activity28. On the other hand, theminimization did not play an important role
in this study because I focused on the effect of the sparseness of neural activities on
movement errors following the convergence of learning. lwas thus set to 0 and gwas
set to 0.4. The number of trials was set to 1,000,000, but movement error had
converged to a certain value by 20,000 trials. Hence, I represented movement error
until 20,000 trials, as shown in Figure 2a. The average movement errors (Figures 2b–
g) were calculated by averaging the movement error from the 900,000-th to the
1,000,000-th trial.

Parameters. Each element of J[RN|4 was randomly sampled from a Gaussian
distribution whosemean was 0 and standard deviation was 1 for 10 times, i.e., I ran 10
simulations to calculate the average movement error shown in Figures 2b–g. The
number of neurons N was set to 2,000. The number of neurons did not significantly
affect the results because the number of neurons significantly affects the learning
speed29. The threshold value hwas sampled at 18 linearly spaced points from -3 to 3.8.
Actually, h was sampled at 21 linearly spaced points from -3 to 5, but no neuron was
active when h was greater than 3.8. Thus, no learning was possible for those values of
h. The initial weight value W0 was set to 0.

The number of muscles NM represented the number of muscles and was set to 5
based on previous studies8,20,21. The fixed neuron-to-muscle connectivties
Pk’(t)[R2|NM depend on posture. The (1,i)-th and the (2,i) -th components ofPk9(t) are
defined as cos(Qi,k9(t)) and sin(Qi,k9(t)), respectively, where Qi,k9(t) represents the pulling
direction of the i-th muscle at the k9-th posture. The pulling direction is the direction
of motion induced by muscle activation and depends upon posture. Each pulling
direction was determined based on previous studies8,20,21.

Summary of computer simulation.The procedures of my computer simulations can
be summarized as follows. Setting the parameters J, l, g, N to certain values,W05 0,
and Hv,k(t) and Hp,k9(t) to a certain value at the t-th trial yields the following:

(Determining input pattern) I t~(ut ,pt)
T

~( cosHu,k(t), sinHu,k(t), cosHp,k’(t), sinHp,k’(t))
T :

ð4Þ

(Determining neural activities) At~
1
Z
½J I t{h�z: ð5Þ

(Determining muscle activities) M t~½W tAt �z: ð6Þ

(Determining outputs) xt~Pk’(t)M t : ð7Þ

(Observation of movement error) et~ut{xt : ð8Þ

(Update of connectivity matrix) W tz1~W tzg(Pk’(t),z)Tet(At)
T{glM t(At)

T :ð9Þ

Compared networkmodel. In the subsection Sensorimotor transformation via sparse
coding andComparisons with other nonlinear networkmodels, I reported the results of
simulations from three hyperbolic tangential network models. In the subsection
Sensorimotor transformation via sparse coding, neural activities were determined by

At~
1
Z

1
2
z

1
2
tanh (b(J tI t{h))

� �
, ð10Þ

whereZ is a normalization constant, tanh (x)~
exp (x){ exp ({x)
exp (x)z exp ({x)

,b determines the

slope of the function, and h determines the sparseness of the network. The
normalization constant was determined in the samemanner as in the threshold linear
network, i.e., AT

t At~1. Because the maximal and minimal of tanh(y) is 1 and 21,
neural activities are defined as non-negative values in equation (10), which is
comparable to the threshold linear model. hi 5 h was sampled at 18 linearly spaced
points from 3 to 3.8. The number of neurons N was set to 2000.

In the subsection Comparisons with other nonlinear network models, neural
activities were determined by

At~
1
Z
tanh (J tI t), ð11Þ

where the normalization constant Z was determined in the same manner as in the
threshold linear network ((At)TAt5 1). SinceWwasmodified in the threshold linear
networkmodel, only Jwas adaptable in one of themodels, whereas both J andWwere
adaptable in the other. I ran 10 simulations for each model and, for the initial trial of
each simulation, J was set to a zero matrix and each component ofW was randomly
sampled from aGaussian distributionwithmean 0 and standard deviation 1=

ffiffiffiffi
N

p
(the

number of neurons N was set to 200 in these models).
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