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Androgen receptor signaling
and spatial chromatin
organization in
castration-resistant prostate
cancer
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Prostate cancer is one of the leading causes of cancer death and affects

millions of men in the world. The American Cancer Society estimated about

34,500 deaths from prostate cancer in the United States in year 2022. The

Androgen receptor (AR) signaling is a major pathway that sustains local and

metastatic prostate tumor growth. Androgen-deprivation therapy (ADT) is the

standard of care for metastatic prostate cancer patient and can suppress

the tumor growth for a median of 2–3 years. Unfortunately, the malignancy

inevitably progresses to castration-resistant prostate cancer (CRPC) which

is more aggressive and no longer responsive to ADT. Surprisingly, for most

of the CPRC patients, cancer growth still depends on androgen receptor

signaling. Accumulating evidence suggests that CRPC cells have rewired their

transcriptional program to retain AR signaling in the absence of androgens.

Besides AR, other transcription factors also contribute to the resistance

mechanism through multiple pathways including enhancing AR signaling

pathway and activating other complementary signaling pathways for the

favor of AR downstream genes expression. More recent studies have shown

the role of transcription factors in reconfiguring chromatin 3D structure

and regulating topologically associating domains (TADs). Pioneer factors,

transcription factors and coactivators form liquid-liquid phase separation

compartment that can modulate transcriptional events along with configuring

TADs. The role of AR and other transcription factors on chromatin structure

change and formation of condensate compartment in prostate cancer cells

has only been recently investigated and appreciated. This review intends to

provide an overview of transcription factors that contribute to AR signaling

through activation of gene expression, governing 3D chromatin structure and

establishing phase to phase separation. A more detailed understanding of the

spatial role of transcription factors in CRPC might provide novel therapeutic

targets for the treatment of CRPC.
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Introduction

Prostate cancer is one of the most frequently diagnosed
cancers in America. It is the second most common cause
of cancer death in American men. During the progression
of prostate cancer, androgen receptor (AR) functions as a
critical regulator that governs cancer development through
transcriptional regulation of its targets gene expression (1).
Androgen deprivation therapy (ADT) has been developed
to inhibit AR signaling and has been considered as the
golden standard in treating prostate cancer (2). The disease
can be controlled for a certain period of time, but the
tumors typically recur after an average of 2–3 years of
ADT treatment (3). The recurrent tumors are usually more
aggressive and insensitive to additional ADT treatment (4).
These tumors are known as castration-resistant prostate
cancer (CRPC) (3, 5). CRPC is currently incurable and can
further progress to deadly metastatic prostate cancer. There
is an urgent need to develop novel effective therapeutic
strategies for CRPC.

There is growing evidence that CRPC cells have rewired
their transcriptional program to recover and maintain AR
signaling in the absence of androgens. The alteration of
transcription factors and their associated chromatin modifiers
contribute to the resistance mechanism through multiple
pathways. These changes also shape the higher order of
chromatin structure, affect gene expression, and consequently
allow the progression of CRPC and therapy resistance.
This review is focused on androgen receptor, AR-related
transcription factors, and their associated spatial organization of
genome in CRPC. A more comprehensive review on clinical and
molecular alterations during development of CRPC has been
summarized in another review (6).

Androgen receptor

The Androgen receptor (AR) is the receptor protein
mediating the androgen action and essential for prostate cancer
development. It is encoded by the AR gene located on X
chromosome with eight exons. AR contains three distinct
functional domains and one hinge region. The functional
domains include an NH2-terminal transcription activation
domain (NTD), the central DNA binding domain (DBD), and
a carboxyl-terminal ligand binding domain (LBD). The AR
DBD specifically recognizes the androgen response elements
(ARE) that contain a palindromic dihexameric motif with 5′-
AGAACA-3′ core sequence (7). DBD is also the most conserved
domain that contains two zinc finger polypeptides (8). The
binding of AREs by DBD allows androgen receptor to regulate
its target genes specifically. Binding of the AR LBD with
androgens in the cytoplasm exposes the nuclear localization
signal (NLS) and results in the nuclear entry of AR.

By classical transient transfection/luciferase-based
transcriptional assays, two transactivation regions were
identified in AR, namely Activation Function 1 (AF1) and
Activation Function 2 (AF2). The ligand-independent AF1
is located in the AR NTD, and the ligand-dependent AF2 is
located in the AR LBD. In contrast to many other nuclear
receptors that AF2 regions are responsible for the dominant
transactivation activity, the AR AF1, rather than AF2, plays a
major role in determining the transactivation activity of AR
(9, 10). This observation was supported by the recently solved
cryo-EM (electron cryo-microscopy) structure of full-length
AR and coactivator complex. It was directly visualized that the
AR AF1 is the primary site for recruitment of transcriptional
coactivators such as p300 and SRC-3 (11).

Androgen receptor can be activated by its natural agonists
testosterone and dihydrotestosterone and is the major target
for prostate cancer therapy (12, 13). Early-stage prostate cancer
can be treated by androgen deprivation therapy to lower
the levels of androgens or by antiandrogens, which compete
with androgens for binding to the LBD of AR. As a result,
these treatments disrupt the AR signaling (14). Additionally,
certain antiandrogens can alter the conformation of AR and
further impair its transactivation activity. For instance, the
antiandrogen enzalutamide not only blocked the binding of
androgens to AR, but also prevented the nuclear entry of AR
and the exposure of AR DBD (15). Consequently, enzalutamide-
bound AR loses the ability to bind to AREs on chromatin.
However, clinical studies showed that majority of patients
eventually developed resistance to enzalutamide typically within
a year (16–19). Although it was initially believed that these
resistant tumors are no longer dependent on the AR signaling
(20), later studies have demonstrated that majority of CRPC are
still dependent on AR and the AR signaling (21–24).

Molecular alterations of androgen
receptor in castration-resistant
prostate cancer

To adapt to the minimal levels of androgens after castration,
malignant cells have undergone various genetic alterations to
preserve the AR signaling pathway. As a central player for the
AR signaling, AR gene expression level is frequently augmented
in CRPC. This can be achieved by several molecular alterations,
including amplification of AR gene and a distant enhancer,
change of chromatin interactions, translational regulation of
AR mRNA, and increase of AR protein stability. AR gene
amplification and copy number alterations are detected in up
to 60% of metastatic CRPC patients but not in untreated
primary prostate tumors (25–30). Matthew Meyerson and his
colleagues performed linked-read whole genome sequencing
analysis on 23 biopsy specimens from metastatic CRPC, and
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they observed complex rearrangements of the AR locus in
most cases. 78–87% of these CRPC samples contained tandem
duplications involving an upstream enhancer of AR, indicating
that structural alterations in the non-coding genome largely
contribute to sustained AR signaling in CRPC (31). David
Takeda and his colleagues identified a vestigial enhancer
approximately 650 kb centromeric to AR gene (32). This
region was frequently amplified in CRPC tumors, but the
amplification was rarely seen in primary localized tumors.
The common features of enhancers, such as acetylation of
histone H3K27 and clustering of multiple transcription factor
binding sites, were associated with this enhancer in CRPC cells.
Most interestingly, genomic knock-in of this enhancer region
increased the expression level of AR and conferred a castration-
resistant state to prostate cancer cells (32). Additionally, ChIA-
PET of RNA Pol II in prostate cancer cells revealed that the
amplified AR locus further increases the number of chromatin
interaction modules containing AR gene and its distal enhancer,
which maximizes the upregulation of AR gene expression (33).
Therefore, by increasing AR expression to compensate for the
reduced androgens is a common mechanism to preserve the AR
signaling in CRPC (Figure 1).

Accumulating evidence indicates that AR splice variants
are implicated in the drug resistance of CRPC (34–36). Most
AR splice variants lack LBD, and among all AR variants,
AR-V7 and AR-V567es are most studied. Truncation of LBD
enables these splice variants to be constitutively active even
in the absence of androgens (37). AR-V7 has been detected
in many CRPC patients (28, 38) and is considered as a
major cause of resistance to antiandrogen drugs such as
enzalutamide and abiraterone (39–41). In fact, the prevalence
of AR-V7 is 9–15% in patients who hadn’t taken any
antiandrogen drug, in contrast to approximately 50% in patients
who underwent enzalutamide or abiraterone treatment (39).
Although some studies implied that AR-V7 was able to recover
partial transcriptional activity of full-length AR under the
castration condition, others reported that AR-V7 gained new
functions to drive the progression of CRPC (42, 43). For
instance, AR-V7 was observed to interact with full length
AR and consequently recruited transcriptional corepressors
rather than coactivators. This repression mechanism led
to downregulation of a subset of growth-suppressive genes
therefore contributing to the development of CRPC (44).
Similarly, AR-V567es functioned as a constitutively active
receptor, and it formed heterodimers with full-length AR
and increased the overall transcriptional activity of AR
(45). In transgenic mouse model with prostate gland-specific
expression of AR-V567es, epithelial hyperplasia was observed
in 4 months and invasive adenocarcinoma were developed
in 12 months, indicating that AR-V567es promotes prostate
tumorigenesis in vivo (46). This splice variant was detected in
23% of CRPC bone metastases and was associated with poor
survival (35).

In addition to AR splice variants, AR point mutations
have been frequently detected in CRPC but rarely seen in
untreated prostate tumors (26, 28). Interestingly, most of
these point mutations are located in the LBD of AR. Earlier
work reported that mutated AR acquired the ability to be
activated by other steroid hormones such as glucocorticoid and
progesterone (47, 48). More recent publications have confirmed
these observations. For instance, a frequently detected mutation,
AR-L702H, enables the receptor to be activated by prednisolone
and cortisol (49). In addition, AR-F877L mutant could even
convert the action of an antagonist to become an agonist
(50). Therefore, it was not surprising that these AR point
mutations were associated with resistance to the second-
generation antiandrogen drugs (51, 52).

Steroid hormone receptors in
castration-resistant prostate
cancer

Androgen receptor belongs to the nuclear receptor
superfamily, which contain less conserved NH2-terminal
transactivation domain and more conserved DBD and LBD
(53). Within this superfamily, AR and four other members
including estrogen receptor (ER), glucocorticoid receptor (GR),
progesterone receptor (PR), and mineralocorticoid receptor
(MR) are more evolutionarily conserved and functionally
related. These receptors are also known as steroid hormone
receptors. The structures of their LBDs, their cognate ligands,
and the DNA sequences of their response elements are highly
homologous, and these receptors directly transmit the signal of
environmental steroid hormones to nuclear gene expression to
regulate cell proliferation, metabolism, immunity, and sexual
development. In CRPC, cancer cells have taken advantage of
these steroid receptors to establish drug resistance.

Glucocorticoid receptor was found upregulated in a subset
of CRPC and partially substituted for the AR to activate gene
expression. The GR DBD shares more than 70% homology with
the AR DBD, and thus it can recognize the same response
element as the AR (54). In enzalutamide resistant CRPC,
upregulated GR was found to bind to ARE and activated a
subset of AR target genes. Dexamethasone, a GR agonist, was
able to confer enzalutamide resistance, and in CRPC patients,
higher expression levels of GR were correlated with poor
response rate to enzalutamide treatment (55, 56). These studies
suggested that GR might be a therapeutic target for progressive
CRPC. However, a recent clinical trial of combination therapy
with enzalutamide and GR antagonist mifepristone neither
delayed PSA progression, nor prolong radiographic or clinical
progression-free survival of the patients (57).

There are two estrogen receptors (ERs), ERα and ERβ,
that are encoded by different genes on chromosome 6
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FIGURE 1

Molecular alteration of AR in CRPC.

and 14, respectively. They share similar protein structure
but ERβ is the prevalent ER expressed in human prostate
tissue (58). It is generally considered that ERα has tumor-
promoting activity whereas ERβ behaves as a tumor suppressor
through antagonizing ERα and inhibiting cell proliferative
pathways (59). The ERα expression was elevated in CRPC,
accompanied by increased expression of its target genes.
A clinical trial with rapid androgen deprivation also induced
upregulation of ERα expression in malignant epithelia, which
was correlated with cell proliferation (60). In contrast to
the ERα, ERβ expression starts to decline at early stage
of prostate cancer development and further decreases in
CRPC. This might be due to ERβ being an AR target
gene (61). On the other hand, ERβ down-regulates AR in
a negative feedback loop in prostate cancer cells. A study

from Gustafsson’s group suggested that ERβ could suppress
cancer cell proliferation by repressing AR signaling. Agonist-
activated ERβ limited expression of AR downstream gene such
as CaMKK2, which was thought to be one of the key regulatory
factors during the establishment of castration resistance (62–
65).

MR is ubiquitously expressed in various tissues. The
expression of MR is low in prostate cancer cells, but
studies have showed that MR might be also involved in
enzalutamide resistance in CRPC (66, 67). Mineralocorticoid
and glucocorticoid can both bind to the LBD of MR and
exert different biological functions. A group at Kyushu
University performed a clinical study in which 86 patients
were administrated with enzalutamide and corticosteroids. Co-
treatment of MR agonist aldosterone increased the sensitivity
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to enzalutamide whereas knockdown of MR promoted
enzalutamide resistance and AR signaling (67). Although the
underlying mechanism was not completely understood, this
study suggested that crosstalk of steroid hormone receptors,
such as AR and MR, existed in CRPC. When androgen signaling
is diminished under ADT, other steroid receptors may substitute
and partially compensate for the transcriptional activity of AR.
Collectively, the steroid receptor ligand-binding versatility and
DNA-binding promiscuity may be one underlying mechanism
of castration resistance (68).

Topologically associating domains
(TADs)

Human genome is organized based on spatial proximity
into different architectural chromatin units known as the
topologically associating domains (TADs). Within TADs, the
embedded genes can share similar transcription factors and
coregulators. Different gene elements, including enhancers,
promoters, or gene bodies, have more frequent interactions with
each other. TADs are separated by TAD boundaries, which
are the regions enriched with insulator proteins, such as the
CCCTC-biding factor (CTCF) protein. As it was named, CTCF
binds to the core sequence CCCTC and was first identified as
a transcriptional repressor of chicken c-myc gene (69). Later
CTCF was found to be an insulator blocking transcriptional
activation when located between enhancer and promoter (70,
71). More recent studies have established its causal role in
TAD formation and maintenance (72–74). The organization
of the TADs are tightly associated with the control of gene
transcription. Disruption of TAD boundaries may result in
aberrant activation of genes both in cultured cells and in vivo
(75, 76).

In 2016, Susan Clark and her colleagues (77) reported the
first comparative analysis of chromatin organization between
cancerous and normal prostate cells. Intriguingly, the overall
spatial organizations of chromatin were quite similar in these
cells, but the size of individual TADs appeared smaller in
cancer cells. New cancer-specific chromatin interactions were
detected within these smaller TADs (77). Indeed, in prostate
cancer cells, the boundaries established by CTCF showed more
effective AR transcriptional regulation than in normal cells
(78). Similarly, in another study, genomic alterations of 23
metastatic CRPC tumors were analyzed by linked-read whole
genomic sequencing; tandem repeats of AR enhancer element
were identified, but the alteration appeared to be limited within
the same TAD (31). These studies suggested that the spatial
organization of certain TADs are stable during the prostate
tumorigenesis. In a follow-up study, the effect of CTCF on the
organization of TAD was further explored in prostate cancer
cells. When CTCF was knockdown by RNAi, the overall level
of CTCF protein was markedly reduced. Interestingly, a subset

of CTCF-bound sites remained intact. Deletion of two of these
persistent CTCF sites by CRISPR-Cas9 genome editing resulted
in aberrant expression of a few genes in proximity to the CTCF
binding sites, indicating that these persistent CTCF binding sites
were essential in maintaining the cell-type constitutive, higher
order chromatin architecture (79).

Later on, Peggy Farnham’s group performed in situ Hi-C
and ChIP-seq experiments in prostate cancer cells to determine
how three-dimensional chromatin structure is correlated to
prostate cancer transcriptome. This study generated chromatin
interaction map in high resolution and identified more than a
thousand of TADs with altered boundaries in prostate cancer
cells (80). In CRPC cells 22Rv1, cancer cell-specific new smaller
TADs were identified at AR gene locus, and this alteration was
believed to contribute to the exotic expression of AR-V7 in
22Rv1 (Figure 2A) (80). Moreover, based on GWAS studies,
the same group identified ∼300 prostate cancer risk-associated
SNPs that were enriched in active regulatory regions, including
promoters, enhancers, insulators, and chromatin loop anchors.
Deletion of two prostate cancer risk-associated CTCF anchor
regions by CRISP-Cas9 resulted in highly elevated expression
of genes within the loops, suggesting that disruption of TAD
organization could alter gene expression and contribute to
prostate tumorigenesis (81).

Recently, Rachel Patton McCord’s group analyzed the
genome organization of nine cell lines that mimic different
stages of prostate cancer progression by Hi-C. CRPC cell lines
22Rv1 and C4-2B were included in the study. Across prostate
cancer progression, 386 genes were found switching from
transcriptionally silenced compartments to transcriptionally
active compartments along with TAD rearrangement. In
addition, they further defined several “genomic architecture
hotspots,” where the chromatin alterations were highly similar
among all metastatic models. Some important genes in prostate
tumorigenesis, including AR, WNT5A, and CDK14, were
located in these hotspots. This study suggested that the
changes of 3D genome structure are critical for prostate cancer
progression (82).

Phase separation

Liquid-liquid phase separation (LLPS) represents a dynamic
phenomenon that two distinct liquid phases are demixed
(83). LLPS is a common process that utilized by our cells
to accomplish complex biochemical reactions and to respond
to cellular stress (84, 85). Many membraneless subcellular
structures are organized as LLPS, also known as condensates,
bodies, granules, or droplets, depending on their appearance
under microscope. Well studied LLPS structures include stress
granules and P bodies in the cytoplasm, nucleoli, Cajal bodies,
paraspeckles, promyelocytic leukemia (PML) bodies and histone
locus body (HLB) in the nucleus (86–90). It is generally accepted
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FIGURE 2

Alterations in spatial organization of chromatin in CRPC. (A) Chromatin structure changes in the genomic region near the AR gene locus in
normal prostate and CRPC cells. A representative TAD heatmap is illustrated. (B) A hypothetic schematic model for various
transcription-associated condensates formed in CRPC.

that biomolecules are highly enriched inside LLPS, allowing a
condensed spatial distribution of biomolecules and therefore
more efficient biochemical reactions (91).

Similar to many other biological processes, gene expression
also takes advantage of LLPS to maximize the output of gene
transcription. To achieve high density of biomolecules in LLPS,
transcription factor binding sites frequently form clusters on
gene regulatory regions including enhancers and promoters.
In AR-regulated genes, the response elements of pioneer
transcription factors of AR, such as Forkhead Box A1 (FOXA1)
and GATA-binding protein 2 (GATA2), were often found in
close proximity to ARE (92–94). The multivalent interactions
between transcription factors and coregulators stabilize the
transcriptional initiation complexes and contribute to LLPS
formation during transcriptional initiation (95–97). Steroid
hormone receptors in CRPC, including AR, GR, ER, all have
been reported to induce transcription through phase separation
(98–101). In one study using GFP-tagged AR to examine its
cellular localization in response to agonists and antagonists, it
was found that AR localized to nuclear foci in the presence
of the agonist R1881 but not the antagonist bicalutamide and
hydroxyflutamide. However, the CRPC mutants AR-W741C
and AR-T877A regained the ability to form the nuclear foci
(102). The study suggested that the LLPS formation and
transcriptional activation are coupled events (Figure 2B).

One major characteristic of proteins involved in LLPS is
that they usually contain intrinsically disordered region (IDR).
IDR refers to a protein region that does not form a fixed three-
dimensional structure, but rather adopts flexible conformation
(103). The dynamic interactions between various IDRs help to
enrich transcriptional regulators to form transcription-related
condensates (104, 105). Because the NH2-terminal domains of
steroid hormone receptors all contain IDRs, it is conceivable
that these NTDs play a role in forming phase separation (99,
106). Indeed, the recombinant NTD of AR was able to form

LLPS in vitro. Within the NTD, the low complexity poly Q
sequence appeared to be essential for phase separation (107).
Interestingly, AR DBD could also form LLPS through binding
with RNA and DNA molecules (108). Although these AR
functional domains were able to form liquid condensates as
high concentrated recombinant proteins in vitro, it is unknown
if such level of AR concentration could be achieved inside
the cells, even within the transcription-associated condensates.
It is likely that additional biomolecules, such as transcription
factors, transcriptional coactivators, enhancer RNA molecules,
and phosphorylated RNA polymerase II, are involved to ensure
the establishment of LLPS and a robust transcription to occur
(106, 109).

A very recent study showed that AR formed
transcriptionally active condensates with coactivator MED1
in androgen-responsive prostate cancer cells such as VCaP
and LAPC4 cells, but not in RWPE1, a normal prostate
epithelial cell line. Interestingly, these condensates were only
observed with full-length AR upon DHT stimulation, but
not with truncated AR mutants such as AR-V7 (110). This
study indicates that formation of LLPS is not only determined
by its protein composition, but also affected by cellular
context and various cell signals. Another study in CRPC
identified Octamer-binding transcription factor 4 (OCT4)
as a key molecule to collaborate with other transcription
factors on super enhancers and promoters to drive cancer
cell proliferation and castration-resistance. In AR-positive
prostate cancer cells, OCT4 forms LLPS with the AR and
pioneer transcription factor FOXA1. In AR-negative prostate
cancer cells, OCT4 forms LLPS with Nuclear respiratory factor
1 (NRF1). This study suggests that targeting collaborations
between transcription factors might be a novel therapeutic
strategy for CRPC treatment (111).

Aside from being involved in gene transcription, LLPS is
implicated in other regulatory pathways in prostate cancer.
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In a subset of advanced CRPC where the AR protein level
was low or absent, DEAD-box helicase 3 X-linked (DDX3)
was reported to directly repress AR protein translation by
physical association with AR mRNA in cytoplasmic liquid
condensates. The upregulated DDX3 might contribute to
the castration resistance in these tumors (112). Moreover,
several studies on Speckle-type POZ protein (SPOP) further
expanded our understanding on the role of LLPS in prostate
carcinogenesis. SPOP is a substrate adaptor of the cullin3-
RING ubiquitin ligase, and SPOP mutations have been
frequently detected in prostate tumors (113–115). SPOP
formed nuclear condensates with its substrates, but its
cancer-associated mutations disrupted their colocalization
and liquid phase separation, resulting in impaired substrate
ubiquitination and accumulation of oncogenic proteins such
as c-MYC, SRC-3, and DAXX (113, 116–118). Although
how these biomolecules regulate LLPS condensates in CRPC
remain poorly characterized, these pioneer studies support the
importance of LLPS in tumor progression and development of
drug resistance.

Connection between topologically
associating domains and
liquid-liquid phase separation

Studies have shown that CTCF not only functions as an
insulator to establish the topological structure of TADs, but
also is involved in sub-TAD chromatin loop formation within
the TADs (78, 119–121). In prostate cancer, the expression
levels of CTCF showed strong association with the levels of
proliferation marker Ki67, advanced pathological tumor stage,
nodal metastasis, and early biochemical recurrence (122). It
remains unknown if CTCF level is associated with organization
of transcriptional condensates in prostate cancer cells, but
studies in colorectal cancer cells showed a positive correlation.
Depletion of CTCF altered the genome-wide TAD insulation
and resulted in disruption of phase separated transcriptional
condensates in colorectal cancer cells, indicating that CTCF-
mediated DNA looping provides a spatial architecture and
essential for the formation of transcriptional condensates (123).

Contrariwise, it appears that LLPS could also influence
TAD assembly. One study applied a new CRISPR-Cas9-based
optogenetic technology named CasDrop, which could induce
microscope-visible liquid condensates to form at specific
genomic loci. It was found that nuclear condensates, while
they were forming, were able to gather the distal targeted
genomic elements and expand to euchromatic regions (124).
Another study showed that during the ER and PR-mediated
transcriptional activation, the assembled transcriptional
complexes reorganized the looping structures in TADs and
fine-tune the three-dimensional genome folding (125). It

remains to be determined if LLPS alteration affects organization
of TADs or chromatin looping in CRPC.

Future perspective

With the advancement of next generation genome analysis
technologies such as Hi-C, DNase-seq, FAIRE-seq, and ATAC-
seq, we have learned that when hormone-sensitive prostate
cancer progresses to castration-resistant prostate cancer, many
genomic alterations at chromatin level have occurred. These
genomic alternations underlie transcriptional reprogramming
during the establishment of castration resistance. Recent
advances in Hi-C and super resolution microscopes allow
researchers to further characterize the chromatin conformation
and transcriptional condensates in a spatial and dynamic view.
The studies discussed in this review represent early steps toward
understanding how the higher order of genomic organization
affects the development of CRPC, yet more questions need
to be addressed in future studies. It is hoped that these
mechanistic studies could promote the development of new
therapeutic interventions for the treatment of CRPC, a currently
incurable disease.
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