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Abstract 

 

Continual learning (CL) refers to an agent’s capability to learn from a continuous stream 

of data and transfer knowledge without forgetting old information. One crucial aspect of CL is 

forward transfer, i.e., improved and faster learning on a new task by leveraging information from 

prior knowledge. While this ability comes naturally to biological brains, it poses a significant 

challenge for artificial intelligence (AI). Here, we suggest that environmental enrichment (EE) can 

be used as a biological model for studying forward transfer, inspiring human-like AI development. 

EE refers to animal studies that enhance cognitive, social, motor, and sensory stimulation and is 

a model for what, in humans, is referred to as 'cognitive reserve'. Enriched animals show 

significant improvement in learning speed and performance on new tasks, typically exhibiting 

forward transfer. We explore anatomical, molecular, and neuronal changes post-EE and discuss 

how artificial neural networks (ANNs) can be used to predict neural computation changes after 

enriched experiences. Finally, we provide a synergistic way of combining neuroscience and AI 

research that paves the path toward developing AI capable of rapid and efficient new task 

learning. 
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Introduction 
 

 Forward transfer is the ability to utilize previously acquired knowledge to learn new tasks 

rapidly and efficiently 1,2. For example, imagine attending your first lecture on deep learning. 

Rather than nodding off, you’re engaged, following the math, and can quickly code a simple linear 

deep learning model. After the class, your friend comments on how last semester’s math course 

on linear algebra and matrices helped in today’s lecture. And it suddenly hits you why the lecture 

felt easy. You were able to utilize and transfer concepts from math classes to the lecture on deep 

learning. Previous work has indicated that students with superior mathematics training perform 

better in computer science and logical reasoning, due to the ability to transfer abstraction skills 

from one subject matter to another (Fig. 1) 3,4. The mammalian brain is capable of continual 

learning (CL): learning from a stream of data or experiences continuously, adapting to context 

changes, and realizing actions throughout its lifetime without forgetting previously acquired 

knowledge (catastrophic forgetting) 5. Although seemingly trivial for humans and animals, CL 

remains one of the longstanding issues in AI 6,7.  

 

 
 

Figure 1: A schematic to demonstrate transfer learning. An agent was trained sequentially on two 

tasks: task A (mathematics) and task B (computer science) and evaluated on both tasks at three 

different times (Test 1-3, gray block), with Test 1 as the baseline. Individual task performance is 

expected to improve during the respective training blocks (Training tasks A and B). Due to forward 

transfer (purple arrow), the performance on task B (computer science, red curve) is also expected 

to improve in Test 2 after training on task A (mathematics). Similarly, performance on task A is 
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likely to improve in Test 3 after training on task B due to backward knowledge transfer (green 

arrow). This article concentrates solely on forward transfer (purple arrow). 

 

The interconnected history of AI and neuroscience, particularly cognitive neuroscience, 

has spurred breakthroughs in both fields. While neuroscience has continued to inform the 

development of brain-like algorithms (although subtly), the road to success has been challenging 
7–10. Despite surpassing expert human performance in challenging tasks such as playing Atari 11, 

Go 12, etc.; current ANNs struggle to capture multiple aspects of human intelligence. Most of the 

impressive results obtained have been in a static learning setting with a single objective, such as 

image classification. A CL framework is different since it involves a potentially infinite stream of 

data stemming from different input domains (visual, audio, etc.) with unclear task boundaries 

and changing task demands 6,7.  

How do human brains achieve this feat of CL? Not all your friends would have been good 

at computer science on the first attempt. Can an individual’s ability to learn a new task be 

influenced by their prior experiences and environment? We draw inspiration from neuroscience 

research examining the effects of environmental enrichment (EE), especially in rodents. EE refers 

to environmental modifications to provide better cognitive, social, motor, and sensory 

stimulation and has shown promising results in improving learning and memory 13–15. Enrichment 

was first studied by Donald Hebb 16, who noticed that the rats raised in his home performed 

better than laboratory-raised animals in problem-solving tasks. Subsequent studies have 

replicated these results across species, further examining the impact of EE on learning, memory 

retrieval, multisensory integration, etc. EE also alters different brain mechanisms, leading to 

increased neurogenesis, population sparsity, long-term potentiation (LTP), etc., all of which are 

hypothesized to underlie efficient learning 13–15,17–19. These studies have helped establish EE as 

an effective strategy for improving learning, performance, and memory retrieval - desired 

properties of a CL system exhibiting forward transfer. This article aims to demonstrate how EE 

serves as fertile ground for studying forward transfer in biological neural networks. 

Amidst growing interest in developing ANNs to rival human intelligence, we propose to 

use EE as an inspiration for studying forward transfer in biological agents. We begin by 

introducing theories underlying semantic learning and the rapid acquisition of new knowledge in 

the brain. Then, we discuss EE and its effects on behavior and neural mechanisms. Next, we 

consider key insights from ANNs exhibiting forward transfer and few-shot learning (learning using 

very few examples). Finally, we conclude by laying down a path to combine results from EE 

studies and forward transfer CL in artificial agents to drive further improvement of ANNs and 

propose hypotheses to be tested in the brain in future experiments.  
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Faster and efficient learning using schemas and compositionality 

 

 The mammalian brain has an incredible capacity to acquire new information rapidly 

without forgetting pre-existing knowledge. What is the mechanism by which our brain 

accomplishes this? One prominent theory is the complementary learning systems theory (CLST) 

which states that the brain relies on complementary learning systems: hippocampus (HC) for 

rapid encoding of new information, while the neocortex (NC) is thought to be involved in slow 

learning, gradually forming structured knowledge or “schemas” from new information 20,21. 

During offline periods, such as awake rest or sleep, HC triggers the replay of new information in 

NC, and NC spontaneously retrieves and interleaves existing knowledge. This interleaved replay 

might allow for a gradual creation of context-independent category representations (schemas) 

in an NC distributed circuit (Fig. 2a). A set of such schemas reflects our generally acquired 

intelligence or knowledge of the world, representing a mental structure of concepts and the 

relation between them and can influence the new item encoding, consolidation, and retrieval 
22,23. It was proposed that we base our learning of new information on already existing, 

consolidated schemas, such that the degree of consistency of the new information with the 

existing schemas affects the rate of acquisition 22–24. Based on this, the proposed slow learning 

role of NC was updated, with empirical work in both humans and animals, demonstrating that 

NC can act as a fast-learning system (just like HC) if new information is highly consistent with 

previously created schemas 23,25. Similarly, in ANN simulations, there was an exponential speedup 

in learning new items with increasing consistency 26,27. The extent of prior knowledge can differ 

significantly across the lifespan of an individual, starting with innate knowledge shaped primarily 

by evolution in childhood and transitioning to a mix of innate and learned structured knowledge 

driven by experience in adulthood 28. There might be differences in the learning strategy of new 

items and learning speed between naïve vs. knowledge-rich brains, with the latter exhibiting 

faster learning (forward transfer) and reasoning-like strategy rather than a trial-and-error 

approach by the former. The accelerated learning in knowledge-rich agents could be due to 

schemas that help restrict the extent of internal representation parameter space that must be 

explored while learning a new task to the most relevant, task-specific, low-dimensional subspace, 

representing shared features and principles across tasks 29,30. 

 Recognizing shared features across tasks allows us to leverage prior knowledge and 

combine it with new information to learn more efficiently. Continuing with the example from Fig. 

1, a person with a strong background in mathematics might be able to learn deep learning 

concepts easily, by breaking down the concepts and recognizing shared features (e.g., matrix 

multiplication, probability, etc.) between the two subjects (Fig. 2b). This ability to construct 

complex concepts and representations in novel circumstances by combining smaller, more basic 

reusable elements (priors) is referred to as “compositionality” 31–33. This can allow a learning 

agent to generate an essentially infinite number of meaningful concepts from a finite set of basic 
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building blocks, helping with generalizations and sample-efficient learning 34. Although the 

concept of compositionality was initially used in language processing research, it is a general 

property of cognition that allows fast, flexible, generalizable action and reasoning. Despite their 

differences, compositionality and schemas are closely related. Schemas based on prior 

knowledge provide basic building blocks to generate novel and complex concepts using 

compositional processes. At the same time, compositionality also shapes the development and 

structure of schemas. As we encounter new information, we may combine and recombine 

elements from existing schemas to create new, more complex schemas. For example, we may 

combine our schemas for linear algebra, matrices, probability, etc. principles to create a new 

schema for deep learning (Fig. 2b). The construction of new abstractions or schemas often takes 

advantage of the reusable and shareable schemas that are formed as a product of learning over 

time (and evolution) 35,36. In conclusion, a deeper understanding of neurobiological processes 

underlying schema formation and compositionality might offer insights into the speedup of 

learning, a topic of interest for both neuroscience and AI. 

 

 
 

Figure 2: a) Schemas for different math topics, including probability, linear algebra, and matrices. 

At the bottom are basic schemas common across topics, such as vectors, linear transformation, 

probability distributions, etc., that are learned first. As the individual gains knowledge of each 

subject matter, they develop mental abstractions (schemas) for advanced concepts (e.g., vector 

subspaces, partial derivatives, Bayesian probability) that are specific (and higher-order) to each 

topic. b) An individual with conceptual knowledge of concepts from linear algebra, probability 

theory, and calculus can combine them (compositionality) and learn deep learning models much 

faster than someone with no knowledge of those concepts. For example, stochastic gradient 

descent in deep learning models uses concepts of partial derivatives, matrix-vector multiplication, 

etc., from different math topics.   
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Environmental enrichment enhances learning, memory, and underlying brain mechanisms 

 

 The environment around us has a significant impact on our cognitive abilities. EE is most 

often conceptualized as a method to improve biological and cognitive functions meeting species-

specific needs, resulting from modifications to the environment, mental stimulation, social 

interactions, etc. 13,37,38. Broadly, four types of EE paradigms are frequently used: physical, 

sensory, cognitive, and social, with each providing an opportunity to improve problem-solving 

skills, promote exercise, and reduce stress and anxiety or a combination of these (Fig. 3a) 14,39–41. 

Note that this article focuses mainly on cognitive EE rather than physical EE. Apart from the type 

of EE paradigm, there are other vital factors of the EE paradigm that could contribute to its 

effectiveness. Out of these factors, age at EE onset 13,42, timing (light vs. dark phase) 43, duration 
44, and continuous vs. intermittent 45 are of utmost importance 38. For example, enrichment 

spanning weeks at a younger age might lead to more considerable gains than shorter exposure 
42. Many studies have tried combining different types of EE paradigms while accounting for some 

of the factors listed above to yield an overall more effective outcome (Fig. 3a) 38,39. A recent study 

by Gattas et al. 15 used a novel EE protocol (‘obstacle course’) that enabled controlled enrichment 

delivery, accounting for physical exercise (with a control exercise track) and degree of rodent 

engagement with enrichment materials. The enrichment track obstacle course yielded improved 

and long-lasting performance on tasks involving multisensory integration, categorization, etc., as 

compared to standard enriched housing or increased physical exercise-only enrichment 

paradigm (Fig. 3a).  

Extensive work has demonstrated that EE significantly improves spatial learning, spatial 

memory tasks, recognition memory, increased exploratory behavior, and task learning rate  
14,17,40,41,45–50 (Fig. 3b, left). One possibility underlying improved behavior after EE could be the 

emergence of multiple schemas due to exposure to novel complex experiences, which then lead 

to functionally efficient connectivity, better generalization, and accelerated learning in novel 

situations 22–25. Most EE studies have focused on rodent models, but similar effects have been 

demonstrated in humans. Physical EE (e.g., resistance training and aerobic exercise) 51, cognitive 

EE (e.g., number of years of education, playing strategy games) 19,52, and social EE (e.g., higher 

social network density) 53, have all been shown to enhance learning and memory. ‘Cognitive 

reserve’ refers to the brain’s ability to maintain normal cognitive function in the face of aging or 

neurological diseases. Engaging in EE practices, such as education, physical exercise, social 

interactions, etc. providing the brain with a rich and diverse set of experiences has been 

hypothesized to contribute to the development and maintenance of cognitive reserve 54–57. 

Altogether, EE is a promising approach that highlights the potential benefits of stimulating and 

varied experiences on new task learning and cognitive adaptability in both humans and animals.  
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Figure 3: a) Different types of EE strategies. Standard housing allows for no to minimal enrichment 

opportunities (left), enriched housing involves exposing animals to a larger arena with many 

objects (middle), and the enrichment track provides controlled delivery of physical and cognitive 

stimulation (right). b) Effects of EE (physical, cognitive, social, sensory) on behavior (left) and 

underlying neural dynamics (right). EE typically improves spatial memory, learning rate, 

exploratory behavior, recognition memory, and multisensory integration (left). EE alters 

mechanisms underlying learning and memory at all levels, from molecular to brain-circuit wide. 

Most studies report changes in increased CA1 LTP, adult neurogenesis, synaptogenesis, dendritic 

branching, etc. (right). Note that only a subset of effects, observed with different enrichment 

parameters, such as duration, types, age of initiation, etc. are illustrated. 

 

Along with the improvement in behaviors, EE also alters anatomical, molecular, and 

physiological functions (Fig. 3b, right). EE promotes synaptogenesis, and adult hippocampal 

neurogenesis 13,58,59, and enhances LTP in HC CA1 60,61. In addition, it increased spine count in 

basal dendrites of cortical layer II/III and apical tuft dendrites of layer V pyramidal neurons 62,63, 

and dendritic volume and branching 64. Such cellular and physiological changes are associated 

with altered expressions of genes involved in plasticity, including increased levels of brain-

derived neurotrophic factor (BDNF), N-methyl-D-aspartate (NMDA) receptor subunit 1 (NR1) 65, 

Insulin-like growth factor 1 (IGF-1) 66 and postsynaptic density protein 95 (PSD95) 48. Multiple 
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studies have also reported an increase in levels of acetylcholine, noradrenaline, and serotonin (5-

HT), all indicative of triggering different learning and adaptive strategies in enriched animals 67,68. 

EE also sharpens single-unit receptive fields, increases the strength of sensory cortices responses, 

and the selectivity, sensitivity, and efficiency of population coding (sparser coding) 69–71. At the 

network level, it leads to increased macroscopic functional connectivity efficiency (higher node 

degree, edge connectivity) in the HC, visual, motor, retrosplenial, and cingulate cortices, which 

could underlie improved multisensory integration and the emergence of supramodal 

representations 43,72,73. The changes discussed here may allow EE animals to adapt to new 

experiences and switch between different tasks, leading to improved learning, memory (forward 

transfer), and cognitive flexibility (Fig. 3b, right).  

It is important to state here that more comprehensive experiments are needed to 

ascertain whether all the changes listed above contribute to improved performance and faster 

learning of new tasks. The results listed above were observed in EE paradigms with different 

designs and parameters (total duration, age of initiation, type of EE, etc.). Future studies should 

carefully parse out the contribution of all changes (adult neurogenesis, synaptogenesis, more 

integrated cortical networks, increased population sparsity, etc.) observed so far and different 

types of EE paradigms on schema formation to determine if they all contribute equally or if one 

factor outweighs the others.  

 

 

Few-shot learning and forward transfer in artificial neural networks 

 

EE animals clearly show aspects of forward transfer: improved performance and learning 

speed on new tasks 40,41. But can ANNs exhibit similar behavior, and if they can, what factors 

determine those results? Take an ANN trained on linear algebra and matrices problems and teach 

it principal component analysis and deep learning until it becomes an expert in all. We can then 

ask what concepts were learned first, which were easiest to transfer, which led to maximum 

confusion, etc. Research on ANNs has recently shifted focus from single supervised tasks to the 

CL domain 7,74,75, with increased interest in joint exploration of forward transfer and catastrophic 

forgetting. A recent set of studies showed that ANNs with highly orthogonal prior knowledge 

representation show a gradient of forgetting on new task learning, with highly similar and 

dissimilar old tasks showing maximum and minimum forgetting, respectively 27,76,77. For example, 

a network initially trained to recognize two vehicles (ship, truck) and two animals (deer, dog) 

showed more forgetting of other vehicle classes like planes and cars because they were similar 

to the original vehicle classes (Fig. 4a) 76. To overcome the forgetting of similar classes, the model 

was trained to jointly replay a higher proportion of similar task exemplars (ship, truck) and novel 

tasks (car, plane). By exploiting the hierarchical organization of existing knowledge, this joint 

replay algorithm: similarity-weighted interleaved learning (SWIL), yielded rapid learning of new 



9 
 

tasks while overcoming the catastrophic forgetting problem using substantially less data 26,27. 

Additionally, the speed of learning novel items increased proportionally to the number of non-

overlapping old items. SWIL also helped improve the ability of ANNs to learn new tasks from 

limited amounts of data and to generalize to new tasks. These results demonstrate the 

importance of prior knowledge in driving learning accuracy and speed, implying more forward 

transfer in an agent with multiple orthogonal representations 27,76,77, matching experimental 

work on schemas in the brain 22,23. In the same vein, ANNs exhibit less forgetting of previously 

acquired knowledge and increased forward transfer as they learn multiple tasks, i.e., learning the 

nth thing gets easier than learning the first thing 1,78. For example, learning about principal 

component analysis (a special case of singular value decomposition) is easier than learning about 

singular value decomposition for the first time. Also, relearning a previously learned task is faster 

than learning it for the first time (relearning savings), another characteristic of human learning 

and demonstrated in EE animals as well 17. 

 

 
 

Figure 4: a) Performance of ANN trained on two tasks simultaneously. Task 1 involved training to 

learn two vehicles (ship (green), truck (lime green)) and two animals (deer (indigo), dog (blue)) 

classes. Training the same network on Task 2 (car, plane class) leads to more forgetting of similar 

old classes (ship, truck). Figure modified from 76. b) Increasing dimensionality across visual cortex 

hierarchy. In V1, representations for two classes (orange and sky blue) are intermixed and low-

dimensional. The exact representations become high-dimensional and linearly separable in the 

Inferotemporal (IT) cortex. c) Bottom: representation expected in primary-sensory cortices, 

showing functionally specialized representations (priors) that can be reused across tasks. Top: 

higher-order brain regions show high-dimensional mixed selectivity abstract representations that 

allow for better coding, reliability, and readout by a linear classifier. Mixed-selectivity coding has 

been shown to provide better flexibility and linear decoding of task variables, allowing for faster 

and more efficient new item learning 79.  

 

What drives this rapid learning? Is there something different about the representations 

learned by the ANNs? A recent study carefully examined the relationship between the geometry 

of learned representations and learning speed and found that schema-like learning (prototype 

learning) led to the best forward transfer in ANNs on learning novel naturalistic concepts, much 
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better compared to exemplar learning 80. The study also reported a consistent increase in few-

shot learning capability along the layers of the network, with the improvement driven by a sharp 

rise in the separability of class representations in the last few layers, also reported in the visual 

cortex 81 (Fig. 4b). Across the visual cortex (and other cortices) hierarchy, cell ensembles in 

individual brain regions exhibit a variety of coding schemes, ranging from functionally specialized 

to mixed selectivity 79,82. This raises the question of whether there is a difference in the forward 

transfer capability between the two schemes and when one should be favored over the other. 

An elegant study attempted to address this question by training recurrent neural networks on 

N=20 orthogonal tasks in an interleaved design 83. The outcome was the emergence of a cluster 

of units that demonstrated functional specialization and could be combined to solve novel tasks. 

On the other hand, the same network developed mixed selectivity after learning multiple tasks 

sequentially. Mixed selectivity codes have been shown to make fewer errors than highly specific 

codes, providing reliable decoding in sensory and high-order cortices 84. These results indicate 

that pre-training ANNs on large datasets spanning a mixture of domains (akin to exposure to 

many experiences and tasks) might significantly improve forward transfer 80,85,86. We propose 

that the higher fraction of specialized units is similar to neuronal ensembles in primary sensory 

cortices (more evolution-driven), allowing for reuse and sharing across tasks (compositionality), 

helping in tasks using a single variable. Mixed-selectivity representations, on the other hand, align 

well with population activity in higher-order brain regions (such as the prefrontal cortex and HC), 

allowing not only for compositionality and forward transfer but also simple readout by a linear 

classifier (Fig. 4c). 

However, coding for multiple variables always raises the discrimination-generalization 

tradeoff concern. A modeling study reported that randomly connected neurons with a population 

sparsity of ~ 0.1 (10% of total neurons are active to each input stimuli) are optimal for mixed 

selectivity representations, as they can balance discrimination and generalization 87. The 

randomly connected neurons increase the dimensionality of representations, similar to the 

dentate gyrus (DG) in the HC, allowing for better pattern separation 88–90. These results hint at 

what might be expected in representations for a knowledge-rich vs. naïve brain. We think EE 

pushes the neural representations closer to a regime where generalization and discrimination 

(orthogonal coding) capabilities are balanced. These balanced representations might enable EE 

animals to learn different tasks quickly (utilizing sparse coding) and generalize across contexts. 

However, EE animals might show more non-linear mixed selectivity in higher-order brain regions, 

as it allows an efficient encoding of a large repertoire of experiences. In this section, we 

established that pre-training ANNs on large multi-modal datasets would help them learn 

generalizable representations, improving forward transfer. We pointed out that schema-like 

learning, exploiting the existing structured knowledge, achieves much better forward transfer 

compared to exemplar learning. The findings discussed here provide valuable insights into the 

internal representations and learning dynamics of ANNs trained to achieve rapid learning.  
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Enhancing forward transfer: the neuroscience-AI nexus loop 

 

So far, we have looked at how EE enhances learning speed and performance on novel 

tasks in brains, along with results from forward transfer and few-shot learning in ANNs. Now, we 

want to bring the two together and discuss different mechanisms where both fields can interact 

and benefit from each other.  

 

1. Neurogenesis:  

New neurons are produced in the brain from early development to adulthood 91, most 

notably in DG and olfactory bulb 92. Adult-born immature DG cells have been theorized to 

promote pattern separation (remapping) 93 and are essential for remote memory reconsolidation 
94. Reduced adult neurogenesis in DG extends hippocampal dependence on memory 95, indicating 

its role in faster integration of new information into the existing knowledge. The rate of 

neurogenesis is higher in EE animals, presumably underlying faster discrimination and schema 

formation 58,59. Future work should focus on developing ANNs with the rate of neurogenesis 

altered by age and task demands. For example, lifelong learning ANNs can be trained with a larger 

rate of neurogenesis early on in training (similar to childhood), which can be reduced after initial 

deployment or have a higher neurogenesis rate throughout, identical to EE animals. Also, the 

higher rates could be hidden layer-specific, with the last layers exhibiting more neurogenesis than 

earlier layers (similar to DG) (Fig. 5a) 96. Introducing new neurons in ANNs at different training 

time points could reveal its impact on categorical discrimination 97,98.  

 

2. Learning rule, cost function, and modular architecture:  

Most deep-learning approaches use the same learning rule and cost functions across all 

layers and nodes. On the other hand, learning rules and cost functions probably differ across 

brain regions (primary sensory vs. association cortex), and cell types, and may even change over 

development 99. Also, different brain regions show different levels of plasticity and 

representation coding schemes, from highly specialized to mixed selectivity modules, each 

offering different computational benefits 79,82. Internal representation properties of EE vs. naïve 

animals in different phases of learning might provide hints about the biological learning rules. 

We envision future ANNs to have a highly modular architecture, with each module having its own 

set of learning rules and cost functions (different levels of plasticity, sparsity, neuromodulators, 

etc.), which are configurable based on the relevance of the module to the current task (Fig. 5b) 
100,101. Based on few-shot learning ANNs (previous section), we predict that EE animals will show 

a more significant extent of non-linear mixed selectivity in higher-order brain regions such as the 

prefrontal cortex and HC than naïve animals 9,79. Also, highly trained ANNs (knowledge-rich) tend 
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to show a good transfer of both coarse and fine discrimination abilities, which might be true for 

EE animals and can be tested 28.   

 

3. Replay and functional connectivity:  

An interleaved replay of new and old memories during sleep has been hypothesized to 

improve memory consolidation and categorical knowledge 20,102. EE animals show enhanced 

functional connectivity across brain regions during sleep 43,74. A crucial difference between 

biological and artificial network replay is that replay in ANNs is mainly performed as a single 

process, whereas biological replay happens across cascaded memory systems, potentially driving 

changes in synaptic weights and rewiring across regions 103–107. Future studies should add replay 

with different units/layers of the network involved across epochs and time (Fig. 5c). Incorporating 

biological network properties like sparse recurrent connectivity 108 and small-worldness (dense 

local clustering, short path length between distant pairs of nodes) 109, scale-freeness 

(connectivity degree distribution follows power law) 110, etc. might yield interesting results. 

Replay in ANNs could be used to understand how item representations get orthogonalized. Do 

coarser features separate first, followed by finer features? 8. ANNs show larger distances 

between individual class representations (deeper hierarchical clustering) in the hidden layers late 

in training compared to the start 20. Based on this, we predict a much more diverse exploration 

of network activity subspace during replay in EE animals. Also, since the distance increase is larger 

in the last few layers, we expect the same to be true for higher-order cortices. 

 

4. Neuromodulation triggered uncertainty:  

Neuromodulators such as acetylcholine, dopamine, and noradrenaline are triggered by 

uncertainty and unexpected rewards 101,111,112. Previous research has hypothesized that 

neuromodulation assists in adapting to new experiences by initiating various forms of learning 

based on novelty: unknown category (create new schema) or novel exemplar in a familiar 

category (consolidate into an existing schema) 113,114. Multiple studies have used 

neuromodulator-triggered uncertainty in ANNs to overcome catastrophic forgetting and rapid 

adaptation to tasks 115,116. These attempts could significantly benefit from insights from 

experiments exposing EE and control animals to multiple tasks with diverse types of novelty. For 

example, for a new item, the network might show increased pattern separation and a larger 

extent of new item replay initially followed by an increased replay of previously learned 

knowledge 117,118. The difference in changes in the neuromodulatory tone and its temporal 

dynamics across tasks in EE animals 67,68 can provide insights into novel learning rules for ANNs 

(Fig. 5d). ANNs can also be used to model how different uncertainty signals come into play and 

work together. This can guide future biological experimental designs to see if similar mechanisms 

are employed in brains. 
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Figure 5: Neuroscience-AI loop. a) illustration of neurogenesis in different modules of an agent 

across its lifespan. Note that we have shown the same number of total neurons (white + red 

circles) in all modules to allow better comparison concerning the fraction of newborn neurons (red 

circles). The agent shows a reduced rate of neurogenesis across time, from initial learning 

(childhood) to highly learned (adulthood) (left to right). Lower-level modules (primary sensory 

cortices) tend to typically have a lower rate of neurogenesis throughout than higher-level modules 

(hippocampus; bottom to top). b) cost functions and learning objectives are different across 

different modules in the brain (red vs. blue). Rather than a global rule, ANNs can be imbued with 

different objectives across layers and learning modules similar to our brains. c) biological memory 

replay involves different brain regions interacting preferentially during different replay events 

(blue, red, and green). A similar idea can be implemented in ANNs, where different learning 

modules are engaged across individual joint replay (new + old items) epochs depending on the 

recently learned item and gradient of forgetting. For example, replay event #1 (blue dotted line) 

involves replay in the top module with conjunctive coding neurons (similar to HC) and visual 

feature coding (red color, bottom). Replay event #3 (green dotted line) involves interaction with 

the top module, visual coding, and tactile coding modules (green color, bottom). We can also 
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evaluate different rules for replay to see which matches the replay dynamics in biological data. 

Individual modules are drawn as Hopfield net in b), and c), but that is not a required condition. d) 

EE animals tend to show higher levels of neuromodulators and better context recognition 

compared to naïve animals, which might underlie rapid adaptation and forward transfer. A 

combination of context signal (yellow box) and neuromodulatory inputs (brown box) can be added 

to ANNs to update hyperparameters and make them work in different learning modes: offline 

memory replay phase, active learning, high discrimination, or generalization enhancing behavior 

performance. e) Left: Running biological experiments (Task #1- Task #6) to determine a series of 

parameters related to behavior and coding dynamics of a knowledge-rich vs. naïve brain. Results 

from these experiments can then be used to determine objective functions to enforce similar 

performance in ANNs. Right: Ablation (and manipulation) studies in ANNs to determine the 

contribution of different modules (hidden layers, first three), a subset of nodes across modules 

(selective for a given task, last three), and changing learning rules. Such studies can help design 

precise hypotheses to test in the future. 

 

5. Context gating and pattern separation:  

Context signals can help differentiate between similar experiences across different 

contexts (pattern separation) 88,89. Previous studies have shown that context-specific modulation 

of neurons allows for gating task-relevant cues by increasing attention, thus leading to faster 

learning of new stimuli 119,120. EE animals show increased pattern separation and population 

sparsity 17,49,71. Motivated by this, ANNs can be implemented with a context-gating signal that 

enables switching between tasks (new and already learned) and separability between internal 

representations (pattern separation, Fig. 5d) 121,122. ANNs can also be programmed to pay 

attention to and gate a subset of sensory inputs to see how that affects learning. For example, a 

well-trained network performs well in a high-noise decision-making task by ignoring task-

irrelevant features, which might hold true for EE animals.  

 

6. Test frameworks and ablation studies:  

We believe EE experiments can aid in developing test frameworks and datasets for ANNs, 

where we can come up with predictions for behavior (reaction times, time taken to achieve the 

best performance, number of trials required, etc.) and brain activity during learning (changes in 

the internal representation, increased sparsity, compositionality, etc.) (Fig. 5e, left). These results 

can then guide the development of rules to enable brain-like behavior performance and learning 

in ANNs. Future experiments can control different elements of ANNs through ablations and 

manipulations, which would be difficult or impossible in biological systems. This makes ANNs a 

powerful tool for understanding the relative contribution of each input and learning mechanism 

employed if some mechanisms go haywire (Fig. 5e, right) 123,124. 
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 We haven’t discussed this, but other interesting approaches such as embodiment or 

imparting knowledge of intuitive theories of physics can potentially help build enriched ANNs 

with faster knowledge acquisition and improved problem-solving 125,126. Rapid progress in 

understanding novel task learning in humans and animals is imminent with the current pace of 

improvement in recording techniques and a steep rise in interest in neuro-inspired AI. The 

mechanisms and ideas listed above are just the beginning of this discussion. We believe that EE 

experiments and deep learning models have much to offer each other, and we hope the current 

paper has provided some valuable guidelines to harness the strengths of both domains.  

 

 

Concluding remarks 

 

The unprecedented success of ANNs and significant advances in neural and behavior 

recording techniques have made researchers appreciate the potential of combining the two 

fields. In recent decades, there has been remarkable progress in behavior tracking 127 and large-

scale neural recordings, going from a few hundred neurons to thousands, using Neuropixels 

probe 128, 2-photon mesoscope 129, etc. This advancement has enabled experiments that have 

provided valuable insights into existing questions and generated new hypotheses. However, just 

recording a large number of neurons will not be sufficient, future questions must be rooted in 

strong theories. Deep learning neural networks (with careful consideration) can be a powerful 

tool to analyze neuron representations and uncover connections between brain structure and 

function 130. The aim of this article was to motivate systems neuroscience and AI researchers to 

interact more closely. In this article, we have discussed how EE experiments can inform new 

methods to enhance the forward transfer capability of ANNs. We strongly believe that combining 

several neuro-inspired mechanisms will significantly improve performance and speed up the 

development of continual learning artificial systems. Similarly, ANNs, especially deep learning 

models, can provide insights into the emergence of abstract representations from experience 

and the underlying learning dynamics. Future studies should focus on building models that can 

explain complex behavior and coding properties without losing interpretability to better guide 

neuroscience experiments. In closing, we emphasize that understanding continual learning 

requires a multidisciplinary effort at the intersection of psychology, neuroscience, computer 

science, and physics. A continuous collaboration between these fields will be critical for 

developing highly robust ANNs and understanding how learning and memory arise in the 

mammalian brain. 
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