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Abstract  
Microglia, the main driver of neuroinflammation, play a central role in the initiation and exacerbation 
of various neurodegenerative diseases and are now considered a promising therapeutic target. 
Previous studies on in vitro human microglia and in vivo rodent models lacked scalability, consistency, 
or physiological relevance, which deterred successful therapeutic outcomes for the past decade. Here 
we review human blood monocyte-derived microglia-like cells as a robust and consistent approach 
to generate a patient-specific microglia-like model that can be used in extensive cohort studies for 
drug testing. We will highlight the strength and applicability of human blood monocyte-derived 
microglia-like cells to increase translational outcomes by reviewing the advantages of human blood 
monocyte-derived microglia-like cells in addressing patient heterogeneity and stratification, the basis 
of personalized medicine.
Key Words: human in vitro microglia models; neurodegeneration; neuroinflammation; patient 
heterogeneity; patient stratification; peripheral blood monocyte-derived microglia-like cells; 
therapeutic target; transdifferentiation; translational outcomes

Introduction 
Neuroinflammation is a critical process in all neurodegenerative diseases 
and is driven by microglia, the specialized innate immune cell of the 
brain. Microglia maintain homeostasis within the central nervous system 
(CNS) by regulating neuronal activity by pruning synapses, surveying the 
brain for cellular debris, and carrying out appropriate immune regulation.  
Alternatively, microglia in the diseased brain exacerbate disease progression 
and severity, where defects in microglial function can deter the clearance 
of pathological proteins, release neurotoxic cytokines and elicit cell death. 
Due to the multiple roles in promoting and alleviating disease progression, 
microglia have become a key therapeutic target in recent years. However, 
there are still no promising microglial therapeutics, mainly due to the lack 
of physiologically relevant models that can faithfully recapitulate disease 
pathology and preserve patient-specific heterogeneity within the CNS. 

While cell lines, animal models, and post-mortem brain tissues have been 
invaluable in providing insights into neurodegenerative diseases and key 
concepts in microglial biology, these models have poor predictive power 
in identifying potential drug candidates for clinical therapies. One example 
of an unsuccessful drug candidate is minocycline, which despite showing 
potential in protecting against the toxic effects of β-amyloid by reducing 
microglial activation and inflammatory responses in vitro and in animal 
models of Alzheimer’s disease, failed to show therapeutic benefits when 
trialed in Alzheimer’s disease patients (Howard et al., 2020). This failure 
could be attributed to the difficulty in mimicking the complex aspects of 
neurodegenerative diseases driven by patient-specific heterogeneity in 
microglial function and the species-specific differences between humans 
and mice, especially concerning gene expression and function. Alternatively, 
microglia isolated from post-mortem brain tissues are of high physiological 
relevance compared to other model systems but lack reproducibility and 
scalability. These post-mortem brain tissues are often sampled in a small/
selected brain region that does not reflect the natural heterogeneity within 
various brain regions (Tan et al., 2020).

Moreover, microglia are highly sensitive to their environment leading to the 
disparity in transcriptomic profiles between ex vivo and in vitro microglia, 
further altered due to delay with post-mortem tissue extraction, quality of the 
post-mortem tissue, and differences with isolation techniques (Gosselin et 
al., 2017; Cadiz et al., 2022). The advent of human patient-derived microglia 

models obtained directly from patients has significantly bridged this gap, 
specifically with the recent advances in the generation of patient-specific 
microglia from induced pluripotent stem cells (iPSCs) and human peripheral 
blood monocytes. Importantly, accurate microglial models should have the 
ability to reflect age-related neurodegenerative disease features as well as 
patient-specific clinical manifestations to improve drug efficacies leading to 
successful therapeutic outcomes. 

Search Strategy and Selection Criteria
Studies cited in the review were published between 2007–2022, and they 
were searched on the PubMed database using the following keywords: 
monocyte plasticity, monocyte infiltration, monocyte conversion, microglia-
like cells, microglia repopulation, CCR2, iPSC derived hematopoietic stem 
cells, iPSC derived macrophage-like cells, iPSC derived microglia-like cells, 
neurodegeneration.

Monocyte-Derived Microglia: Are They Different 
from Monocytes or Brain Microglia? 
Myeloid cells, including monocytes and microglia, are localized in their 
respective niche with their specialized tissue-specific function. However, 
under most pathological conditions where the blood-brain barrier is 
compromised, infiltrating monocytes are recruited into the CNS to aid 
dysfunctional or depleting microglia pools (Varvel et al., 2012; Stephenson 
et al., 2018). Within the CNS, this population of transient monocytes 
differentiates into human blood monocyte-derived microglia-like cells (MDMi), 
assuming a ramified morphology, expressing microglial genes such as P2ry12 
and Tmem119, and acquiring functional capabilities such as phagocytosis 
and eliciting a cytokine response similar to CNS resident microglia. These 
MDMi characteristics (morphology, gene expression, and functional changes) 
are different in monocytes, macrophages, and dendritic cells from the same 
individuals (Banerjee et al., 2021; Quek et al., 2022), and when treated with 
immunostimulatory stimuli such as lipopolysaccharide (Melief et al., 2016).

In addition, gene expression profiling of MDMi revealed a single nucleotide 
polymorphism for the Alzheimer’s disease risk gene (PILRB). The same single 
nucleotide polymorphism was not observed in monocytes from the same 
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donor (Ryan et al., 2017), indicating that MDMi are distinct from monocytes.  
In line with this, transcriptomic analysis has shown that MDMi cluster closer 
to iPSC-derived microglia and infant brain microglia than monocytes and 
macrophages (Sellgren et al., 2017; Banerjee et al., 2021). It is clear from 
these studies that monocytes and MDMi, though are derived from the 
same hematopoietic origin and share many phenotypical and functional 
characteristics, behave differently from each other in a diseased context. 

C-C chemokine receptor type 2 (CCR2), is a chemokine receptor typically 
found on infiltrating monocytes but not in microglia (Mizutani et al., 2012; 
Jara et al., 2019). Interestingly, MDMi retains the expression of CCR2 and 
express other microglial proteins such as CX3CR1 and P2RY12, suggesting that 
these cells resemble both infiltrating monocytes and microglia (Ohgidani et 
al., 2014; Banerjee et al., 2021). While the role of CCR2 in these cells is yet 
to be elucidated, it could be due to the use of interleukin-34 and granulocyte 
macrophage-colony stimulating factors in the differentiation of MDMi. This 
was shown in a study that converted infiltrating monocytes to macrophages 
by a cytokine-dependent process (Park et al., 2021; Mysore et al., 2022). 
Additionally, monocyte subsets, characterized by classical (CD14++CD16–), 
intermediate (CD14+CD16+), or non-classical (CD14+CD16++) have varying CCR2 
expressions and are correlated with poor clinical outcomes (Saederup et al., 
2010). Whether MDMi transdifferentiated from the various monocyte subsets 
will present similar CCR2 expression warrants further investigation. 

The origin, transcription, and function of monocytes and MDMi are distinct 
from parenchymal microglia (Yamasaki et al., 2014). As such, hematopoietic 
stem cells from the fetal liver or bone marrow give rise to blood monocytes, 
while microglia originate from embryonic yolk sac progenitors (Ginhoux et 
al., 2010). Microglia are also self-renewing and are typically maintained from 
the local CNS pool and not from the periphery (Ajami et al., 2007, 2011). 
Some questions remain regarding whether MDMi can replace parenchymal 
microglia in the long term and how long they could persist within the CNS. 
While this is still largely unclear, animal studies have demonstrated several 
events; where infiltrating monocytes are able to repopulate the microglia 
niche and become microglia-like, but remain distinct in phenotype and 
function (Varvel et al., 2012; Cronk et al., 2018; Lund et al., 2018; Shemer et 
al., 2018; Hohsfield et al., 2020; Feng et al., 2021), or, infiltrating monocytes 
that persist in inflammation do not replenish microglia niche (Ajami et al., 
2011). These findings are largely dependent on experimental procedures used 
to deplete microglia to study the recruitment of myeloid cells. It is further 
postulated that the number of infiltrating monocytes or microglia-like cells is 
dependent on the type of disease (i.e. neurodegenerative, brain injury, and 
brain infection), disease severity, and the progression of disease (Yamasaki et 
al., 2014; Olah et al., 2020; Haage and De Jager, 2022).

Overall, MDMi can be utilized to further characterize the role of microglia-like 
cells to delineate the complex relationship between infiltrating monocytes 
and microglia, and their roles in disease progression.

Using Human Blood Monocyte-Derived 
Microglia-Like Cells to Identify Disease- and 
Patient-Specific Changes in Neurodegenerative 
Diseases 
MDMi have significant advantages compared to other microglial models, such 
as hiPSC-derived microglia.

The ease of sample collection
Blood is sampled directly from living patient donors prior to peripheral blood 
mononuclear cell isolation. This method is less invasive, allows multiple 
testing for longitudinal studies, is straightforward for cell harvesting, is cost-
efficient and most importantly, retains patient heterogeneity (clinical, disease-
specific, patient-specific). Although only 5–10% of monocytes constitute 
the peripheral blood leukocytes, repeat sampling would ensure sufficient 
monocyte stocks for future usage. 

Conversely, the generation of human embryonic stem cells (ESCs) or 
PSCs is not as straightforward. A skin biopsy has to be first expanded 
and reprogrammed to its pluripotent state. This reprogramming is often 
low in efficiency, can take months of validation and requires extensive 
manipulations, including cell sorting for enrichment. Another caveat in 
reprogramming involves the risk of insertional mutagenesis, leaky promoters, 
or off-targets, mainly through a genome integrating delivery method (i.e. 
lentivirus, adenovirus). Hence, loss of disease-relevant epigenetic traits due 
to extensive in vitro manipulations occurs within these cultures leading to the 
high propensity of developing genomic anomalies as observed by karyotyping. 
Further, reprogramming to pluripotency can hinder the study of age-related 
neurodegenerative diseases. 

The ease by which we can generate patient-derived microglia-like cells
Blood monocytes can be isolated from peripheral blood mononuclear cells 
through CD14+ selection or plastic adherence (Cuní-López et al., 2022). 
Variations in these published protocols include the growth factors, days in 

culture and extracellular matrix. The differences between MDMi generated 
from various methods are still unclear, but  have shown to display similar 
microglia-like morphology, function, and key microglial genes (Banerjee et al., 
2021).

The ease of generating MDMi have allowed the use of a patient cohort  
(> 10) to model neurological diseases such as Nasu-Hakola disease (Ohgidani 
et al., 2014), schizophrenia (Sellgren et al., 2019), and Huntington’s disease 
(Rocha et al., 2021). Our group has recently demonstrated the feasibility of 
generating MDMi from amyotrophic lateral sclerosis patient cohort (> 30) 
(Quek et al., 2022), which would benefit patient stratification dependent on 
disease progression. More importantly, these amyotrophic lateral sclerosis 
MDMi display aberrant cytoplasmic TAR-DNA-binding protein-43 expression 
and/or phosphorylated TAR-DNA-binding protein-43 inclusion, a pathological 
hallmark similar to that observed in post-mortem brains in amyotrophic lateral 
sclerosis patients. Interestingly, aberrant phosphorylated TAR-DNA-binding 
protein-43 inclusions were heterogeneous in manner, where it was observed 
only in some MDMi cells within the same patient and is independent of the 
type of disease progression. These results demonstrate the applicability of 
MDMi to reflect disease-specific hallmarks and the heterogeneity within cells, 
which is key to understanding disease pathology. 

The generation of myeloid cells from human ESC or PSCs requires a complex 
stepwise process that begins by patenting ESCs/PSCs into mesoderm 
progenitors. These cells are then differentiated into hematopoietic 
progenitors, responsible for forming all types of blood cells, followed by 
monocytes, which are then transdifferentiated into macrophage- or microglia-
like cells. More recently, it has been shown that direct reprogramming 
(transdifferentiation/ forced expression) can be achieved by using lineage-
specific transcription factors to direct somatic cells (i.e. fibroblast) to 
hematopoietic progenitors (Yanagimachi et al., 2013; Gomes et al., 2018), 
macrophage-like cells (Feng et al., 2008) or microglia-like cells (iMG) (Chen 
et al., 2021). Remarkably, direct reprogramming of iMG was shown to 
significantly reduce the time required for differentiation (from an average of > 
40 days to > 10 days); however, no study has yet demonstrated this approach 
using patient-derived samples.   

Overall, generating iMGs is expensive and time-consuming; hence it remains 
a challenge to sample/screen a large cohort of patients and generate 
homogeneous cultures of pure iMG (Speicher et al., 2019). The high 
variability in existing protocols to induce mature iMG, such as the co-culture 
of various cell types, fluorescence-activated cell sorting, and the use of serum 
in media can affect consistency in generating iMG, which may hinder disease-
related pathology and/or patient-specific (genetic and epigenetic) outcomes. 
Therefore the simple and efficient methodology required for generating 
MDMi eliminates the above challenges and produces cells that retain 
epigenetic signatures essential for creating patient-specific disease models. 

Comparative Studies Utilizing Human Blood 
Monocyte-Derived Microglia-Like Cells
MDMi model is able to simultaneously compare patient responses against a 
large cohort of healthy people of matching age and sex, thereby eliminating 
experimental inconsistencies such as reagent batch variability and increasing 
the consistency of results. The utility of a larger sample size increases the 
likelihood of heterogeneity where factors such as diet and medications are 
considered. This inherent heterogeneity is necessary for personalized drug 
therapy, which is now viewed as a promising therapeutic strategy in multi-
systemic diseases such as cancer and neurodegeneration. In this manner, 
MDMi can be used as a pre-clinical screening platform using characteristics 
such as disease severity, genetic aberrations, cytokine secretion, and 
phagocytic capability. In a broader context, blood-based biomarkers can be 
correlated alongside MDMi to better understand drug efficiency. These results 
may improve therapeutic outcomes and provide a platform for personalized 
treatment regimes, as shown in Figure 1. Moreover, with an increasing 
number of studies integrating bulk RNA-seq in their experimental design, it 
is imperative to have a large enough patient cohort to identify differentially 
expressed biologically meaningful genes.

Summary and Future Perspective 
With the rising prevalence of neurodegenerative diseases, there is an urgent 
need to develop a microglial platform capable of recapitulating a complete 
disease pathology and providing accurate, efficient, and consistent microglial-
targeted therapies. While there is no current consensus on the best method 
for generating in vitro microglia models, both iPSC and monocyte-derived 
microglia currently represent a relevant human primary cell model for disease 
modeling. Notably, both iMG and MDMi cells resemble fetal brain microglia 
as opposed to adult post-mortem microglia, suggesting that both models are 
still at their early stages (not fully matured). The question remains whether 
advanced modeling of iMG and MDMi in 3D co-culture or brain organoids 
would enhance their microglial phenotype. Better refinement of these model 
systems will be crucial for translational studies and drug screening platforms 
for treating various neurodegenerative diseases.
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