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Abstract

The discovery of non-chromosomal circular DNA offers new directions in linking genome

structure with function in plant biology. Glyphosate resistance through EPSPS gene copy

amplification in Palmer amaranth was due to an autonomously replicating extra-chromo-

somal circular DNA mechanism (eccDNA). CIDER-Seq analysis of geographically distant

glyphosate sensitive (GS) and resistant (GR) Palmer Amaranth (Amaranthus palmeri)

revealed the presence of numerous small extra-chromosomal circular DNAs varying in size

and with degrees of repetitive content, coding sequence, and motifs associated with autono-

mous replication. In GS biotypes, only a small portion of these aligned to the 399 kb eccDNA

replicon, the vehicle underlying gene amplification and genetic resistance to the herbicide

glyphosate. The aligned eccDNAs from GS were separated from one another by large gaps

in sequence. In GR biotypes, the eccDNAs were present in both abundance and diversity to

assemble into a nearly complete eccDNA replicon. Mean sizes of eccDNAs were similar in

both biotypes and were around 5kb with larger eccDNAs near 25kb. Gene content for eccD-

NAs ranged from 0 to 3 with functions that include ribosomal proteins, transport, metabo-

lism, and general stress response genetic elements. Repeat content among smaller

eccDNAs indicate a potential for recombination into larger structures. Genomic hotspots

were also identified in the Palmer amaranth genome with a disposition for gene focal amplifi-

cations as eccDNA. The presence of eccDNA may serve as a reservoir of genetic heteroge-

neity in this species and may be functionally important for survival.

Introduction

Extra-chromosomal circular DNA (eccDNA) are nucleus limited ring-like DNA entities

derived from the genome and have been found in a wide range of eukaryotic organisms

including yeast, Drosophila, Xenopus, mice, and humans [1–4]. In yeast, eccDNAs with
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functional genes and sizes of up to 38 kb that cover 23% of the genome have been reported [5].

EccDNAs have been reported in normal healthy cells in humans [6, 7] with functions associ-

ated with aging and the formation of telomeric circles [8, 9], cancer progression, and therapeu-

tic resistance [10–12]. EccDNAs have been implicated in approximately half of all human

cancers contributing to genetic heterogeneity that enables aggressive tumors with a selective

advantage; hence the higher prevalence in malignant tumors [13–15]. Sizes of cancer related

eccDNA have been reported to range from several hundred base pairs to 600 kb encoded with

functional oncogenes and their various regulatory elements [16, 17]. In plants, eccDNAs have

been reported in Arabidopsis [18, 19], Oryza, Pisum, Secale, Triticum, and Vicia [20, 21] with

sizes that range from 1 kb to 50kb. These eccDNAs contain coding sequences commonly

found within the nucleus such as ribosomal genes, tRNAs, and transposons [19, 22, 23]. EccD-

NAs are thought to arise from linear chromosomes through repeat-mediated intrachromoso-

mal homologous recombination that results in the ‘looping-out’ of circular structures. These

focal amplifications are mediated by multimers corresponding to 5S ribosomal DNA, non-

coding chromosomal high-copy tandem repeats, and telomeric DNA [1, 21, 22]. In Arabidop-
sis, eccDNA genesis is the result of recombination among inverted repeats upstream and

downstream of the various tRNAs and transposons [19]. Several follow up studies using Arabi-
dopsis and rice, have shown that defective RNA polymerase II (Pol II) activity and simulta-

neous inhibition of DNA methylation leads to the activation of retrotransposons which can

induce eccDNA formation upon stress [11]. These studies suggest a possible relationship

among epigenetic status, regulation of transposon bursts, and genomic focal amplifications.

The presence of eccDNA with functional genes in a cell can be a signature of a stress and/or

function as a reservoir of genetic variation in which a cell may activate as a rapid response to

stress. For example, oncogene amplification and expression via eccDNA in human cancers

provides a unique mechanism for massive gene expression [16] and ultimately a reservoir of

genetic heterogeneity by which cancer cells have a selective advantage for aggressive behavior

and persistence [13].

Recently, the genetic entity conferring resistance to the herbicide glyphosate in Palmer ama-

ranth (Amaranthus palmeri), now termed the eccDNA replicon, was revealed to be a massive,

399 kb extrachromosomal circular DNA (eccDNA) [24, 25]. Glyphosate resistance in Palmer

amaranth is achieved through replicon amplification with simultaneous gene copy amplification

and expression of the 5-enoylpyruvylshikimate-3-phosphate synthase (EPSPS) gene and its prod-

uct, EPSP synthase [26], which is the herbicide target of glyphosate [27]. Glyphosate resistance

may occur with as few as 5 copies of EPSPS. The increase in EPSPS functions to ameliorate the

unbalanced or unregulated metabolic changes, such as shikimate accumulation, loss of aromatic

amino acids, phenolic acids for lignin synthesis, and structural intermediates for plant growth

regulators associated with glyphosate activity in sensitive plants [26, 28]. Isolation and single-

molecule sequencing of the replicon resulted in a single copy of the EPSPS gene along with 58

other predicted genes whose broad functions traverse detoxification, replication, recombination,

DNA binding, and transport [25, 29]. Gene expression profiling of the replicon under glyphosate

treatment showed transcription of 41 of the 59 genes in GR biotypes, with high expression of

EPSPS, aminotransferase, zinc-finger, and several uncharacterized proteins [25, 29].

Repeat sequences and mobile genetic elements have been associated with eccDNA forma-

tion [4, 6, 18, 20, 29, 30] in higher eukaryotes. The repeat landscape of the replicon is described

as a complex arrangement of repeat sequences and mobile genetic elements interspersed

among arrays of clustered palindromes which may function in stability, DNA duplication and/

or a means of nuclear integration [25]. In a follow up study, sequence analysis identified a

region in the replicon with elevated A+T content and an exact match to a conserved eukaryotic

extended autonomous consensus sequence (EACS) [31]. Surrounding this sequence were
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multiple DNA unwinding elements (DUE), which together are often associated with DNA

bending and origins of replication and typically found near EACS [32, 33]. Regions flanking

these elements in the replicon were cloned into an ARS-less yeast plasmid which resulted in

colony formation, suggesting autonomous replication as the mechanism for the replicon

increases in copy number [34].

Initial low-resolution FISH analysis of GR A. palmeri showed the amplified EPSPS gene was

randomly distributed in the genome, suggesting a possible transposon-based mechanism of

mobility [26]. A follow up study using much longer bacterial artificial chromosome (BAC)

probes coupled with high resolution fiber extension microscopy verified the eccDNA replicon

and identified various structural polymorphisms including intact, circular, dimerized circular,

and linear forms [24]. Additionally, this study resolved a critical question regarding the main-

tenance mechanism that explains uneven segregation of glyphosate resistance among proge-

nies–genomic tethering. Analysis of fiber-FISH images with replicon probes and meiotic

pachytene chromosomes revealed very clear, single signals [24]. If the replicon were integrated

into the genome, then double signals would be evident, suggesting a tethering mechanism as a

means of genomic persistence to daughter cells during cell division [24]. Other genetic entities

that maintain genomic persistence through tethering include DNA viruses such as Epstein-

Barr, Rhadinovirus, Papillomavirus, and others [35].

Glyphosate resistance in Palmer amaranth has been observed in individuals with EPSPS copy

numbers that range from 5–150 copies [26, 36, 37]. Amplification of the EPSPS gene correlated

with amplification of flanking genes and sequence [25, 29], which suggests a large amplification

unit and genome size enlargement in cells with many replicon copies [29]. Flow cytometry veri-

fied significant genome expansion in plants with high copy numbers (eg. 11% increase in

genome size with ~100 extra copies of the replicon), seemingly without fitness penalty [29].

Glyphosate resistance in Palmer amaranth was originally reported in Georgia in the early

2,000’s [38], and a recent analysis using whole genome shotgun sequencing verified that the

replicon was present and intact in GR Palmer amaranth populations across the USA [39, 40].

This study also reported a lack of replicon SNP variation among GR eccDNAs from geographi-

cally distant states when aligned to the Mississippi replicon reference [25]. The replicon was

not present in GS individuals, which supports a single origin hypothesis and spread of the rep-

licon across the USA through mechanical means such as spread of GR pollen in contaminated

plant products, on farm equipment, and cattle movement, or via pollen.

The genomic mechanisms, origins and how the replicon assembled and gave rise to eccDNA

in Palmer amaranth remains elusive, but the above studies lead to a couple of hypotheses: 1) the

eccDNA replicon formed through intramolecular recombination among distal parts of the

nuclear genome in short evolutionary time, or 2) there may exist a reservoir of smaller eccDNAs

that are basal in the cell that may have the ability to recombine to assemble larger units as part of

a dynamic response to stress. In this study, we report the presence and sequence characterization

of an abundant reservoir of eccDNAs in both GS and GR biotypes using single molecule sequenc-

ing and the CIDER-Seq approach [18]. We examine the similarities and differences among sam-

ples representing distant geographic locations reported in [40], quantitate their abundance and

diversity and assess whether recombination may be possible to form larger multimeric units.

Results

EccDNA content and coding structure in geographically distributed A.

palmeri
Following the general methods and recommended computational pipelines outlined in the

CIDER-Seq single-molecule approach [18], we identified an extensive amount of variable-
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sized eccDNA in all samples of (GS) and GR) biotypes that were sequenced [Table 1]. The

number of unique eccDNAs detected in GS samples ranged from 443 (ks_s) to 6,227 (ms_s)

with a mean of 2,661 [Table 1]. Unique eccDNAs were in much higher abundance in GR sam-

ples and ranged from 2,200 (az_r) to 5,650 (ms_r), with a mean of 4,448, nearly double that of

GS [Table 1]. Length distributions of eccDNA were similar among both GS and GR biotypes

and ranged from 27bp to nearly 27kb, with mean lengths of around 6kb, [Table 1 and Fig 1].

Gene prediction resulted in eccDNAs both with and without complete open reading frames.

In GS samples, the number of eccDNAs with predicted genes ranged from 76–505 with a

mean of 272 eccDNAs with genes per sample. GR eccDNAs with predicted genes was nearly 4

times greater with a range of 263–1,179 and a mean of 718 eccDNA with genes per sample,

suggesting that glyphosate stress influenced unique gene focal amplifications [Table 1]. Of the

eccDNA with predicted genes, the number of predicted genes per eccDNA ranged from 1 to

10, with an average of 2 genes per eccDNA in both GS and GR [S1 and S2 Tables]. Transfer

RNAs (tRNA) were predicted exclusively on eccDNA without CDS sequences and ranged

widely from 46–715 (average of 350 per sample) in GS and samples and 130–528 (average of

364 per sample).

Coding content of eccDNAs in glyphosate sensitive and resistant A. palmeri
Gene content from both GS and GR biotypes was compared to identify unique and common

functional protein coding domains among the geographically distant samples. In GS biotypes,

9 functional protein coding domains were discovered that are common among the each of the

states [Fig 2]. These functional domains are annotated as ATP synthase, cytochrome P450,

protein kinase, ribosomal protein, NADH dehydrogenase, Clp protease, and oxidoreductase

[Table 2]. Various pairwise combinations of GS A. palmeri biotypes shared a range of 1 to 12

elements [Fig 2 and S3 Table]. Genes that regulate cell division, such as the Ras protein family

and those involved in DNA replication (helicase) were common among Arizona, Georgia, and

Mississippi GS eccDNA samples [S3 Table].

Several abiotic/biotic resilience-related functional protein domains were found in Ari-

zona and Mississippi GS samples that includes an oxysterol-binding protein, pectinester-

ase, NmrA-like family, and WRKY DNA-binding domain elements [S3 Table]. Also

discovered were shared functional domains involved in DNA methylation and histone

maintenance (H2A/H2B/H3/H4) [S3 Table]. Common between Georgia and Mississippi

GS biotypes were ABC transporter and Cytochrome C oxidase subunit II (periplasmic

domain) protein domains [S3 Table]. Unique to Arizona were response regulators such as

trehalose-phosphatase, chalcone-flavanone isomerase, O-methyltransferase, Myb-like

Table 1. EccDNA characterization of GS and GR biotypes.

Samplebiotype # eccDNA # eccDNA with Genes # eccDNA with tRNA % eccDNA with CDS Length Distribution Mean length

ks_s 443 76 46 17 60–22,237 5,906

ga_s 1564 257 183 16 57–22,477 6,273

az_r 2200 263 130 12 42–16,029 4461

az_s 2410 251 148 10 66–19,859 3999

ks_r 3234 578 267 18 35–23,960 6,400

de_r 4653 967 467 21 28–26,413 6668

ga_r 5138 978 528 19 30–23,670 6618

ms_r 5650 347 458 6 27–23,400 7,088

md_r 5817 1179 553 20 30–27,000 6,872

ms_s 6227 505 715 8 30–24,870 6,744

https://doi.org/10.1371/journal.pone.0260906.t001
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DNA-binding domain [S3 Table]. Hundreds of other unique functional domains in differ-

ent GS biotypes were recorded in S3 Table. It is notable that the EPSPS gene was not found

in any of the GS eccDNAs.

In GR biotypes, we identified a total of 20 functional protein domains that are shared

among all 6 resistant samples [Table 3]. The shared GR domains had various cellular mainte-

nance functions in addition to stress response domains that include ABC transporter, HSP70

protein, Ribosomal protein, WD domain, and Leucine rich repeats [Table 3]. A range of 1 to 9

protein family domains were shared by at least 5 of the GR biotypes [S4 Table]. No apical meri-

stem (NAM) protein, peroxidase, TCP-1/cpn60 chaperonin family are among the stress

response elements. Arizona, Delaware, Kansas, and Maryland GR biotypes all contained EPSP

synthase (3-phosphoshikimate 1-carboxyvinyltransferase) and Arabidopsis phospholipase-like

protein (PEARLI 4) functional domains, with 21 and 24 copies distributed across various

eccDNA within these four samples respectively.

Gene ontology enrichment of A. palmeri eccDNA

Gene ontology enrichment analysis of predicted coding elements on eccDNA of GS eccDNA

revealed a variety of enriched biological processes, cellular components, and molecular func-

tions encoded on eccDNA [Fig 3]. Enriched biological processes include regulation of tran-

scription, membrane and lipid transport, DNA binding, fatty acid biosynthesis, protein

phosphorylation, oxidation-reduction, chromatin maintenance, and protein translation [Fig

3A and S5 Table]. Cellular component and molecular function categories of interest include

membrane and ribosome components [Fig 3B], cytoplasm, protein kinase activity, and ATP

binding [Fig 3C].

Glyphosate resistant eccDNAs showed similar, but slightly different enriched biological

processes such as transmembrane transport, translation, protein phosphorylation, and oxi-

dation-reduction process [Fig 4A]. Ribosome, nucleus, membrane, and integral component

of membrane were also enriched in the cellular component category [Fig 4B]. Representa-

tive molecular functions for GR eccDNA were mainly in the ribosome and membrane cate-

gories, but ATP binding, protein kinase activity, and catalytic activity were enriched [Fig 4C

and S6 Table].

Fig 1. Frequency polygon graph for Lengths (bp) of A. palmeri eccDNAs. A) Glyphosate sensitive samples were sourced from Arizona (az_s), Georgia (ga_s), Kansas

(ks_s), and Mississippi (ms_s) A. palmeri plants. B) Glyphosate resistant samples were sourced from Arizona (az_r), Delaware (de_r), Georgia (ga_r), Kansas (ks_r),

Maryland (md_r), and Mississippi (ms_r) plants.

https://doi.org/10.1371/journal.pone.0260906.g001
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Repeat structure of A. palmeri eccDNA

Repeat characterization revealed a high proportion of repetitive sequences among both GS and

GR eccDNAs [S7 Table]. The most common repeat classes were simple repeats, long terminal

repeats (LTR) from the Copia superfamily, low complexity regions, and LTR from the Gypsy

superfamily [S7 Table]. Interestingly, simple repeat content varied drastically among the GR

and GS states. For example, Arizona and Mississippi GS and GR pairs were closely balanced in

terms of content, but Mississippi has nearly 6 times as many with ~17.5k compared to ~4k

simple repeats [S7 Table]. The Long Terminal Repeats/Copia class was second in abundance

among eccDNAs, followed by low complexity repeats and then Gypsy elements. DNA

Fig 2. Venn diagram of PFAM elements shared by GS eccDNA samples. Arizona (az_s), Georgia (ga_s), Kansas (ks_s), and Mississippi (ms_s) sensitive A.

palmeri eccDNA shared 9 total PFAM elements.

https://doi.org/10.1371/journal.pone.0260906.g002
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elements such as Stowaway, LINES, Cassandra, hAT-Tip100, MULE-MuDR, and helitrons

were also identified in both GS and GR biotypes [S7 Table].

Similarity to the eccDNA replicon and replication origins on eccDNAs in

A. palmeri
Alignment and comparative analysis for coding content and conserved sequence structure

between GS and GR eccDNAs and the eccDNA replicon [25] identified a total of 162 GS

eccDNA and 2,547 GR eccDNA with at matches at least 100 bp in length with a percent iden-

tify of at least 95% [Fig 5]. A total of 7 and 11 eccDNA replicon genes were predicted in GS

and GR eccDNA, respectively [S8 Table]. Predicted eccDNA replicon genes in GS eccDNA

include PEARLI4, Heat shock (HSP70), no apical meristem (NAM), replication factor-A, ret-

rotransposon, zinc finger, and suppressor of gene silencing [S8 Table]. GR predicted replicon

Table 2. Gene elements shared by all sensitive eccDNA samples.

Total PFAM Accession Annotation

9 PF00006 ATP synthase alpha/beta family, nucleotide-binding domain

PF00067 Cytochrome P450

PF00069 Protein kinase domain

PF00164 Ribosomal protein S12/S23

PF00181 Ribosomal Proteins L2, RNA binding domain

PF00346 Respiratory-chain NADH dehydrogenase, 49 Kd subunit

PF00411 Ribosomal protein S11

PF00574 Clp protease

PF01058 NADH ubiquinone oxidoreductase, 20 Kd subunit

https://doi.org/10.1371/journal.pone.0260906.t002

Table 3. Gene elements shared by all GR eccDNA samples.

Total PFAM Accession Annotation

20 PF00004 ATPase family associated with various cellular activities (AAA)

PF00005 ABC transporter

PF00006 ATP synthase alpha/beta family, nucleotide-binding domain

PF00012 HSP70 protein

PF00067 Cytochrome P450

PF00069 Protein kinase domain

PF00076 RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)

PF00164 Ribosomal protein S12/S23

PF00181 Ribosomal Proteins L2, RNA binding domain

PF00306 ATP synthase alpha/beta chain, C terminal domain

PF00346 Respiratory-chain NADH dehydrogenase, 49 Kd subunit

PF00400 WD domain, G-beta repeat

PF00411 Ribosomal protein S11

PF00481 Protein phosphatase 2C

PF00574 Clp protease

PF01058 NADH ubiquinone oxidoreductase, 20 Kd subunit

PF02874 ATP synthase alpha/beta family, beta-barrel domain

PF03947 Ribosomal Proteins L2, C-terminal domain

PF07714 Protein tyrosine and serine/threonine kinase

PF13855 Leucine rich repeat

https://doi.org/10.1371/journal.pone.0260906.t003
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genes include: EPSPS, PEARLI4, Domain of unknown function (DUF), ethylene response fac-

tor, HSP70, NAM, replication factor A, and retrotransposon [S8 Table]. Interestingly, several

GR eccDNA contained multiple copies of the EPSPS gene from Arizona, Delaware, Kansas,

and Maryland, while the EPSPS gene was not present on any eccDNA in GS [Fig 6A].

In GR eccDNA we identified 5 eccDNA with 2 copies of the EPSPS gene and 11 eccDNA

with a single EPSPS copy [Fig 6A]. A self-alignment of the GR EPSPS eccDNA shows many

conserved direct and indirect repeats [Fig 6B] with very high sequence identity (>95% with at

least 100bp). Palindromic repeats that flank the EPSPS gene, previously described as possible

genome tethering sites [25], were also evident among various eccDNA (Grey links in A and on

the top right corner of B) indicating the potential for recombination among these smaller

eccDNA, relative to the replicon.

Previous work has implicated a 17bp extended autonomous consensus sequence (EACS)

with a motif of WWWWTTTAYRTTTWGTT that contains a core 11bp autonomous con-

sensus sequence (ACS) reported in yeast [41] as a sequence where replication machinery

initiates autonomous replication in plants [32]; which was functionally verified in the

eccDNA replicon [34] [Fig 7]. Analysis of the GS and GR eccDNA for autonomous consen-

sus (ACS) sequences (ACS) [41] identified a total of 430 unique eccDNA with 16 of the 17

bp present in the EACS with the common missing base being the first ‘W’ (A or T), several

of which had multiple EACS sequences [Fig 7 and S9 Table]. A total of 36,237 core ACS

sites (11bp) were predicted within 18,679 unique eccDNA out of the total 37,336 predicted

eccDNAs implicating this sequence as a possible common origin of replication sequence

Fig 3. Gene ontology enrichment terms and their prevalence among GS A. palmeri eccDNA samples. A. Biological processes, B. cellular components, C. molecular

functions.

https://doi.org/10.1371/journal.pone.0260906.g003

Fig 4. Gene ontology enrichment terms and their prevalence among GR A. palmeri eccDNA samples. A. Biological processes, B. cellular components, C. molecular

functions.

https://doi.org/10.1371/journal.pone.0260906.g004
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Fig 5. Alignment of eccDNA to the replicon in GS and GR biotypes. A. Alignment of 162 GS eccDNA to the eccDNA replicon. B. Alignment of 2,547 GR eccDNA

to the eccDNA replicon. Red colors indicate indirect orientation and blue are direct. Alignments are filtered for matches of at least 95% identity and matches of at least

100 bp.

https://doi.org/10.1371/journal.pone.0260906.g005

Fig 6. EPSPS gene copies in GR eccDNA. A. Sequence similarity of GR eccDNA aligned to the eccDNA replicon. Blue and orange links indicate single or duplicated

EPSPS genes. Grey links show broader sequence similarities. B. Self-alignment of the GR eccDNA containing multiple EPSPS copies. Blue dots indicate inverted

repeat sequences and red dots indicate repetitive sequence in the forward direction.

https://doi.org/10.1371/journal.pone.0260906.g006

PLOS ONE eccDNA content in glyphosate sensitive and resistant Palmer amaranth

PLOS ONE | https://doi.org/10.1371/journal.pone.0260906 September 14, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0260906.g005
https://doi.org/10.1371/journal.pone.0260906.g006
https://doi.org/10.1371/journal.pone.0260906


among smaller eccDNA in Amaranthus palmeri. Of the eccDNA that contained ARS

sequences, 2,785 were predicted to contain coding sequences, whereas 16,048 eccDNA did

not contain an ARS sequence.

Genomic origins of eccDNAs in A. palmeri
To determine the genomic origins of eccDNA and the possibility of genomic regions with

a disposition for eccDNA formation, GS and GR eccDNA were mapped to the chromo-

some scaffolded Amaranthus palmeri assembly [42] and counted using non-overlapping

genomic windows of 500kb [Fig 8]. We identified several regions of the genome with a

very high disposition for focal amplifications that are conserved between GS and GR.

These regions include the distal end of chromosome 2 and near the center of chromosome

3, and several other regions distributed throughout the genome [Fig 8A]. The 500kb win-

dow localized at the distal end of chromosome 2 contained 285 eccDNA from GS and 469

from GR [Fig 8A and S10 Table]. The center of chromosome 3 contained 225 GS and 449

GR eccDNA. The genomic region of eccDNA origin among GR samples with the most

eccDNA was on chromosome 4 with 487 eccDNA and only 51 from GS, suggesting a possi-

ble signal of glyphosate stress. Extraction and self-alignment of the 6 genomic windows

from the Palmer amaranth chromosome scale assembly from [42] revealed intricate arrays

of repetitive sequence [Fig 8B]. Short, inverted repeats were the most common among all 6

regions [Fig 8B]. Clustered palindromes of various sizes were discovered in segments 2, 3,

4, and 5, as indicated by box-like structures. Regions 2 and 3 (highlighted in Fig 8B) con-

tained more complex repetitive structure with larger direct repeats (region 2) and indirect

repeats (region 3) [Fig 8B].

PCR validation of eccDNA

To validate circular structure of eccDNA in A. palmeri, primers were designed in various con-

figurations to exclude the possibility of linear DNA, [S1 Fig]. Random templates were selected,

Ga_r_ecc_311 and Az_r_ecc_1037, and PCR conducted that exhibit amplification products of

the expected size verifying a circular molecule [S1 Fig]. Because of the highly repetitive nature

of eccDNA and the low complexity of the sequence, we did observe non-specific binding when

using the Ga template, likely due to the repetitive nature of the eccDNA, but do observe ampli-

fication products close in size to the predicted sizes.

Fig 7. Extended autonomous consensus sequence (EACS) presented in [33]. The core autonomous consensus sequence is highlighted with the TAYR motif highlighted

as the origin of replication complex binding site (ORC) and the TTT motif highlighted as a helicase binding site. ‘W’ denotes A or T, ‘Y’ denotes C or T, ‘R’ denotes G or A.

https://doi.org/10.1371/journal.pone.0260906.g007
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Fig 8. A. Alignment and quantification of unique eccDNA of GS (red) and GR (blue) to the chromosome-scale Palmer

amaranthus reference assembly in 500kb non-overlapping windows. Darker colors represent a larger abundance of

mapped eccDNA. Regions with the dotted ellipses indicate a high abundance of mapped eccDNA. B. Self-alignment of

the 6 highlighted regions from A. Red dots indicated direct repeats, while blue are indirect. Regions highlighted in

yellow are derived from the 2 genomic regions (2 & 3 - 500kb each) with the highest abundance of mapped eccDNA.

https://doi.org/10.1371/journal.pone.0260906.g008
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Discussion

Gene copy number variation is a predominant mechanism by which organisms respond to

selective pressures in nature. Focal amplifications of transcriptionally active chromatin as

eccDNAs have been found in both abundance and diversity across higher and lower order

eukaryotic species underpinning their importance as a vehicle for gene copy amplification.

Advancements of single molecule sequencing and approaches to purify and directly sequence

circular DNA have led to evidence that eccDNA may have a fundamental role in the cell and

function and also function as a source of genetic heterogeneity in response to environmental

pressures [1–4, 18, 22, 25, 30]. Previous work in Palmer amaranth demonstrated that several

genes in addition to EPSPS were co-amplified on a large eccDNA (~400kb) with sophisticated

repetitive content and origins from distal segmental genomic regions [25]. This large eccDNA

served as the vehicle for EPSPS gene copy amplification, but whether construction of this large

eccDNA was the result of intramolecular recombination or recombination among a popula-

tion of smaller eccDNA is unclear.

Using single molecule sequencing and the CIDER-Seq analytical pipeline [18], we identified

diverse and abundant eccDNA species in both GS and GR biotypes collected from distal geo-

graphic regions that were previously reported [40]. The sizes of these eccDNA ranged from a

few hundred base pairs to nearly 30kb in both biotypes and between 6 and 20% were predicted

to contain genes which indicates that eccDNAs are present in Amaranthus palmeri without

glyphosate exposure.

Gene enrichment analysis of both GS and GR eccDNA provided insight on biological pro-

cesses and molecular functions enriched for activities related to a generalized stress response

or important for rapid adaptation such as transcription regulation, development, chromatin,

protein phosphorylation, oxidation-reduction, ribosomal and membrane components, protein

kinase activity, and ATP binding. This indicates that eccDNAs may have a role in preserving

important protein synthesis genes. Notably, transfer RNAs (tRNA) were predicted to reside on

eccDNA in both GS and GR samples, but only on eccDNA that do not contain coding

sequences. This was also shown by Wang et al., 2021 in Arabidopsis [19] and suggests that pro-

tein synthesis is a key attribute or component of the early response to stress and or the adaptive

response. This finding also suggests that regulation of protein synthesis is perhaps as driven by

eccDNA is an independent component of selection and directed gene focal amplifications as

eccDNA. Furthermore, plants likely require additional copies of these protein synthesis genes

for stress responses to produce significant immunity or defense products, as is the case for GR

A. palmeri [1]. For example, transmembrane transport has been shown to plays an important

role in adaptation of Arabidopsis to metalliferous soils [43], resource allocation and sensing

under plant abiotic stress [44–46] and were enriched on GS Palmer amaranth eccDNA. Fatty

acid biosynthesis is another category of enriched genes on GS eccDNA which has been impli-

cated in signaling and plant defense to pathogens [47, 48].

At the gene level, there were a core set of 9 functional protein coding domains in common

among the GS samples. Ribosomal proteins (circular rDNA), which are commonly reported as

functional genes among eccDNA, were found among all 9 GS samples suggesting a common

role for rDNAs as circular structures in plants [6, 30, 49, 50]. Interestingly, Cytochrome p450

and Clp protease domains were also present in each of the GS samples. Cytochrome p450s are

a superfamily of genes that perform a suite of functions in plant development and protection

from various stresses via multiple biosynthetic and detoxification pathways. Cytochrome p450

activity plays a central role detoxification of xenobiotics in various weed species [51–54], bio-

synthesis of hormones, fatty acids, sterols, cell wall components, biopolymers, and various

defense compounds [55]. Clp proteases are proteolytic enzymes whose increased expression
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also play a protective role for the plant in both abiotic and biotic stress [56–58]. Clp proteases

help maintain protein homeostasis in chloroplasts and remove nonfunctional proteins, which

is essential during stress episodes when proteins tend to be more vulnerable to damage [20–

22]. These core genes encoded on GS eccDNA may contribute Palmer amaranth’s innate abil-

ity to rapidly adapt.

GS biotypes shared the same 9 core functional domains as GS biotypes including Cyto-

chrome p450 and Clp protease, in addition to 11 other domains indicating that eccDNAs

are dynamic and their presence and coding structure may be the result of selective pres-

sures. Notably, the additional functional domains in GR biotypes include additional ribo-

somal motifs, ABC transporters, HSP70 proteins, and leucine rich repeat (LRR) domains.

ABC transporters are important for detoxification, environmental stresses and pathogen

resistance [23] and may play a complementary role in glyphosate detoxification in addition

to EPSP synthase over accumulation. The most abundant functional domain and conserved

among all the samples is the HSP70 domain, which functions in protein maintenance and a

wide variety of stress response mechanisms such as response to high temperatures [59], and

was also a predicted gene on the eccDNA replicon [25]. Hsp70 have been reported to func-

tion by holding together protein substrates to help in movement, regulation, and prevent

aggregation under physical and or chemical pressure in plants [59, 60] and have served as

functional target in improving abiotic stress resilience in Arabidopsis [61] and other species.

It is notable that the HSP70 is present in both GS and GR biotypes but is a core gene shared

among all GR biotypes. The presence of Hsp70 on eccDNA suggests a possible role in glyph-

osate resistance, or perhaps, a genomic mechanism for rapid mitigation of heat and other

abiotic stresses. Leucine rich repeat (LRR) domains are associated with protein-protein

interactions, often as part of plant innate immune receptors [62]. Various transcription fac-

tors such as WRKY, bZIP, helicases, GATA (zinc finger), E2F, helix-loop-helix, TCP, and

others were also predicted on A. palmeri eccDNA. Since transcription factor access to het-

erochromatin is limited by its compact structure, eccDNAs may provide a faster and more

effective avenue for protein synthesis. Cancer cells with oncogenes encoded on eccDNAs

appear to produce significantly more transcript copies compared to the same oncogenes

encoded on linear DNA structures [14].

A primary question underlying the origins and structural dynamics of the large eccDNA

replicon (~400kb) [24, 25] is the mechanism by which it is assembled. The most likely scenar-

ios are long-range genomic interactions and a compounded building event over short evolu-

tionary time; or intramolecular recombination between smaller eccDNA with newly selected

genomic focal amplifications resulting from glyphosate stress to form the larger structure,

again over short evolutionary time scales. Here we show a moderate degree of eccDNA repli-

con coverage with GS eccDNA [Fig 6A], however there are large, disconnected gaps in cover-

age. It is notable that the EPSPS gene was not found on any GS biotype eccDNA in this study,

while several other replicon genes were. One of the primary drawbacks to the CIDER-Seq

methodology is the limitation of eccDNA size to the read length of the Pacific Biosciences

Sequel II instrument [18] which means eccDNAs larger than an average read length will not be

sequenced intact, such as the eccDNA replicon [25]. This limitation prevented the complete

assembly of the EPSPS replicon, however the EPSPS gene and most other predicted eccDNA

replicon genes were found in GR biotype eccDNA and coverage of the replicon was practically

complete, with only a few small gaps. Furthermore, the EPSPS gene was found on smaller

eccDNA in GR biotypes in multiple copies, which corroborates the work of Koo et al., that

observed the extra-chromosomal EPSPS gene vehicle as multi-meric forms. [24]. Together,

these results suggest that eccDNA are present as a basal source of genetic heterogeneity or

rapid response mechanism, are selectively amplified, and the large eccDNA structure reported
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to confer glyphosate resistance is likely built by recombination among smaller eccDNA over

rapid evolutionary timescales.

Another important observation and similarity with the eccDNA replicon are the high abun-

dance and seemingly random distribution of the core 11bp autonomous consensus sequence

and a longer more conserved 16bp extended autonomous consensus sequence [41] among

approximately half of the GS and GR eccDNA. The greater abundance seems to be on eccDNA

without coding sequences. These sequences were previously verified to function in autono-

mous replication and may be regulated mechanism, perhaps epigenetic or other, to maintain

gene copy numbers in A. palmeri. In the eccDNA replicon, there is a single copy of the 17bp

consensus sequence and 46 copies of the 11bp sequence, seemingly randomly distributed

among the replicon [25, 34]. This observation further supports the possibility that the eccDNA

replicon is the result of recombination among smaller eccDNA. It is also possible that there are

alternate mechanisms or origins of replication on eccDNA in A. palmeri that are used to main-

tain and amplify copy number. Previous work showed that the coding components of the

eccDNA replicon seem to be derived from distal regions of the genome [25], and evidence pre-

sented here show that eccDNA in both GS and GR seem to originate from all over the genome,

Fig 8A. Here, we also demonstrate that there are segments of the genome, or perhaps a geno-

mic context, with a disposition for focal amplifications. These genomic ‘hotspots’ are com-

prised of various repeat structures that may have facilitate eccDNA formation. There are also

regions of the genome that seem to be activated as ‘hotspots’ in response to glyphosate stress

that suggests eccDNA formation may also be a directed event, rather than random. It is still

unclear if genes need to be in the ‘right’ genomic context for a focal amplification to occur, or

if other regulatory/initiation mechanisms exist. Validation of circular structure with overlap-

ping PCR amplicons provided single PCR bands in most cases, but non-specific binding was

also observed–likely due to the repetitive nature of eccDNA. This work provides evidence that

eccDNA are a basal component of the cell and likely function as a reservoir of genetic hetero-

geneity in A. palmeri as part of the rapid adaptation program.

Materials and methods

Plant material and genomic DNA extraction

Seeds were collected from individual GR plants that had survived glyphosate application as

previously described [29, 40]. Plants were grown in 9 × 9 × 9 cm plastic pots that contained a

commercial potting mix (Metro-Mix 360; Sun Gro Horticulture, Bellevue, WA, USA). Seeds

were sown on the potting mix surface and lightly covered with 2 mm of potting mix. Pots were

sub-irrigated and maintained in a greenhouse set at a temperature regime of 30/25 �C (day/

night) and a 15-h photoperiod under natural sunlight conditions supplemented with high-

pressure sodium lights providing 400 μmol m−2 s−1. Sampling for whole genome sequencing

was performed using a leaf from the third node of two representative plants from each popula-

tion. Total DNA was extracted using a modified CTAB-based protocol with chloroform, iso-

propanol, and RNase A buffer [39]. Briefly, leaf material from each sample (approximately 20–

100 mg) was ground into a fine powder using a mortar and pestle with liquid nitrogen,

extracted with CTAB buffer, chloroform extracted, and ethanol precipitated. Total genomic

DNA was resuspended in 50 μl of TE (10 mM Tris, 0.1 m MEDTA, pH 8.0) buffer containing

RNaseA. The tube was incubated at 37˚C for 30 minutes and stored at -20˚C.

EccDNA enrichment and sequencing (CIDER-seq)

Circular DNA enrichment sequencing (CIDER-Seq) was used to enrich, sequence, and analyze

eccDNAs from the leaf tissue DNA extraction samples according to the protocol by Mehta
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et al., [18]. Because we wanted to survey the landscape of eccDNA, we did not perform a size

exclusion step prior to enrichment. Otherwise, the circular DNA amplification, debranching

reaction, and DNA branch release and repair stages closely followed the methods of Mehta

et al., [18]. Enriched eccDNA for each sample [10] was individually barcoded following the

manufacturer’s recommended protocol (Pacific Biosciences), pooled in equimolar amounts,

and sequenced on a Sequel II single molecule sequencer (Pacific Biosciences).

EccDNA sequence processing and analysis

Raw sequence reads were demultiplexed and circular consensus sequences analyzed with the

SMRT link software (Pacific Biosciences). Parameters for CCS analysis were stringent and

include: 1) predicted quality = 0.999; and 2) minimum read length = 1,000 bp. Processed reads

were stored as .fastq files. Processed fastq files were analyzed with the packaged CIDER-seq

software using the suggested approach to identify circular DNA. Predicted eccDNA were

matched to the A. palmeri reference genome by Montgomery et al., [42]. After processing of

predicted eccDNA, shorter duplicate eccDNAs were collapsed into the longest reference

eccDNA with the CDhit software [63] with an identity threshold of 90%. Reference eccDNA

were annotated for genuine open reading frames using the MAKER annotation pipeline [64]

and evidence for genes derived from the A. palmeri published annotation [42]. Alignments to

the reference genome were performed with the Minimap2 software [65] and comparative

genome alignments performed with Mummer 4.0 [66]. Transfer RNAs were determined with

the tRNAscan-SE software with default settings [67]. The A. palmeri reference assembly from

[42] was divided into non-overlapping windows of 500kb and mapped eccDNA counted with

BedTools [68].

PCR validation of circular DNA. Primer pairs of forward and reverse primers were

selected to yield PCR products covering the entire circular DNA structure of several selected

eccDNA sequences. The primers were designed with Geneious software and produced by Inte-

grated DNA Technologies. Primers were resuspended in water at 100 uM concentrations. Ali-

quots of mixed primer pairs were prepared with 20 ul of forward primer, 20 ul of reverse

primer, and 160 ul of water to yield 10 uM concentration for each primer pair. The PCR reac-

tions contained 10 ul of 2x buffer, 1 ul of primer pair solution, 1 ul of genomic DNA matching

the respective eccDNA origin, and 8 ul water. The thermal cycler settings were 98˚C for 4 min-

utes, 98˚C for 12 seconds, 52–58˚C for 30 seconds, 72˚C for 1 minute and 30 seconds, cycle to

step two for 34 more times, 72˚C for 2 minutes, and incubate at 10˚C forever. After PCR, gel

electrophoresis was performed to determine fragment size of the products.
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