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Improvements in eating satisfaction will benefit consumers and should increase beef

demand which is of interest to the beef industry. Tenderness, juiciness, and flavor

are major determinants of the palatability of beef and are often used to reflect eating

satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher

quality grade carcasses expected to relate to more tender and palatable meat. However,

meat quality is a complex concept determined by many component traits making

interpretation of genome-wide association studies (GWAS) on any one component

challenging to interpret. Recent approaches combining traditional GWAS with gene

network interactions theory could be more efficient in dissecting the genetic architecture

of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics,

components of meat quality, along with mineral and peptide concentrations were used

along with Illumina 54k bovine SNP genotypes to derive an annotated gene network

associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model

association (EMMAX) approach in combination with a genomic relationship matrix was

used to directly estimate the associations between 54k SNP genotypes and each of the

23 component traits. Genomic correlated regions were identified by partial correlations

which were further used along with an information theory algorithm to derive gene

network clusters. Correlated SNP across 23 component traits were subjected to network

scoring and visualization software to identify significant SNP. Significant pathways

implicated in the meat quality complex through GO term enrichment analysis included

angiogenesis, inflammation, transmembrane transporter activity, and receptor activity.

These results suggest that network analysis using partial correlations and annotation

of significant SNP can reveal the genetic architecture of complex traits and provide

novel information regarding biological mechanisms and genes that lead to complex

phenotypes, like meat quality, and the nutritional and healthfulness value of beef.

Improvements in genome annotation and knowledge of gene function will contribute

to more comprehensive analyses that will advance our ability to dissect the complex

architecture of complex traits.
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INTRODUCTION

Increasing consumer demand for beef is an important strategic
objective for the beef industry and recent studies suggest
consumers have a strong focus on beef quality (Igo et al., 2013;
Schroeder et al., 2013). Beef quality is largely communicated in
terms of USDA quality grade as higher quality grade beef will
contain more intramuscular fat, which improves flavor, juiciness,
and positively influences tenderness (Koohmaraie et al., 2002).
These properties have a large impact on the eating experience
of the consumer, and consumer’s eating satisfaction is the
main driver of beef demand (Schroeder et al., 2013). However,
in addition to eating satisfaction, other attributes including
nutritional value, and healthfulness (fatty acid composition and
mineral content) are important components of quality in the eyes
of modern consumers.

All the components defining eating quality can be regarded
as quantitative traits, controlled by many genes and impacted by
environmental factors. Most component traits are difficult and
expensive to measure and not available to measure until late in
life or after the animal has been harvested. Such traits are difficult
to improve through traditional phenotypic selection, but are ideal
candidates for genomic selection if genetic markers explaining
a large enough proportion of the variation can be identified.
Warner-Bratzler Shear Force (WBSF, an objective measure of
tenderness) and the intramuscular fat content (IMFC) were
identified from an extensive set of carcass and meat composition
traits to be the best predictors of eating quality (Mateescu
et al., 2016). Those indicator traits are difficult to measure on
live animals and DNA tests that can accurately identify cattle
with superior genetics for WBSF and IMFC would be helpful.
Knowledge of the genetics controlling these traits along with a
precise understanding of the biological networks and interactions
underlying the meat quality complex will increase the ability
of the industry to improve cattle to better meet consumer
expectations.

Numerous genome-wide association studies (GWAS) have
been performed in different Bos Taurus (Gutiérrez-Gil et al.,
2008; Esmailizadeh et al., 2011; McClure et al., 2012; Allais
et al., 2014; Xia et al., 2016), Bos Indicus (Tizioto et al., 2013;
Magalhães et al., 2016) or crossbred beef cattle breeds (Bolormaa
et al., 2011; Lu et al., 2013; Hulsman Hanna et al., 2014),
and with different phenotypes describing meat quality, from
carcass characteristics to specific measures of eating satisfaction.
These studies contribute to our present understanding of the
genetic regulation for many of these traits but they also highlight
some of the challenges and limitations associated with GWA
studies. Many chromosomal regions identified are unique to
the specific population in which they were discovered and
were not replicated in other studies. More importantly, very
few functional mutations have been identified and most of
the genetic variation controlling these traits remains unknown.
Recently, new methodology has been developed in an effort
to address this limitation and allow for a better understanding
of the genetic architecture of complex traits through a gene
network analysis (Fortes et al., 2010; Reverter and Fortes,
2013).

The first objective of this study was to carry out GWAS
to identify chromosomal regions associated with each of the
different components of meat quality. The second objective
was to use the Association Weight Matrices (AWM) and
Partial Correlation and Information Theory (PCIT) to explore
the functional mechanisms underlying GWAS associations for
meat quality traits in Angus cattle to explore the biological
mechanism by which GWAS-identified genomic variants give
rise to phenotypic differences in eating quality.

MATERIALS AND METHODS

Animals and Sample Collection
The Iowa State University and Oklahoma State University
Institutional Review Boards approved the experimental
protocols used in this study. A total of 2,110 Angus-sired
animals comprising bulls (n = 500), steers (n = 1,210),
and heifers (n = 400) representing 155 sires were used in
this study. All cattle were finished on concentrate diets in
Iowa (n = 994), California (n = 345), Colorado (n = 352),
or Texas (n = 419). Animals with an average age of 457
± 46 days were harvested at commercial facilities. Details
on production characteristics, meat sample collection, and
preparation have been previously reported (Garmyn et al.,
2011). Two 1.27-cm steaks from the longissimus muscle
were trimmed of external fat and connective tissue and were
analyzed for fatty acid and nutrient composition at Iowa State
University (Ames, IA), using methods previously described
(Garmyn et al., 2011; Mateescu et al., 2012) and for WBSF
and sensory analyses at Oklahoma State University Food
and Agricultural Products Center (Stillwater, OK) (Mateescu
et al., 2015). Four carcass phenotypes: hot carcass weight
(HCW), percentage kidney pelvic and heart fat (KPH),
ribeye area (REA), and fat thickness (FAT); five meat quality
phenotypes: marbling score (MS), IMFC, WBSF, sensory
panel tenderness (TEND), sensory panel juiciness (JUIC);
seven mineral concentrations: calcium, iron, magnesium,
phosphorus, potassium, sodium, and zinc; four peptides:
anserine, carnosine, creatine, and creatinine; and three
groups of fatty acids: saturated (SFA), monounsaturated
(MUFA), and polyunsaturated (PUFA) were used in this
study. A description of the 23 traits along with a summary of
descriptive statistics for this population is in Supplementary
Table 1.

Genome-Wide Association Study (GWAS)
of Meat Quality Phenotypes
Genomic DNA extracted from the meat sample was genotyped
with the Bovine SNP50 Infinium II BeadChip (Illumina, San
Diego, CA). Those SNP with significant deviations from Hardy–
Weinberg equilibrium at a significance level P < 0.0001 were
removed prior to association analysis. Additionally, we used
quality control filters for minor allele frequency (5%) and call
rate for sample and SNP (95%). After quality control, 40,875 SNP
were left and included in subsequent analyses. All GWAS were
performed using the single-locus mixed linear model procedure
implemented in Golden Helix SVS v8.4.4 software (Golden Helix
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TABLE 1 | Phenotypic data and GWAS information for traits describing the meat quality complex.

Trait N Mean StDev Min Max h2 p < 0.05 p < 0.01 p < 0.001

CARCASS QUALITY

HCW, kg 2,110 332.67 32.36 222.26 453.14 0.26 1,913 352 44

Fat Thickness, cm 2,110 1.25 0.47 0.31 3.15 0.67 1,942 390 45

KPH, % 2,110 2.08 0.40 1 3.5 0.23 1,844 373 48

MEAT QUALITY

LM area, cm2 2,110 81.21 7.98 55.48 118.06 0.39 1,971 386 36

Tenderness 1,591 5.80 0.59 3 7.375 0.33 1,889 400 52

WBSF, kg 2,076 3.53 0.77 1.491 8.467 0.38 1,842 383 56

Juiciness 1,591 5.00 0.50 3.375 6.375 0.22 1,943 353 31

Marbling Score 2,109 5.96 1.04 3 9.8 0.40 1,949 389 41

IMFC, % 2,110 5.67 2.22 0.23 26.4 0.40 1,878 388 61

MINERAL CONTENT

Ca, µg/g 2,099 38.87 20.88 2.01 218.54 0.17 1,969 382 42

Fe, µg/g 2,087 14.44 3.03 5.2 27.43 0.59 1,956 425 53

K, µg/g 2,054 3433.54 494.27 1306.16 4895.9 0.43 1,775 357 52

Mg, µg/g 2,102 254.54 43.06 156.39 440.74 0.65 1,748 352 46

Na, µg/g 2,101 489.44 92.92 213.13 855.05 0.56 1,922 423 62

P, µg/g 2,102 1965.55 286.39 0.82 3163.15 0.46 1,786 339 42

Zn, µg/g 2,090 38.96 7.90 8.55 85.81 0.30 1,878 385 44

FATTY ACID COMPOSITION

SFA, % 2,010 45.29 2.38 35.41 55.88 0.56 1,851 428 73

MUFA,% 2,010 49.05 2.79 35.86 57.68 0.39 1,867 399 62

PUFA, % 2,010 5.67 1.85 1.17 18.21 0.28 1,934 399 28

PEPTIDE CONTENT

Anserine 1,995 0.67 0.14 0.05 1.22 0.64 1,747 423 112

Carnosine 1,993 3.72 0.47 0.75 5.72 0.48 1,885 390 69

Creatine 1,710 5.26 0.53 1.89 6.86 0.47 1,833 398 57

Creatinine 2,007 0.21 0.11 0.03 0.55 0.59 1,729 331 48

For each trait number of animals (N), average (Mean), standard deviation (StDev), minimum (Min) andmaximum (Max) values are presented along with an estimate of the pseudo-heritability

(h2 ), and number of SNP with p < 0.05, 0.01 or 0.001 from the GWAS on each component trait.

Inc., Bozeman, MT, USA). The efficient mixed model association
(EMMAX) approach in combination with a genomic relationship
matrix was used to directly estimate the genetic and residual
variance components σ2g and σ2e and the proportion of variance
explained by the effects of significant SNP (Kang et al., 2010;
Segura et al., 2012). In matrix notation, the basic model equation
was:

Y = Xβ + g+ e

Where Y is a vector of phenotypes for each of the meat quality
traits measured on all the animals, β is the effect size of fixed
effects (contemporary groups), g ∼ N(0, σ2aK) is a random effect
and e ∼ N(0, σ2eI), where K is the genomic relationship matrix
among animals.

Contemporary groups were defined based on gender at
harvest (bull, steer, or heifer), finishing location (California,
Colorado, Iowa, Texas), and harvest date, which resulted in
a total of 33 groups. Contemporary groups were fit as fixed
class effects in all genomic analyses. Pseudo-heritability was
estimated as h2 = σ2a/(σ

2
e + σ2e) based on the estimates of

the variance parameters (Kang et al., 2010). The p-values

and additive genetic values for each SNP were obtained
for each phenotype and these were used to construct the
association weight matrix (AWM; Reverter and Fortes,
2013).

Association Weight Matrix
The AWM approach (Reverter and Fortes, 2013) was used to
interpret the results from GWAS. The WBSF was selected as
the key phenotype to describe the complex of traits related to
tenderness and meat quality. An initial set of 1,842 SNP with
largest estimated additive effects for WBSF were selected based
on their raw P < 0.05. A less stringent level at this stage is
recommended to allow for a proper integration of potentially
important regulators across multiple traits. One advantage of
the AWM/PCIT methodology is the ability to include SNP with
relatively small effects which do not reach genome-wide statistical
significance but are potentially linked to elements controlling
the trait of interest. It is well-recognized that many elements
with minor effects are usually not able to reach significance at
the genome level, but they will be uncovered through a gene
network when multiple correlated traits are used in the analysis
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TABLE 2 | List of the top 35 markers (P < 0.00005) associated with

Warner-Bratzler Shear force (WBSF, kg).

Marker Name BTA Position (bp) p-value Effect

rs110680201 2 120,073,875 2.15 × 10−4 0.0012186

rs110822981 3 13,704,030 2.82 × 10−5 0.0020604

rs110355365 3 42,339,927 1.00 × 10−4 0.0020308

rs109050625 4 101,790,675 5.90 × 10−5 −0.0022019

rs109804679 7 98,498,047 1.96 × 10−4 0.0017956

rs109677393 7 98,534,197 1.63 × 10−5 0.0020727

rs41657604 10 102,707,947 7.28 × 10−6 0.0024819

rs109487930 12 28,022,872 1.78 × 10−4 0.0020716

rs110752731 15 3,600,480 2.89 × 10−4 0.001649

rs110584426 15 30,573,210 4.72 × 10−4 0.0014741

rs29026935 15 32,783,311 4.63 × 10−4 0.0018346

rs41950387 20 57,373,160 8.04 × 10−6 0.0018595

rs41997980 22 13,400,771 1.28 × 10−4 −0.0014818

rs41603459 22 30,010,174 1.65 × 10−4 −0.0020498

rs41659707 24 13,810,452 1.75 × 10−4 0.0017118

rs29019820 24 36,077,466 4.78 × 10−4 0.0013192

rs41608068 29 1,573,172 4.55 × 10−4 0.0020577

rs109830547 29 4,533,981 3.54 × 10−4 0.0011529

rs109710777 29 37,152,168 2.67 × 10−4 −0.0014565

rs109814977 29 43,525,624 1.31 × 10−5 −0.0015407

rs110770404 29 43,611,640 3.11 × 10−4 0.0019914

rs17872000 29 44,069,063 7.91 × 10−7 −0.0024809

rs17871058 29 44,085,769 2.90 × 10−4 0.0019333

rs17872050 29 44,087,629 1.75 × 10−4 0.0020251

rs110294629 29 44,325,408 9.54 × 10−6 −0.0021288

rs42191092 29 44,546,564 1.63 × 10−4 0.0020548

rs110174152 29 44,585,782 4.77 × 10−4 0.0019724

rs800857481 29 46,646,575 1.85 × 10−4 0.0018152

rs42199297 29 46,703,510 3.02 × 10−4 0.0020764

rs42194740 29 46,732,932 3.31 × 10−4 0.0020627

rs42845824 29 46,999,731 1.52 × 10−4 0.0016505

rs29010111 X 20,453,664 4.52 × 10−4 0.0013076

rs41609600 X 62,311,454 3.11 × 10−4 −0.0027251

rs41626493 X 97,403,554 2.99 × 10−4 −0.0024891

rs41628805 X 141,578,318 4.32 × 10−4 0.0025361

Chromosome (BTA), position on the chromosome (bp), p-value and allele substitution

effect (Effect).

(Fortes et al., 2010). The average number of other phenotypes
associated with these SNP at a P < 0.05 was calculated and
1,318 SNP associated with at least two phenotypes were included
in the AWM. To build the AWM, a vector of posterior mean
estimates of 1,318 SNP effects from WBSF was enhanced with
the vectors of effects of all the other 22 phenotypes. This 1,318
× 22 matrix of posterior mean estimates of SNP effects was
used as the input for PCIT to detect similar effects for any SNP
across multiple phenotypes. All SNP pairs within the matrix were
tested for association with at least one other SNP in order to
establish network connections. SNP pairs without a significant
partial correlation to at least one other SNP were removed from
the dataset to discard them from subsequent network association
analysis since they would appear isolated.

TABLE 3 | Top 30 markers significantly associated with 10 or more meat quality

traits at P < 0.05.

Marker BTA Position (bp) No Traits Consequence

rs109734539 1 68,937,163 10 Upstream gene variant

rs109251210 1 156,366,103 11 Intergenic variant

rs108949614 3 55,074,485 10 Intron variant

rs109507539 3 96,660,603 10 3 prime UTR variant

rs109977837 3 110,272,602 11 Intron variant

rs43157198 4 41,128,696 11 Intergenic variant

rs41588698 4 59,710,881 11 Intergenic variant

rs42715455 6 6,955,308 15 Intron variant

rs110018485 7 22,524,899 12 Intron variant

rs41700602 7 36,884,206 11 Intergenic variant

rs109977037 7 90,900,133 11 Non coding transcript exon variant

rs109819349 7 91,836,262 15 Intergenic variant

rs41625563 7 91,903,228 15 Intergenic variant

rs110059753 7 92,033,645 17 Intergenic variant

rs41625576 7 93,289,032 11 Intergenic variant

rs109627006 7 93,396,872 12 Intergenic variant

rs110612774 8 64,208,930 11 Intergenic variant

rs109242304 9 11,526,739 11 Intergenic variant

rs108987903 11 45,175,551 11 Intergenic variant

rs110587871 14 13,081,432 11 Intergenic variant

rs41631415 14 57,631,331 11 Intergenic variant

rs109560127 15 56,782,573 22 Intergenic variant

rs110308812 19 56,533,680 14 Intron variant

rs29018751 20 37,297,072 11 Intron variant

rs41256507 21 39,470,288 11 Intergenic variant

rs41659707 24 13,810,452 11 Intergenic variant

rs109257502 26 25,253,444 19 Intron variant

rs109611741 26 41,414,375 13 Intergenic variant

rs29021718 27 2,378,910 14 Intergenic variant

The location in bp (UMD3.1) of each marker and the chromosome (BTA), the number of

traits significantly associated at P < 0.05) and the marker consequence.

TABLE 4 | MCODE results derived from network clustering with PCIT.

Network Score Nodes Edges

1 280.75 324 53,424

2 41.19 93 1,987

3 19.33 49 524

4 10.76 30 156

5 8.94 18 76

Top five network scores from MCODE plugin for meat quality traits. Network score

represents density of nodes and edges in each network.

Networks of SNP showing common effects across multiple
quality traits were constructed based on the computed
correlations among SNP. Correlation between SNP pairs
with a non-zero partial correlation to another SNP were input
into Cytoscape 3.5.1 (Shannon et al., 2003) software to create
gene network clusters using the MCODE plugin (Bader and
Hogue, 2003; Saito et al., 2012). Networks were scored and
ranked by the MCODE algorithm as network density times
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FIGURE 1 | Molecular function analysis of the co-association network for meat quality complex. The PANTHER overrepresentation test grouped 609 annotated genes

into 9 molecular function classes.

FIGURE 2 | Biological process analysis of the co-association network for meat quality complex. The PANTHER overrepresentation test grouped 609 annotated genes

into 13 biological processes.

the number of nodes. The MCODE algorithm defines network
density as the number of edges in a network divided by the
theoretical maximum number of edges in the network. The SNP
that comprised the network were annotated with the Variant
Effect Predictor (VEP) using Bovine UMD 3.1 annotations
(McLaren et al., 2010).

Gene Ontology Enrichment Analysis and
Visualization
DAVID v6.7 Functional Annotation Tool (Huang et al., 2009)
was used for gene ontology (GO) enrichment in order to
detect enriched biological terms associated with genomic regions
and gene networks identified in the analysis. The GO term
enrichment and clustering was performed on all annotated genes

associated with the quality traits. Functional grouping based on
kappa score and visualization in a functionally grouped network
was performed using the ClueGO (Bindea et al., 2009) plug-in
in Cytoscape. A P < 0.05 and kappa coefficient > 0.3 were
considered as threshold values.

RESULTS AND DISCUSSION

Meat Quality Genome-Wide Association
Study
Summary statistics for carcass quality, meat quality, mineral
content, fatty acid composition, and peptide content phenotypes
are presented in Table 1 along with heritability estimates for
each trait and general GWAS information. Complete GWAS
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FIGURE 3 | Cellular component analysis of the co-association network for meat quality complex. The PANTHER overrepresentation test grouped 609 annotated

genes into 7 cellular components.

results for all 23 individual meat quality traits are presented in
Supplementary Table 1. The GWAS for our main meat quality
trait, WBSF, resulted in 1,878 SNP associated with this trait at P
< 0.05, of which there were 383 SNP at P < 0.01 and 56 SNP
at P < 0.001. A list with detailed information on the top 35
markers (P < 0.00005) associated with WBSF is in Table 2, and
additional information in Supplementary Table 2. The number of
significant SNP was similar across all 23 traits and ranged from
1,729 to 1,971 at P < 0.05, from 331 to 428 at P < 0.01, and 25
to 112 at P < 0.001. There were 68 SNP significantly associated
with 10 or more traits at P < 0.05 and 7 SNP significantly
associated with 15 or more traits (Table 3, additional information
in Supplementary Table 3). The most significant regions for
WBSF were identified, in order of significance, on BTA29, 20, 10,
7, 3, and 4. Most of these chromosomal regions harbor potential
candidate genes for tenderness that have been identified in other
studies in several cattle breeds. Among these, CAST (on BTA7)
and CAPN1 (on BTA29) have been consistently identified and
have a role in muscle proteolysis during meat aging (Smith et al.,
2000). In fact, 13 out of the 56 SNP significant for WBSF at P <

0.001 were located in a 3 cM region around CAPN1 (three SNP
directly in CAPN1) and four of the 56 SNP were located around
CAST.

Meat Quality Gene Networks
Among the 1,842 SNP significant (P < 0.05) for WBSF, there
were 839 SNP associated with at least two other phenotypes.
Some 772 SNP were found to be located within a gene (n =

712) or within 2.5 kbp from a gene (n = 60) and therefore
were used to form the AWM. A total of 688 annotated
genes were found associated with at least one other gene
and had significant direct and partial correlations. This

correlation matrix generated a gene network consisting of
688 genes (nodes) and 99,568 gene relationships (edges).
The Cytoscape MCODE plugin colocalized these SNP into
17 separate networks and detailed information on the top
five networks is in Table 4. Nodes with no gene or feature
annotation were removed for visual simplicity from the
figures. The significance of each node is indicated by its
location within the network, and the distance from the center
indicates the total number of connections and importance
to the phenotype. A direct correlation detected through
the PCIT analysis is represented as a connection or edge
in the network. The highest scoring network contained
324 nodes and 53,424 edges, or connections. The clusters
of genes represent scored networks derived through the
PCIT analysis, and theoretically these clusters of genes
function as molecular complexes controlling the specified
phenotype.

There are numerous candidate genes within these networks
involved in metabolic and cellular processes that have possible
impacts on meat quality traits. The genes CAPN1 and CAST,
are well-known candidate genes for tenderness and meat quality
traits (Goll et al., 1992; Geesink and Koohmaraie, 1999; Page
et al., 2002; Casas et al., 2014), and are identified as major
nodes in two subnetworks. There are many other candidate
genes with a high network score indicating a high number
of direct and indirect correlations with supporting evidence
in the literature for their relationship to muscle growth and
metabolism, calcium metabolism, adipogenesis, extracellular
matrix protein interactions, and regulation. The gene MYOM1
(myomesin 1) is expressed in muscle cells and contributes
to the three-dimensional conformation stability of the thick
filament (Moreno-Sánchez et al., 2010; Picard et al., 2015). The
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TABLE 5 | DAVID Functional Annotation Clustering for the 688 annotated genes in the gene network for meat quality complex.

Category Term Count % P-value FE FDR

Annotation Cluster 1 Enrichment Score: 2.82

UP_ KEYWORDS Ion channel 20 3.21 < 0.01 2.68 0.24

UP_ KEYWORDS Ion transport 27 4.33 < 0.01 2.11 0.65

UP_ KEYWORDS Transport 48 7.70 0.03 1.33 37.81

Annotation Cluster 2 Enrichment Score: 1.76

INTERPRO IPR005821:Ion transport domain 12 1.93 < 0.01 3.48 1.04

GOTERM_ BP_DIRECT GO:0086010∼membrane depolarization during action potential 4 0.64 0.07 4.19 69.79

INTERPRO IPR027359:Voltage-dependent potassium channel, four helix bundle domain 5 0.80 0.1 2.69 85.67

Annotation Cluster 3 Enrichment Score: 1.71

UP_ KEYWORDS EGF-like domain 12 1.93 < 0.01 2.65 7.32

INTERPRO IPR018097:EGF-like calcium-binding, conserved site 9 1.44 < 0.01 3.06 13.55

SMART SM00181:EGF 14 2.25 0.01 2.22 12.87

INTERPRO IPR001881:EGF-like calcium-binding 10 1.61 0.01 2.66 18.66

INTERPRO IPR000742:Epidermal growth factor-like domain 14 2.25 0.01 2.10 23.32

SMART SM00179:EGF_CA 10 1.61 0.03 2.22 37.71

INTERPRO IPR013032:EGF-like, conserved site 11 1.77 0.07 1.88 68.06

INTERPRO IPR000152:EGF-type aspartate/asparagine hydroxylation site 7 1.12 0.08 2.30 75.32

Annotation Cluster 4 Enrichment Score: 1.63

KEGG_ PATHWAY bta04724:Glutamatergic synapse 12 1.93 < 0.01 3.69 0.47

INTERPRO IPR001828:Extracellular ligand-binding receptor 6 0.96 < 0.01 5.22 8.19

INTERPRO IPR001508:NMDA receptor 4 0.64 0.01 6.96 25.56

INTERPRO IPR001320:Ionotropic glutamate receptor 4 0.64 0.01 6.96 25.56

UP_ KEYWORDS Ligand-gated ion channel 6 0.96 0.02 3.53 29.87

UP_ KEYWORDS Postsynaptic cell membrane 7 1.12 0.02 3.04 30.15

SMART SM00079:PBPe 4 0.64 0.03 5.81 32.34

GOTERM_ CC_DIRECT GO:0045211∼postsynaptic membrane 8 1.28 0.05 2.31 56.25

INTERPRO IPR019594:Glutamate receptor, L-glutamate/glycine-binding 3 0.48 0.09 5.55 81.47

GOTERM_ MF_DIRECT GO:0005234∼extracellular-glutamate-gated ion channel activity 3 0.48 0.1 5.42 79.59

SMART SM00918:SM00918 3 0.48 0.1 4.63 85.18

Statistics associated with GO terms include significance of enrichment or EASE score (P-value), fold enrichment (FE), and false discovery rate (FDR).

CALCOCO1 gene (Calcium Binding and Coiled-Coil Domain
1) was shown to provide a link between cellular metabolism
(phosphate and glucose metabolism), protein synthesis and
degradation, calcium signaling and cell growth (Yang et al., 2006).
The gene ALDOA (Aldolase A), that may encode a scaffolding
protein, plays a key role in glycolysis and gluconeogenesis
(Hocquette and Gigli, 2005; D’Alessandro and Zolla, 2013;
Gobert et al., 2014). Among the 3 isozymes (A, B, and C),
Aldolase A is present in the developing embryo and it is
found in greater quantities in the skeletal adult muscle where it
accumulates around the M line and within the I band, localizing
with FBP2 on both sides of the Z line in the absence of
calcium. ADAMTS15 encodes a member of the ADAMTS (a
disintegrin and metalloproteinase with thrombospondin motifs)
protein family (Stanton et al., 2011). The encoded preproprotein
is proteolytically processed to generate the mature enzyme,
which may play a role in versican processing during skeletal

muscle development (De Jager et al., 2013; Mudadu et al., 2016).
KLHL2 is a component of an ubiquitin-protein ligase complex
that mediates the ubiquitination of target proteins, which most
often leads to their proteasomal degradation and plays a role
in the actin cytoskeleton reorganization. The CRTAC1 gene
encodes a glycosylated extracellular matrix protein located in the
interterritorial matrix of articular deep zone cartilage and the
protein may be involved in cell-cell or cell-matrix interactions
(Anjos et al., 2017). Overall, these examples provide strong
evidence that the network methodology used in this study
allows the co-localization of biologically relevant genes with a
close relationship to different aspects of meat quality variation.
TNS4 (tensin 4) encodes an actin binding protein involved in
cell migration, cartilage development and in connecting signal
transduction pathways to the cytoskeleton (Van deWerken et al.,
1993; Lo, 2004). The gene encoded by COL27A1 is a member
of the fibrillar collagen family, and plays a role during the
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FIGURE 4 | Functionally grouped network for meat quality complex in Angus cattle. Nodes represent functional terms linked based on their kappa score level (>0.3)

with only the most significant term per group shown as a label. The node size represents the enrichment significance of the term. Only genes in common between two

or more GO terms are used.
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calcification of cartilage and the transition of cartilage to bone
(Pace et al., 2003).

Gene Ontology Term Enrichment Analysis
Gene ontology and pathway enrichment analyses were
carried out to gain insight into the predicted gene networks
using PANTHER Overrepresentation Test and DAVID
Functional Classification Clustering tools. The PANTHER
classifications are presented according to molecular function,
biological process, and cellular component in Figures 1–3.
Significant results for the DAVID Functional Annotation
Clustering results for the gene networks are in Table 5.
An enrichment score of 1.3 was used as a significance
threshold for DAVID Functional Annotation Clusters while
a P < 0.05 was used to designate the functional annotation
chart GO terms as significantly enriched (Huang et al.,
2009). The false discovery rate (FDR) included in the
Functional Annotation Chart can be used to determine the
importance of terms considered significant through the P-value
statistic.

Overrepresented terms for GO-Slim Molecular Function in
the network included “Transmembrane Transporter Activity,”
“Ligand-Gated Ion Channel,” “Extracellular Matrix Protein,”
“Transporter,” “Nucleic Acid Binding,” and “RNA binding
protein” for PANTHER Protein Class; “Ion Binding,” “G-
Protein Coupled Receptor Activity,” and “Receptor Activity”
for GO Molecular Function. Functional annotation analyses
revealed an enrichment for “Ion Binding” (P = 1.98 × 10−9),
“Protein Binding” (P = 8.48 × 10−8), “Catalytic Activity”
(P = 4.44 × 10−5), “Metal Ion Transmembrane Transporter
Activity” (P = 5.89 × 10−5), “Enzyme Binding” (P = 8.14
× 10−5), “Transmembrane Transporter Activity” (P = 3.4 ×

10−4), and “Gated Channel Activity” (P = 6.73 × 10−3). We
found 21 over-represented pathways including “Angiogenesis,”
“Inflammation mediated by chemokine and cytokine signaling
pathway,” “Ionotropic glutamate receptor pathway,” “TGF-beta
signaling pathway,” “Apoptosis signaling pathway.” Many of
these pathways have been previously reported as important
biological pathways involved in meat quality or tenderness in
beef cattle (Guillemin et al., 2012; Mudadu et al., 2016; Ramayo-
Caldas et al., 2016). An investigation of genes overrepresented
in the 21 pathways revealed 26 genes common to at least 10
pathways. Six genes namely KCNIP4, GAS6, KCNH2, RYR1,
ATP2B1, and HCN1 were found in common between at least
14 pathways. It is interesting to note that a majority of the
common genes that we detected are involved in calcium-
related processes: calcium ion binding, calcium channel, calcium-
transporting ATPase, and calcium channel regulator. This is
not surprising given the role of calcium and potassium in
meat tenderness through their involvement in the proteolytic
system responsible for postmortem tenderization and muscle
contraction.

A functionally grouped annotation network (Figure 4) was
developed based on 576 unique and annotated genes from the
AWM/PCIT analysis and the network was visualized using the
ClueGO plug-in for Cytoscape. Only 544 genes were recognized
by ClueGO, 454 (83.46%) were functionally annotated in

the “Molecular Function” ontology, and 442 (81.25%) were
associated with representative terms and pathways after applying
the selection criteria. Twenty-two GO terms were significantly
represented in this network. The most representative term was
“Binding” with 358 genes and 3.58% associated genes, followed by
“Ion Binding,” “Protein binding,” Catalytic activity,” and “Organic
Cyclic compound binding.” Higher connectivity between GO
terms with similar molecular function are to be expected, but a
high priority in terms of future research will be placed on genes
common between several different GO terms as these might
point toward key regulator genes with higher impact on the
meat quality complex. The type of analyses used in this study
and aimed at dissecting and understanding the gene networks
and their contribution to the phenotypic expression of complex
traits is highly dependent on the level of annotation of the
respective genome but will further our general knowledge of gene
function.

The gene network technique employed in this work advances
the genomic analysis of complex traits beyond the simple marker
association analysis by allowing the inclusion of markers which
initially are not able to reach a very stringent genome-wide
significance status. These markers and the genomic regions they
represent could be legitimate markers and regions explaining a
small portion of the variation in these complex traits, but they do
not have large enough effects in order to reach significance. The
danger of a false positive is overcome through the gene/network
enrichment analysis where a true false positive gene would most
likely be eliminated while genes with a real but small effect
on the trait will be validate through their biological role in a
specific pathway contributing to trait of interest. However, it
is important that these results are validated through additional
functional analyses at the gene expression or proteomics
level.

CONCLUSION

Traits including four carcass measures, five meat quality
phenotypes, seven mineral concentrations, and four peptide
concentrations were used in GWAS to populate a gene
network analysis using the methodology of AWM/PCIT. An
analysis of genomic regions that affect different aspects of
meat quality highlighted genes overrepresented in molecular
functions related to calcium and other ion binding and
regulation, catalytic and transporter activity, and nucleic acid
and RNA binding. Several genes were found in a majority
of enriched pathways suggesting possible key regulatory
roles for these genes. This also provides evidence for the
interconnections between the individual pathways and sheds
some light on how these different pathways control the
meat quality phenotype. The combination of GWAS results
with PCIT and network visualization represents a powerful
methodology for identifying novel candidate genes of interest for
complex traits influenced by multiple component phenotypes.
This methodology allows for a dissection of the biological
mechanisms and gene networks that lead to these complex
phenotypes.
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