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Abstract 
Air quality affects people’s daily life. Air quality index (AQI) is an essential indicator for controlling air pollution and ensur-
ing public health, whose accurate forecasting can provide timely air pollution warnings and remind people to take protective 
measures against air pollution in advance. To address this issue, this paper developed a new ensemble learning model for 
AQI forecasting. In this study, (1) the signal decomposition technique complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) is introduced to decompose the nonlinear and nonstationary AQI history data series into 
several more regular and more stable subseries firstly. (2) Fuzzy entropy (FE) is selected as the feature indicator to recom-
bine the subseries with similar trends to avoid the problem of over-decomposition and reduce the computing time. (3) An 
ensemble long short-term memory (LSTM) neural network is established to forecast each reconstructed subseries, whose 
values are superimposed to predict the AQI value eventually. To validate the predicting performance of the proposed model, 
daily AQI data of Wuhan, China, dating from January 1, 2019, to February 28, 2022, is used as the experiment case. And 
comparative analysis is made between the proposed model and other common-used forecasting models. Benchmarking 
results of the numerical study demonstrate that the proposed model is superior to the other forecasting models with better 
AQI prediction accuracy.
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Introduction

In recent years, air pollution has become a severe environ-
mental problem in many cities worldwide (Noorimotlagh 
et al. 2021). On the one hand, with the rapid development 
of the economy, numerous substandard industrial pollut-
ants have been emitted into the air, which seriously polluted 
the air (Zhu et al. 2017). On the other hand, dramatically 
increasing population and the level of urbanization have also 
negatively influenced the atmosphere from various aspects. 
For example, an increasing number of vehicles have emitted 
more nitrogen oxides into the air, and the burning of fossil 
fuels along with dust from roads has made the air even worse 
as well (Borck and Schrauth 2021). In addition to causing 

problems in people’s daily lives, air pollution may pose seri-
ous threats to people’s health status, including harming heart 
and lung, leading to respiratory diseases and physiological 
dysfunction, resulting in acute poisoning and even death. 
Therefore, air quality, which is closely related to everyone, 
has widely drawn the public’s attention.

Indicators describing air quality can mainly be divided 
into individual indicators and comprehensive indicators. 
Individual indicators include PM2.5 , PM10 , SO2 , NO2 , CO , 
and O3 . Comprehensive indicators cover air pollution index 
(API) (Cogliani 2001) and air quality index (AQI). AQI, pro-
posed in the ambient air quality standard (GB3095-2012), is 
an index that integrates six kinds of pollutants ( PM2.5 , PM10 , 
SO2 , NO2 , CO , and O3 ) to reflect air quality conditions. 
Compared with individual indicators, AQI provides a more 
intuitive description of air quality for the general public, as 
it classifies air quality from good to bad on a scale of grade I 
to VI. And a rise in the AQI value indicates that the air pol-
lution level has also increased. AQI and the corresponding 
concentration limits of air pollutants are presented in Table 2 
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Air quality grades according to AQI and related informa-
tionAQIGradeDescriptionSuggestions0–50IExcellentAll 
groups of people can take normal activities51–100IIMod-
erateVery few extremely sensitive people should decrease 
outdoor activities101–150IIILight pollutionSpecial groups 
of people should decrease long-time, high-intensity outdoor 
activities151–200IVModerate pollutionSpecial groups of 
people should avoid long-time, high-intensity outdoor 
activities. The general groups of people should moderately 
decrease outdoor activities201–300VHeavy pollutionSpe-
cial groups of people should stay indoors and stop outdoor 
activities. The general groups of people should decrease 
outdoor activities.>300VISevere pollutionSpecial groups 
of people should stay indoors. The general groups of people 
should avoid outdoor activities1. Air quality grades clas-
sified by AQI and corresponding suggestions for different 
groups of people are shown in Table 2. From the short-term 
perspective, AQI can help the general public to more easily 
understand how bad or good the present air quality is for 
their health and help them make sensible decisions about 
outdoor activities (Kumar and Goyal 2011). From the long-
term perspective, AQI can be applied to quantify the air 
quality conditions of an area over a period of time, thus 
assisting the government agencies to better develop pollu-
tion mitigation measures and make air quality management. 
In the past literature, the association of AQI with mortality 
and morbidity of respiratory and cardiovascular diseases 
has been assessed, which suggested that AQI of less than 
40 could result in the protective effects on respiratory and 

cardiovascular diseases, while AQI of more than 140 could 
result in hazardous effects on these diseases, especially for 
those aged 46–60 years (Ikram and Yan 2016).

In the table, the concentration of O3 is the 8-h average, 
and the concentrations of the other five pollutants are the 
24-h average

Special groups of people: children, the elderly, people 
with heart or respiratory diseases, etc.

Air quality forecasting is a quite significant topic, which 
plays a vital role in public health protection and air pollu-
tion control. It can help people make reasonable arrange-
ments for outdoor activities or take measures in advance to 
protect themselves from the harm of air pollution, which is 
especially important for children, the elderly, and people 
with heart or respiratory diseases. Moreover, it is useful in 
guiding the government to introduce relevant policies for air 
pollution prevention and control. However, since the factors 
impacting air quality are complex and diverse, it is not a 
simple task to predict air quality.

In the past literature, models for predicting AQI and other 
atmospheric pollution indicators can mainly be divided into 
two categories: deterministic models and data-driven mod-
els. Deterministic models are based on meteorological data 
and pollution source data, which make predictions about 
atmospheric pollutant concentrations through simulating 
emission, accumulation, diffusion, and transport of air pol-
lutants (Takami et al. 2020, Dumka et al. 2021). Neverthe-
less, this method is usually very complex and time-consum-
ing, and it does not show an apparent advantage in terms of 

Table 1  Corresponding range 
of AQI values and air pollutant 
concentrations

AQI Air pollutant concentration limits

SO2(μg/m3) NO2(μg/m3) MG10(μg/m3) CO(mg/m3) O3(μg/m3) PM2.5(μg/m3)

0 0 0 0 0 0 0
50 50 40 50 2 100 35
100 150 80 150 4 160 75
150 475 180 250 14 215 115
200 800 280 350 24 265 150
300 1600 565 420 36 800 250

Table 2  Air quality grades according to AQI and related information

AQI Grade Description Suggestions

0–50 I Excellent All groups of people can take normal activities
51–100 II Moderate Very few extremely sensitive people should decrease outdoor activities
101–150 III Light pollution Special groups of people should decrease long-time, high-intensity outdoor activities
151–200 IV Moderate pollution Special groups of people should avoid long-time, high-intensity outdoor activities. The general groups of 

people should moderately decrease outdoor activities
201–300 V Heavy pollution Special groups of people should stay indoors and stop outdoor activities. The general groups of people 

should decrease outdoor activities.
>300 VI Severe pollution Special groups of people should stay indoors. The general groups of people should avoid outdoor activities
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prediction accuracy (Lightstone et al. 2017). Data-driven 
models (Lv et al. 2021) include traditional statistical models 
and AI-based models (Wu and Lin 2019). Statistical models 
use the historical data to forecast air pollutants. Commonly 
applied statistical models for atmospheric pollution index 
prediction cover autoregressive integrated moving average 
model (ARIMA) (Rekhi et al. 2020), multiple linear regres-
sion (MLR) (Amanollahi and Ausati 2020), grey model 
(GM) (Xiang et al. 2021), etc. However, due to the high 
nonlinearity of air pollutant series and AQI series, it is dif-
ficult for the conventional statistical models to achieve good 
performance when forecasting these series.

In the last few years, AI-based models have been widely 
employed for air quality prediction, including recurrent neu-
ral network (RNN) and long short-term memory (LSTM) 
neural network (Cao et al. 2019). RNN is a deep learning 
model, which is suitable for the prediction of non-linear 
time series. Lots of researchers have used RNN to forecast 
air quality. For example, Athira et al. (2018) introduced an 
RNN to make predictions for the value of PM10 and attained 
great prediction results. Feng, Zheng, et al. (2019) developed 
an RNN to forecast concentrations of key pollutants for the 
next 24 h, and the results showed that RNN can make reli-
able predictions of air pollutants. Despite RNN having an 
excellent performance in processing time series, it is prone 
to gradient exploding and vanishing when dealing with long 
time series. LSTM, an extension of the traditional RNN, 
was proposed to solve these problems (Vlachas et al. 2018). 
Based on RNN, LSTM introduces a special gating system 
consisting of forget gate, input gate, and output gate to con-
trol the delivery of information; thus, it can effectively learn 
the long-term dependency existing in time series. Since AQI 
is a comprehensive indicator of air pollutant concentrations, 
which is strongly dependent on previous air quality condi-
tions, LSTM, with an excellent learning ability of long-term 
time series and unaffected by the gradient problem, is highly 
suitable for AQI forecasting (Chaudhary et al. 2018). Past 
research has demonstrated the superiority of LSTM for air 
quality prediction. Jiao et al. (2019) applied a LSTM based 
on nine factors to forecast AQI in Shanghai. The results indi-
cated that LSTM has high predictive accuracy and a strong 
adaptive capacity. Navares and Aznarte (2020) presented 
several LSTM neural networks with various configura-
tions to make a prediction for the air quality in Madrid. The 
findings showed that LSTM outperforms linear regression 
model. Nevertheless, there are some limitations of the indi-
vidual LSTM model. For instance, when a single LSTM 
model is applied for predicting irregular time series with 
high frequency, it often fails to precisely predict mutation 
data, which will extremely increase the predicting error. 
Moreover, the predictive accuracy of an individual LSTM 
model will also decrease, when the features of time series at 
various scales are superimposed.

Combining LSTM model with signal decomposition 
methods can achieve higher forecasting accuracy. Empirical 
mode decomposition (EMD) is one of the most frequently 
applied signal decomposition techniques (Huang et al. 1998; 
Wu  et al. 2017). It can decompose the nonlinear and chaotic 
time series into a series of intrinsic mode functions (IMF) 
with different frequencies and a residue. After decomposi-
tion, valuable features of the original series are extracted 
into different components. Additionally, since the IMF 
are much more regular than the original series, they can 
be easily predicted by LSTM model. Therefore, great pre-
dicting results can be attained by building LSTM forecast-
ing models for each IMF and aggregating their forecasting 
values. Zhang et al. (2021) employed EMD to decompose 
PM2.5 concentration series and applied bidirectional long 
short-term memory (BiLSTM) model to forecast each IMF. 
The results suggested that EMD can significantly improve 
prediction accuracy. However, EMD has the mode mixing 
problem, making the IMF fail to reflect characteristics of the 
original series accurately. To overcome this problem, ensem-
ble empirical mode decomposition (EEMD) was proposed 
(Wu and Huang 2009). It effectively reduces the emergence 
of the mode mixing by adding Gaussian white noise into the 
original series, so that the precision of decomposition com-
ponents is increased. Bai et al. (2019) established a hybrid 
model of EEMD and LSTM for hourly PM2.5 concentration 
prediction. The findings indicated that details of the original 
series were maintained more by EEMD, which contributed 
to the high accuracy of the model.

Despite that this hybrid model has an excellent predict-
ing performance, there are still some shortcomings existing 
in this method. On the one hand, the added noise cannot be 
completely eliminated by EEMD. Some noise still remains 
after the ensemble averaging, which leads to the reconstruc-
tion error and decreases the forecasting accuracy. On the 
other hand, some components decomposed by EEMD are 
quite similar, which can be referred to over-decomposition, 
resulting in inaccurate information extraction and increased 
time consumption in subsequent computations. For exam-
ple, the multiple low-frequency components with similar 
trends obtained through EEMD by Zhu et al. (2018) can be 
regarded as over-decomposition.

In order to overcome the above problems, a hybrid model 
is proposed in this paper, which integrates complete ensem-
ble empirical mode decomposition with adaptive noise 
(CEEMDAN), fuzzy entropy (FE), and LSTM neural net-
work for AQI forecasting. Firstly, to eliminate the recon-
struction error, CEEMDAN is introduced. CEEMDAN is 
an improved version of EEMD (Torres et al. 2011), which 
can decompose the added white noise, thus making the 
reconstruction error almost zero. Moreover, as CEEMDAN 
requires fewer averaging times than EEMD, it can effec-
tively speed up the calculation. Secondly, FE is applied to 
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solve the problem of over-decomposition. FE is an enhanced 
approach of approximate entropy and sample entropy (Chen 
et al. 2007), which evaluates the complexity of a time series 
by measuring the probability of the time series producing 
a new pattern. The closer the fuzzy entropy value is, the 
more similar the fluctuations of the series are. Therefore, 
this paper combines analogous components based on FE 
values to improve the accuracy of information extraction 
and reduce the calculating burden. Ultimately, LSTM neu-
ral network is established for predicting each component, 
as it has a great advantage compared with other statistical 
models and AI-based models in forecasting time series with 
long-term dependency like AQI series. The proposed model 
mainly consists of the following steps:

Firstly, CEEMDAN is employed to decompose the AQI 
time series into several IMF and a residue, thus transform-
ing the chaotic, nonstationary original series into the more 
regular sub-series. Then, FE is adopted as a reference to 
combine and reconstruct components with similar trends, 
which avoids excessive decomposition and decreases sub-
sequent calculations. Next, LSTM forecasting models are 
built for each reconstructed component, ensuring that valu-
able information from the historical data can be completely 
utilized. Finally, the forecasting results of AQI are acquired 
by aggregating the predictive values of each reconstructed 
component.

The remaining of this paper is arranged as follows: the 
“Related theory” section gives a general description of the 
related models. The “Proposed model” section introduces 
the detailed steps of the proposed model. The “Case study” 
section tests the proposed model through experiment on the 
dataset and comparison with other models. The “Conclu-
sions” section summarizes this paper.

Related theory

In this section, a brief description of the relevant models is 
given, including CEEMDAN, FE, and LSTM.

Complete ensemble empirical mode decomposition 
with adaptive noise

Complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) is an adaptive time-frequency 
processing technique for nonlinear and nonstationary sig-
nals. It can decompose the original signal into a series of 
intrinsic mode functions (IMF) and a residue. By adap-
tively adding a limited number of Gaussian white noises 
conforming to the standard normal distribution in the 
signal decomposing process, CEEMDAN can overcome 
the mode mixing problem of EMD and achieve a much 

less reconstruction error than EEMD. In addition, com-
pared with EEMD, CEEMDAN significantly decreases the 
number of realizations, which greatly saves the calcula-
tion time. The detailed procedure of CEEMDAN is the 
following:

(1) For a time series t(n) , a series of Gaussian white noises 
conforming to the standard normal distribution are 
added into it:

where ti(n) represents the i th time series generated by 
adding white noise, �0 represents a noise coefficient, 
�i(n) represents the i th noise added into the series, and 
I represents the number of realizations.

(2) The above series are decomposed by EMD to get their 
first IMF, and then the first CEEMDAN mode IMF1(n) 
is calculated by averaging the IMF:

  The first residue r1(n) corresponding to the first 
CEEMDAN mode is computed as follows:

(3) The signals r1(n) + �1EMD1(�i(n)) are decomposed by 
EMD to get their first IMF, and then the second CEEM-
DAN mode IMF2(n) and residue r2(n) are calculated by 
the following equations:

where EMDm(∙) represents the m-th IMF obtained by 
EMD.

(4) The rest of CEEMDAN modes are obtained by:

(5) The algorithm ends when the residue rm(n) cannot be 
decomposed by EMD. The final residue is as follows:

where M represents the number of CEEMDAN modes.

(1)ti(n) = t(n) + �0�i(n), i = 1,… , I

(2)IMF1(n) =
1

I

I∑

i=1

IMF1
i

(3)r1(n) = t(n) − IMF1(n)

(4)IMF2(n) =
1

I

I∑

i=1

EMD1

(
r1(n) + �1EMD1

(
�i(n)

))

(5)r2(n) = r1(n) − IMF2(n)

(6)IMF
m
(n) =

1

I

I∑

i=1

EMD1

(
r
m−1(n) + �

m−1EMD
m−1

(
�
i
(n)

))

(7)rm(n) = rm−1(n) − IMFm(n)

(8)R(n) = t(n) −

M∑

m=1

IMFm(n)
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Through CEEMDAN, the chaotic and nonlinear original 
AQI series can be fully decomposed into a series of IMF 
from high frequency band to low frequency band, which 
reflect the characteristics of the original sequence from vari-
ous scales. Therefore, useful information of the AQI series 
can be extracted. Moreover, the decomposed IMF are more 
regular and stable than the original AQI series, which can 
further improve the learning effect of the LSTM neural 
network.

Fuzzy entropy

Fuzzy entropy (FE) is a quantitative method measuring the 
complexity of time series by gauging the probability of a 
new pattern produced in the time series. As an enhanced 
approach of approximate entropy and sample entropy, FE 
retains their advantages and overcomes the problem of 
using the absolute difference of data to evaluate the similar-
ity between vectors by introducing an exponential function 
called fuzzy membership function to fuzz up the similar 
degree. Thus, the value of FE can vary steadily according 
to the adjustment of parameters. Moreover, as the closer the 
FE value, the more similar the series are to each other (Qin 
et al. 2019); this paper calculates the FE values of the IMF 
decomposed by CEEMDAN in which the IMF with similar 
FE values are combined to reduce the numbers of compo-
nents. The detailed calculating process is as follows:

(1) For a time series t(n) = t(1), t(2),… , t(N) , the series is 
reconstructed into a group of k-dimension vectors in 
order:

where k represents the embedded dimension, and 
t0(i) =

1

k

∑k−1

j=0
t(i + j).

(2) For vector Tk(i) and Tk(j) , their distance is defined as 
follows:

where i, j = 1, 2,… ,N − k + 1, i ≠ j.
(3) The similarity Dk(i, j) of Tk(i) and Tk(j) is calculated by:

where �(dk(i, j), p, r) is the fuzzy membership function, 
p represents its boundary gradient, and r represents the 
similarity tolerance.

(9)
T
k
(i) = {t(i), t(i + 1),… , t(i + k − 1)}

−t0(i), 1 ≤ i ≤ N − k + 1

(10)

dk(i, j) = max
|||
(
t(i + m) − t0(i)

)
−
(
t(j + m) − t0(j)

)|
||
,

m = 0,1,… , k − 1

(11)Dk(i, j) = �
(
dk(i, j), p, r

)
= exp

[

−

(
dk(i, j)

)p

r

]

(4) After computing the similarity Dk(i, j) , to get FE value, 
a particular function �k(p, r) is defined as follows:

(5) The function �k+1(p, r) is computed by updating k to 
k + 1 and repeating the above steps:

(6) The FE value of t(n) can be obtained by:

When the number of samples N is limited, the above for-
mula can be presented as follows:

Fuzzy entropy can describe the similarity between two 
time series. Accordingly, combining the analogous compo-
nents based on their FE values can increase the rationality of 
reconstruction. In addition, reconstructing the sequence by 
FE significantly reduces the computation burden of LSTM 
model and helps it capture important information of the 
original AQI series more easily.

Long short‑term memory neural network

Long short-term memory (LSTM) neural network is a spe-
cial version of RNN. On the basis of RNN, LSTM introduces 
three gates into its unit, i.e., input gate, forget gate, and out-
put gate, to update the information stored in the memory 
cell. Thus, it can balance the memorizing and forgetting 
process of historical data, and the gradient vanishing and 
exploding problems of traditional RNN are also solved. 
When the cell state of LSTM unit is upgraded, the control 
effect of each gate is as follows:

• Input gate: conditionally determines what new informa-
tion will be stored in the cell state.

• Forget gate: conditionally determines what information 
will be thrown away from the cell state.

• Output gate: based on the cell state, conditionally deter-
mines what information will be output.

Benefiting from the above three special gates, LSTM 
is able to selectively control the information saved in the 
memory unit. LSTM can appropriately forget the past 
data and adaptively update the cell state based on the new 

(12)

�k(p, r) =
1

N − k + 1

N−k+1∑

i=1

(
1

N − k

N−k+1∑

j=1,j≠i

Dk(i, j)

)

(13)

�k+1(p, r) =
1

N − k

N−k∑

i=1

(
1

N − k − 1

N−k∑

j=1,j≠i

Dk+1(i, j)

)

(14)FE(k, p, r) = lim
N→+∞

(
ln�k(p, r) − ln�k+1(p, r)

)

(15)FE(k, p, r,N) = ln�k(p, r) − ln�k+1(p, r)
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information input during the learning process. The struc-
ture of LSTM unit is shown in Fig. 1. And the calculating 
method of LSTM unit is as follows:

(1) The value of candidate memory cell c̃t , the value of 
input gate it , and the value of forget gate ft at moment 
t are calculated as follows:

where �c,�i, and�f  represent the corresponding weight 
matrices, bc, bi, and bf  represent the corresponding 
bias, ht−1 represents the output value of LSTM unit at 
the last moment, xt represents the input value at time 
t , tanh is hyperbolic tangent activation function in the 
range (−1, 1), and � is sigmoid activation function in 
the range (0, 1).

(2) The value of memory cell ct at moment t is calculated by:

where ct−1 represents the value of memory cell at the 
last moment:Where ωo  and  bo are the weight matrix 
and bias of output gate.

(3) The value of output gate  Ot and the output value of 
LSTM unit ht at moment t are calculated by the follow-
ing formulas:

(16)c̃t = tanh
(
�c

[
ht−1, xt

]
+ bc

)

(17)it = �
(
�i

[
ht−1, xt

]
+ bi

)

(18)ft = �
(
�f

[
ht−1, xt

]
+ bf

)

(19)ct = ftct−1 + itc̃t

(20)ot = �
(
�o

[
ht−1, xt

]
+ bo

)

(21)ht = ottanh
(
ct
)

Where ωo  and  bo are the weight matrix and bias of output gate.
By establishing the structure of three controlling gates and 

memory cell, LSTM can easily keep upgrading long-term data 
and is capable of learning the long-term dependency of time 
series. Besides, as LSTM builds a long-term delay between 
input and feedback, it is quite suitable for processing and fore-
casting the time series with long intervals and delays. There-
fore, LSTM is employed in this paper, to make predictions for 
the reconstructed components of AQI time series.

Proposed model

In this section, the proposed ensemble CEEMDAN-FE-LSTM 
model and its modeling process are described in detail. Figure 2 
illustrates the implementation steps of the proposed model.

Step 1. Series decomposition. CEEMDAN is employed to 
decompose the original AQI time series t(n) into a series of 
subseries  (IMF1,  IMF2,  IMF3, …,  IMFn) with frequencies 
from high to low and the residue. The purpose of this step is 
to transform the nonstationary and nonlinear AQI series into 
several more regular components with important features of 
the original series at various scales. Thus, the characteristics of 
the data are reinforced and the prediction accuracy is improved.
Step 2. Components reconstruction. FE is applied to 
measure the similarity of different components. The FE 
values of the IMF and the residue are calculated, and then 
the components with approximate FE values are com-
bined into some reconstructed series (FE-IMF). Through 
the components’ reconstruction, analogous components 
are recombined, in order to prevent inaccurate extraction 
of information caused by over-decomposition and reduce 
the computation burden.
Step 3. LSTM training and predicting. LSTM predicting 
models are established and trained for each FE-IMF, to fully 

Fig. 1  The unit network struc-
ture of LSTM
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extract the potential significant information of each recon-
structed series. And the optimal parameters for each LSTM 
model are determined through experiments. In this way, 
prediction results for each reconstructed series are obtained.
Step 4. AQI forecasting. The ultimate forecasting results 
of AQI are attained by integrating the predictive values 
of each FE-IMF.

Case study

In this section, the predicting performance of the proposed 
model is examined by experiment and comparative analysis 
with some commonly used forecasting models.

Dataset description

To verify the proposed model, the daily AQI data of 
Wuhan, China, is selected as the test set. Wuhan, located 

in the east of Hubei province in China, is the biggest and 
the capital city of Hubei province. With a highly devel-
oped heavy industry, an enormous number of coals are 
consumed in Wuhan every year, accounting for substan-
tial emissions of particulate matter and nitrogen oxides. 
Moreover, Wuhan has a resident population of more than 
13 million and approximately 3.8 million vehicles, which 
significantly increases the concentrations of carbon oxides 
and nitrogen oxides. Although concentrations of air pol-
lutants in Wuhan have slightly decreased in recent years, 
the level of air quality is still relatively low. Therefore, it is 
essential to make predictions for the AQI of Wuhan. Fig-
ure 3 shows the geographical location of Wuhan. Figure 4 
illustrates the population distribution of Hubei province.

The daily AQI data of Wuhan is obtained from the web-
site https:// www. aqist udy. cn/ histo rydata/, which dates from 
January 1, 2019, to February 28, 2022, with a total of 1155 
pieces. The chaotic and nonstationary original AQI data is 
shown in Fig. 5.

Fig. 2  Flow chart of the pro-
posed hybrid model 
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In early 2020, since the widespread outbreak of COVID-19, 
Wuhan became the first epidemic-hit area in China. To prevent 
the spread of the disease, Chinese government took measures to 
restrict population movement and reduce human activities such 
as transportation and industrial production, which affected air 

quality to some degree. The statistics of Wuhan AQI in January 
and February from 2019 to 2022 is shown in Table 3. As can be 
seen, during the epidemic, the average AQI value of Wuhan is the 
lowest and the proportion of days with I or II air quality grades 
is the highest, meaning that the air quality of Wuhan during the 

Fig. 3  Location of Wuhan
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Fig. 4  Heatmap of population 
distribution in Hubei province
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outbreak of COVID-19 is the best, which is inseparable from the 
lockdown measures and the decrease of human activities.

In the experiment, we select the top 80% of the time 
series as the training data set and the latter 20% as the test 
data set. The descriptive statistics of the training and test sets 
are presented in Table 4.

AQI series decomposition and reconstruction

As the original AQI series is irregular and full of noises, 
it is difficult to directly fit the AQI series using predicting 
model. Therefore, CEEMDAN is employed to decompose 
the AQI series. In this study, the Gaussian white noise stand-
ard deviation � of CEEMDAN is set to 0.05, the number of 
realizations I is set to 100, and the number of maximum sift-
ing iterations is set to infinity, ensuring that the AQI series is 
completely decomposed. Figure 6 illustrates the decomposi-
tion results of the AQI series. It can be seen that the AQI 
series is decomposed into 9 subseries, including 8 IMF and 

a residue, which contain the significant characteristics of the 
original series at different scales.

After decomposing the AQI series by CEEMDAN, to 
avoid the problem of over-decomposition and reduce subse-
quent calculating time, FE is applied to reconstruct the simi-
lar subseries. The FE value of each decomposition compo-
nent is calculated. And then, components with approximate 
FE values are recombined into new series (FE-IMF). In this 
paper, the parameters of FE are as follows: the embedded 
dimension k is set to 2, the similarity tolerance r is set to 
as 0.2 ∗ std(t(n)) , and the boundary gradient of fuzzy func-
tion p takes 2. FE values of different components and their 
recombination results are shown in Table 5. And the recon-
structed sequences are illustrated in Fig. 7.

After decomposing and reconstructing the original AQI 
series, each data in the reconstructed sequences is normal-
ized to the range (0, 1). It effectively decreases the impacts 
of noises and increases the learning and converging speed of 
LSTM neural networks. The original data is normalized by:

where maxx(n) and minx(n) are the maximum and minimum 
values of each reconstructed series, respectively. When the 
training process of LSTM model is completed, the output of 
the model is inversely normalized by the formula as follows:

where x(n)
�

p
 is the output of the model.

Training process and forecasting results

After decomposition and reconstruction using CEEMDAN-
FE, LSTM models are developed to predict each FE-IMF. 
Main parameters of the LSTM models are shown in Table 6. 
Moreover, in order to achieve the best predictive perfor-
mance for each reconstructed component, the optimal win-
dow length, i.e., the number of previous samples used for 
predicting the next sample, and epoch, i.e., the number of 
iterations, are determined through experiments, which are 
presented in Table 7.

Figure 8 shows the prediction results of each reconstructed 
component on the test set. As can be seen, the forecasting accu-
racies of components with high frequencies such as FE-IMF1 
are relatively low, since these series are highly oscillating and 
nonstationary, while the prediction results of low-frequency 
components like FE-IMF4 and FE-IMF5 are more accurate, 
and the predicting curves of these components almost perfectly 
fit the actual series.

As the window length of each reconstructed component 
is different, the length of the prediction results for each 
reconstructed component varies too. We select the shortest 

(22)x(n)
�

=
x(n) − minx(n)

maxx(n) − minx(n)

(23)x(n)p = x(n)
�

p
∗ (max x(n) − minx(n)) + minx(n)
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Fig. 5  The original data of AQI time series

Table 3  Statistics of AQI in Wuhan from January to February of the 
past 4 years

Indicator 2019 2020 2021 2022

Average AQI value 106.7 70.5 88.2 91.1
Proportion of I or II air 

quality grades
50.8% 81.7% 72.9% 67.8%

Table 4  Descriptive statistics of two data sets

Data set Count Minimum Maximum Mean Standard 
deviation

Training data 924 20 223 78.77 32.44
Test data 231 25 226 82.92 36.23
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prediction sequence as the criterion, and discard the excess 
of other sequences. Then, the predicted values of each recon-
structed component are integrated to get the final forecasting 
result of AQI, which is illustrated in Fig. 9. It can be seen that 
the forecasting AQI values by CEEMDAN-FE-LSTM are very 
close to the actual AQI values.

Comparison with other models

In this section, three models including ARIMA, LSTM, and 
EEMD-LSTM are selected for comparison to validate the 
forecasting effect of the proposed CEEMDAN-FE-LSTM 

Fig. 6  CEEMDAN decomposition results of the original AQI series

Table 5  FE values and recombination results of CEEMDAN compo-
nents

Component FE value Recombination New sequence

IMF1 2.6965 IMF1 FE-IMF1
IMF2 1.7928 IMF2 FE-IMF2
IMF3 1.0623 IMF3 FE-IMF3
IMF4 0.7337

IMF4&IMF5&IMF6 FE-IMF4IMF5 0.4589
IMF6 0.1678
IMF7 0.0571

IMF7&IMF8&Residue FE-IMF5IMF8 0.0137
Residue 0.0034

Fig. 7  Reconstructed sequences by FE



Air Quality, Atmosphere & Health 

1 3

model. All the models make predictions based on the same 
data set.

To better evaluate the accuracy of the forecasting mod-
els, three assessing indicators are adopted, including root 
mean squared error (RMSE), mean absolute percentage error 
(MAPE), and coefficient of determination ( R2 ). They are cal-
culated as follows:

where N is the number of samples of the test set, yi and di are 
the actual and forecasting values at moment i , respectively, 
and y is the mean of the test set sample values.

Additionally, as the public pays more attention to the class 
of AQI rather than its exact value, the correctness of AQI clas-
sification is important. Therefore, grading accuracy rate (GAR), 
which depicts the correct rate of AQI grade forecasting, is intro-
duced into the assessment system. It is computed as follows:

(24)RMSE =

√√√
√ 1

N

N∑

i=1

(
yi − di

)2

(25)MAPE =
100%

N

N∑

i=1

|
|||

yi − di

yi

|
|||

(26)R2 = 1 −

∑N

i=1

�
yi − di

�2

∑N

i=1

�
yi − y

�2

(27)GAR =
100%

N
T

where T  is the number of predicted AQI grades that are cor-
respondingly the same as the actual AQI grades of the test 
set.

If the values of RMSE and MAPE are smaller and the 
values of R2 and GAR are larger, the prediction performance 
of the model is better. Table 8 shows the RMSE, MAPE, R2 , 

Table 6  Main parameters of 
LSTM

Parameter Value

Hidden layer 1
Activation function tanh
Optimizer Adam
Loss function Mean squared 

error
Hidden units 128
Batch size 24

Table 7  Window length 
and epoch of each FE-IMF 
forecasting model

Reconstructed 
component

Window 
length

Epoch

FE-IMF1 2 180
FE-IMF2 5 190
FE-IMF3 7 140
FE-IMF4 11 220
FE-IMF5 7 130

Fig. 8  Prediction results of each FE-IMF
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Fig. 9  Forecasting result of AQI
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and GAR values of the four models which reflect the pre-
diction error, fitting effect, and grade prediction accuracy of 
the models, and Fig. 10 the corresponding histograms. For 
prediction error, the proposed model achieves an RMSE of 
9.45 and a MAPE of 10.47% (shown in Fig. 10(a)), which are 
both the smallest in the four models. Additionally, Fig. 10(b) 
illustrates the fitting effect and grade prediction of the 4 mod-
els. It is clear that the proposed model has an R2 of 0.9334, 
which is close to 1, meaning that the proposed model fits the 
AQI series well. In the aspect of grade prediction accuracy, 
the GAR value of the proposed model is 89.45%, which is 
higher than any of the comparative models. It implies that 
the proposed model can make accurate predictions of the 
future AQI grades; thus, the public can schedule their outdoor 
activities and take some protection measures against air pol-
lution in advance according to the predicted AQI grade. The 
experimental result on the dataset and comparison with other 
forecasting models both illustrate that the proposed model 
can make accurate predictions of the AQI series.

Conclusions

AQI forecasting is essential for protecting public health and 
reducing air pollution. Nevertheless, AQI series is chaotic and 
nonstationary, making it hard to be predicted. Facing such 
tough problems, this paper proposes a hybrid model based on 
CEEMDAN, FE, and LSTM neural network for AQI predic-
tion. In the proposed model, CEEMDAN is first employed 
to decompose the highly oscillating and nonlinear original 
AQI series into several more stable subseries called IMF and 
a residue. Thus, characteristics of the original series at various 
scales are obtained. Then, FE is utilized to combine and recon-
struct the subseries with similar trends, to prevent the inter-
ference of useless information to subsequent prediction and 
decrease the computing burden. Next, LSTM models, which 
have an excellent learning and memorizing ability, are estab-
lished to make predictions for each reconstructed component. 
Finally, the ultimate AQI forecasting results are acquired by 
aggregating the predicted values of each reconstructed series.

Through empirical research and analysis, the proposed 
model presents better performance to the comparative mod-
els including ARIMA, LSTM, and EEMD-LSTM, as it 
achieves a lower prediction error and better fitting effect. 

Moreover, the accuracy of the proposed model for AQI 
grade prediction is much higher than the other forecasting 
models, which is significant in guiding the general public to 
plan their outdoor activities and adopt some protective meas-
ures in advance. Based on the above findings, the superior-
ity of the proposed CEEMDAN-FE-LSTM model for AQI 
prediction is fully demonstrated. And it can be applied as a 
reliable and efficient tool for AQI forecasting.

Though the proposed AQI forecasting model has an 
excellent performance, there are still some improvements 
to be made in the future. For example, this paper only uses 
AQI time series data itself as the input data for prediction. 
To improve the accuracy of forecasting, more meteorological 
factors, like temperature, humidity, wind speed, and wind 
direction, may be considered too. In addition, this paper does 
not pay too much attention on the seasonal factors of AQI 

Table 8  Values of the evaluation indices for the four models

Model RMSE MAPE R
2 GAR 

ARIMA 27.17 28.98% 0.4503 58.77%
LSTM 23.83 26.46% 0.5769 63.23%
EEMD-LSTM 16.22 17.20% 0.8041 77.02%
CEEMDAN-FE-LSTM 9.45 10.47% 0.9334 89.45%

Fig. 10  Values of the four indices for the four models
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time series. LSTM based on seasonal features extraction for 
AQI prediction will be further studied in the future.
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