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ABSTRACT

Biological events such as gene expression, regula-
tion, phosphorylation, localization and protein
catabolism play important roles in the development
of diseases. Understanding the association between
diseases and genes can be enhanced with the iden-
tification of involved biological events in this asso-
ciation. Although biological knowledge has been
accumulated in several databases and can be
accessed through the Web, there is no specialized
Web tool yet allowing for a query into the relation-
ship among diseases, genes and biological events.
For this task, we developed DigSee to search
MEDLINE abstracts for evidence sentences
describing that ‘genes’ are involved in the develop-
ment of ‘cancer’ through ‘biological events’. DigSee
is available through http://gcancer.org/digsee.

INTRODUCTION

As human complex diseases are caused by multiple genes
with low penetrance, extensive efforts have been made to
find disease-associated genes, resulting in the accumula-
tion of millions of biomedical articles. Manually curated
databases by experts that contain such gene–disease asso-
ciations from those articles are important resources
for disease research. GeneCards (1) is one of the largest
databases of genes and lists disease-associated genes by
integrating several disease databases (NCBI,
ENSEMBL, etc). Human Gene Mutation Database (2)
provides a list of genes, mutations of which cause
diseases. Other databases are designed for specific
diseases, including Dragon databases of genes associated
with esophageal cancer and prostate cancer (DDEC,
DDPC) (3,4). Web-based biomedical text-mining systems
for general purposes such as Polysearch (5), Génie (6),
FACTA (7), G2D (8) and GeneView (9) can be used to

search for association between genes and diseases. For
example, Polysearch (5) retrieves and analyzes PubMed
results, and then integrates the search results with other
databases [DrugBank (10), Human Gene Mutation
Database, etc] to improve the accuracy of the association
between diseases and genes.

Although those tools provide information about
whether a gene is related to a disease in any way, the in-
formation is not specific enough to explain the molecular
context of how the gene affects the disease. Understanding
the gene–disease relation can be further enhanced by iden-
tifying in which biological events (e.g. gene expression,
regulation, phosphorylation, localization and protein
catabolism) the genetic effect is valid for the disease de-
velopment. As such information of molecular context is
abundantly reported in the literature, we propose to use
fine-grained information extraction techniques to retrieve
the specific information from the literature.

Although a few databases collect biological events of a
single type such as methylation in cancer [e.g. MeInfoText
(11), PubMeth(HL) (12)], there is no specialized text-
mining tool yet allowing for a query into the explicit
triple relationship among diseases, genes and biological
events. Instead, the biomedical text-mining community
has recently paid great attention to extracting the binary
relations between genes and biological events (13). We use
one of the state-of-the-art event extraction systems (14)
and develop a novel text-mining method to further
identify the relations of the extracted events and genes
with diseases, which are explicitly expressed in sentences.

Our novel search engine, DigSee, services the sentences
with those identified triple relations, on the requests from
users, which require information such that ‘which genes’
are involved in the development of ‘which disease’ through
‘which biological events’. We refer to a gene as a disease-
related gene (or disease gene for simplicity) if it is either
directly or indirectly related to the cause of disease or con-
tributes to increasing or decreasing the properties of
disease in cell. DigSee collects and ranks sentences,
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called evidence sentences, which explicitly express that the
disease gene changes the properties of disease cell through
biological events. For example, if the molecular event of a
gene increases cancer-related properties such as angiogen-
esis or cell proliferation, we recommend it as a cancer-
related gene. The goal of our work is to identify these
evidence sentences, demoting sentences that do not show
relation between gene and disease.

In the rest of the article, we explain each of the three
components of DigSee, including (i) a Web-based user-
query interface and a display tool to present search
results, (ii) an indexing process to extract gene symbols
and events from text and store them into inverted
indexes and (iii) a searching process to find evidence sen-
tences from documents for a given query and to score
relevance of evidence sentences. Figure 1 depicts the
workflow of the system.

RESULTS

The current version of DigSee supports all cancer types,
the worldwide leading cause of death, and the following
event types as the molecular context of gene–disease asso-
ciation: gene expression, transcription, phosphorylation,
localization, regulation, binding and protein catabolism.
We have collected 1 391 019 evidence sentences from
cancer-related MEDLINE abstracts, where sentences
contain at least one gene name with Entrez gene ID and
one event extracted by the Turku event extraction system
(14) and may express the triple relation among a cancer,
the gene and the event. We introduce some example
queries for DigSee and their resultant evidence sentences,
which may show the biological significance of the tool.

Example queries

Example queries provided in the DigSee Web site include
the followings:

(i) Jia et al. (2011) (15) identified 124 differentially ex-
pressed genes on prostate cancer using microarray
experiment. Authors might be interested in how
many of 124 genes were previously reported in the

literature such that their expression changes were
related to prostate cancer development. Show
evidence sentences supporting which genes were
known to be related to prostate cancer,

(ii) Show evidence sentences for the association of TP53
gene with colon cancer through any of the seven
biological event types and

(iii) Show a list of genes whose localization and tran-
scription are related to brain cancer.

Microarray experiments such as the one in example (i)
often identify more than hundreds of candidate cancer-
related genes. Finding literature evidence of these genes
is the first step to validate them. For the query (i),
DigSee returns evidence sentences for 35 genes of the
124 genes, which are highlighted with the expression
changes of the candidate genes in prostate cancer. If we
change the query to select both regulation and gene ex-
pression as events, 49 genes are searched with evidence
sentences. In the example (ii), TP53 is a well-known
tumor suppressor gene. This query is useful in finding in
which molecular context TP53 plays a critical role in colon
cancer. The query returns evidence sentences for all of
seven events. An example of evidence sentences is ‘Over-
expression of 15-lipoxygenase-1 induces growth arrest
through phosphorylation of p53 in human colorectal
cancer cells.’ from an article (16) explaining a mechanism
how phosphorylation of TP53 induced by overexpression
of 15-LOX-1 affects growth arrest. In the example (iii),
DigSee system returns a list of 394 genes with evidence
sentences in which localization and transcription events
of these genes are related to brain cancer. Some of
examples include that ING1 proteins are aberrantly
localized to the cytoplasm in brain cancer (17), and
that eukaryotic initiation factors 2alpha and 4E are
frequently localized in the nucleus of meningiomas and
in the same compartment of the oligodendroglial
tumors, respectively (18).

Web interface of DigSee system

DigSee’s query consists of the following elements: (i) a
disease of interest, currently a human cancer (compul-
sory); (ii) candidate gene(s) that might be related to the
disease (if no gene is given in the query, all genes will be
considered as candidates) and (iii) event type(s) out of the
seven types that might explain the molecular context of
the gene–disease association. The three elements together
represent a user request for evidence sentences that
describe the role of ‘genes’ in the development of ‘disease’
through ‘biological events’. Synonyms and subtypes of
cancer collected from GeneCards are also considered in
the DigSee system.
The display tool presents search results consisting of

MEDLINE abstracts with evidence sentences. As shown
in Figure 2, one sentence with the max score is shown
along with citation information for each abstract, and ab-
stracts are sorted according to their sentences’ scores. In
each sentence, input gene names and event keywords are
highlighted. By following a Detail link, users can check all
evidence sentences in an abstract, including evidence sen-
tences for other cancer-related genes as well as those forFigure 1. Indexing and searching processes in the DigSee system.
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input genes. Links to gene entries in such databases as
HUGO Gene Name Consortium and GeneCards are
also provided. When an input query has multiple genes
or multiple event types, a separate display for each gene
or event type is provided. In addition, sentence-level co-
occurrences among genes are visualized in a graph, which
might give users insights into the disease pathway. All
searched results can be downloaded to text files.

Statistics of DigSee system

First, 3 010 235 cancer-related articles were retrieved from
PubMed (as of 8 February 2013). Among them, 1 993 518
remained after excluding books or articles without ab-
stracts. Finally, 1 099 819 abstracts from MEDLINE
were indexed for �200 cancer names after selecting ab-
stracts containing evidence sentences. Using our
proposed method, 1 391 019 sentences were scored. The
numbers of scored sentences by cancer types and by bio-
logical events are shown in a help page of the DigSee Web
site.

METHODS

Indexing and searching

The indexing process of the DigSee system is depicted in
Figure 1. It collects abstracts from PubMed using general
cancer terms such as ‘cancer’, ‘tumor’, ‘neoplasm’, ‘carcin-
oma’ and ‘sarcoma’, and specific cancer names not
including those general terms such as ‘glioblastoma’ and
‘leukemia’. Then, it constructs two inverted indexes, an
abstract index and an evidence sentence index. These
inverted indexes contain locations of abstracts and
evidence sentences in the file system for cancer terms,

gene symbols and biological events so that they would
allow fast abstract/sentence searches with these queries.
We consider a sentence with a gene and a biological
event as a candidate evidence sentence, where a cancer
keyword can be found either in the sentence or in the
same abstract. The abstract index has links to candidate
evidence sentences in the retrieved abstracts. The evidence
sentence index contains information of gene(s), a cancer
type and biological event(s) in each sentence.

A biological named entity recognition (NER) system,
ABNER (19), was used to find genes and proteins in bio-
medical literature. ABNER achieved a recall of 65.9%, a
precision of 74.5% and an F-measure of 69.9%, when
evaluated against 2500 sentences from the BioCreative
protein/gene corpus (20). Another NER system,
BANNER (21), was also considered. We tested the two
NER systems against 25 abstracts from the abstract index
and found that their accuracies were similar.

The recognized gene/protein names were normalized
using Moara (22), which participated in the BioCreative
II human gene normalization task (23) and achieved a
precision of 55%, a recall of 83.31% and an F-measure
of 66.26%. Moara uses gene synonyms from UniProt (24)
and the HUGO Gene Name Consortium (25) and,
although not the best-performing system, has several ad-
vantages such that it can be used to normalize a gene name
alone as in a DigSee query, and that it is fast and freely
available. On the other hand, other tools such as GNAT
(26) combine gene name extraction and gene normaliza-
tion steps so that they cannot be used for the normaliza-
tion of DigSee query genes. Note that Moara (22) was also
used for the query gene normalization.

The Turku event extraction system (14) was used to
locate biological events. It was the best-performing event

Figure 2. Screenshots of the Web interface of the DigSee system. (a) Main search results are MEDLINE abstracts with evidence sentences sup-
porting that genes are related to a given cancer type through biological events. (b) A graph visualizes genes with evidence sentences. Nodes are genes
and two nodes are connected if they appear in the same documents. When the number of genes is large, only a subset of genes with high evidence
sentence score is shown. By increasing a threshold for the number of genes, more genes will appear. Users can expand neighbor genes by clicking a
right button for a node. Clicking an edge will show a list of abstracts in which two genes appear together.
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extraction system in the BioNLP’09 shared task (13) and
achieved an F-measure of 52.86% (precision 58.13% and
recall 48.46%). It requires an NER system and a parser;
we used ABNER (19) and Stanford parser (27). It extracts
complex events among genes and proteins from biomed-
ical literature. It consists of three major processing steps:
trigger recognition, edge detection and semantic post-pro-
cessing. First, the system finds triggers (or keywords) of
biological events. Then, it predicts relation edges between
named entities and event triggers, which form into a
semantic graph. The trigger recognition and edge detec-
tion steps are based on multi-class support vector machine
(SVM) classifiers. In the semantic post-processing step, the
system refines the edges of the semantic graph using a rule-
based model. The Turku event extraction system identifies
nine events: protein catabolism, phosphorylation, tran-
scription, localization, regulation, binding, negative regu-
lation, gene expression and positive regulation. In DigSee,
positive regulation and negative regulation are combined
into a single type of regulation, because the event polarity
does not always indicate the polarity of the causal relation
between disease and gene.

The Turku event extraction system identifies incorrect
events in some cases. When we manually checked the rele-
vance of the identified events, some event keywords are
constantly found irrelevant to a given event type in almost
all the sentences. Therefore, we included a pre-screening
step to filter out these irrelevant event keywords from the
event-word index of the DigSee system. For example,
words such as ‘described’, ‘derived’, ‘prescribed’ and ‘tran-
sition’ are almost always irrelevant to transcription events
in our data sets. Also, the chromosomal location of a gene
is removed from ‘Localization event’ because we focus on
sub-cellular localization events or the presence of a protein
in the cell. We provide the list of these filtered-out words
for all the seven events in a Web page (named as
Supplementary page) at http://gcancer.org/digsee/supple.
html. Note that this list is not complete yet, and we will
continue to update it.

In the searching process (Figure 1), indexed evidence
sentences are searched for an input query. The evidence
sentence index returns sentences that contain genes, cancer
and events of the input query. When the query contains no
gene, any genes with the given biological events in a given
cancer type will be retrieved. Abstracts are sorted by the
scores of evidence sentences. A scoring method for the
relevance of evidence sentences is presented in the next
section. Apache Lucene search engine library was used
for building the indexing and searching processes.

Ranking

The ranking step is to measure the relevance of the can-
didate evidence sentences, which means whether the
recognized gene is the subject of the identified event that
leads to changes of the given disease’s properties. We de-
veloped a machine learning model for the ranking, which
is trained on a gold-standard data set manually con-
structed by the authors. We introduce the gold-standard
data set and the features of the machine learning model in
this subsection.

Gold-standard data

The gold-standard data set consists of a subset of candi-
date evidence sentences, which are manually classified into
either positive or negative evidence. A sentence is positive
if it contains information that a gene is involved in cancer
development through an event. Note that the cancer term
can appear in the same sentence as the gene and event or
in another sentence in the same abstract. A sentence is
classified as negative if a gene is not involved in cancer
development, or an event is not related to the gene or
cancer. A sentence is also classified as negative if it
contains incorrectly identified gene symbols and events
due to the faults of the NER system and the event extrac-
tion system.
Sentences 1 and 2 obtained from two abstracts (28,29)

are positive and negative evidence sentences, respectively.
Sentence 1 contains information that the gene SOX9 is
involved in development of prostate cancer through
down-regulation. On the other hand, Sentence 2 describes
the purpose and procedure of an experiment without ex-
plicitly mentioning the experiment results. We will use
these two sentences to explain the features of our
ranking method.

. Sentence 1 Significantly, down-regulation of SOX9 by
siRNA in prostate cancer cells reduced endogenous
AR protein levels, and cell growth indicating that
SOX9 contributes to AR regulation and decreased
cellular proliferation.

. Sentence 2 To determine the role of CD147 in the
invasiveness properties of prostate cancer, we success-
fully down-regulated CD147 by RNA interference
(RNAi) technology, in PC-3 cell line at high level of
CD147 expression.

The total number of collected gold-standard evidence
sentences is 563, 207 positive and 356 negative sentences.
We randomly selected the sentences from the PubMed
abstracts that contain at least one event extracted using
the Turku system and at least one gene symbol. As the
numbers of negative sentences are much larger than those
of positive sentences in the abstracts, we filtered out
negative sentences to reduce the difference between
numbers of positive and negative sentences. Note that
the numbers of positive and negative sentences in the
gold-standard data do not reflect those in the abstracts.
We split the gold-standard data into feature selection and
performance testing data sets. By examining the feature
selection data set, we constructed features that might be
contributing to separate positive sentences from negative
sentences. By using the performance testing data, the
proposed machine learning methods were trained and
tested. Table 1 shows the number of evidence sentences
for each event type, where gene expression events include
positive and negative regulation events.

A method for scoring evidence sentences

Our approach is to assign higher scores to positive sen-
tences and lower scores to negative sentences, so that
positive sentences are displayed before negative sentences
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in the search results and furthermore so that more likely
evidence sentences are displayed before less likely ones. To
distinguish positive and negative sentences, 10 linguistic-
ally motivated features were constructed using the feature
selection sentences. These features were obtained from
ABNER and Turku systems, and dependency parse trees
generated by Stanford parser (27), and based on hand-
crafted cancer-related terms, and terms related to
negative sentences.

. Event and edge scores These two features are from the
Turku event extraction system. The Turku system
detects and scores an event keyword and the relation
between a gene and the keyword using an SVM,
termed as an event SVM score and an edge SVM
score, respectively. These values were normalized
using the maximum SVM score of sentences in
search results.

. Distance among terms An evidence sentence can
contain four terms: a gene name, an event keyword,
a regulation term that represents the relationship
between the gene and the event keyword and a
cancer term. Three distances among the four terms
are calculated based on the dependency tree of the
sentence as follows: gene–event distance, event–regula-
tion distance and event–cancer distance. If any of the
terms are not contained in evidence sentences, a
penalty value is assigned instead of distance. In
Sentence 1, a gene name ‘SOX9’, an event keyword
‘down-regulation’ and a cancer term ‘prostate cancer’
are detected, and a penalty value is assigned instead of
event–regulation distance due to the absence of a regu-
lation term.

. Cancer keyword count This feature counts the number
of cancer terms or cancer-related keywords in the
sentence. For this purpose, hyponyms and hypernyms
of cancer were collected from WordNet (30). For
example, Sentence 1 has value of one for this
feature. Total 12 terms including cancer, tumor and
carcinoma were used to construct this feature. This
feature is useful when a query cancer name is not
included in the sentence.

. Hallmark keyword count Keywords of known charac-
teristics of cancer during its initiation, development
and progress were used as a feature. The following
six terms are cancer hallmark keywords obtained
from a textbook (31): apoptosis, angiogenesis,
growth, invasion, metastasis and proliferation. For
example, Sentence 1 contains two such terms, growth
and proliferation.

. Event depth This feature indicates the depth of the
event keyword from the root in the dependency tree.
It is useful to understand if the event is the main
theme of the sentence. In Sentence 1, this feature has
a value of two because the event term is located at the
two-distance away from the root.

. Negative score This feature consists of phrases to
detect negative sentences, including certain to-infinitive
phrases (e.g. ‘to determine’, ‘to find’, ‘to assess’), the
troponyms of ‘study’ from WordNet and such
negation words as ‘not’ and ‘never’. Those to-infinitive
phrases and the study words are often used to explain
the purpose or methods of research, rather than to
describe experiment results. The negation words
often negate the relationship between gene and
disease, thus classifying sentences into negative
evidence sentences.

. Agent Our goal is to find the relationship between
disease and gene, not between genes. Thus, if a
sentence only contains events for the gene–gene rela-
tionship, it is likely to be classified as a negative
evidence sentence. The genes that are expressed to
have relations with a query gene in a candidate
evidence sentence are called agents in this article. To
check for the existence of an agent in a candidate
sentence, we find an event, which is a parent of a
query gene in the dependency tree of the sentence. If
any gene other than the query gene is another child of
the event, then it is regarded as an agent gene. In
Sentence 1, when ‘AR’ is a query gene and ‘reduced’
is an event keyword, SOX9 is detected as the agent
because SOX9 is located in the other branch of the
event.

The lists of cancer-related keywords and terms related
to negative score are provided in the Supplementary page.

A Bayesian classifier with these features was modeled to
identify positive evidence sentences from negative sen-
tences. By assigning the same prior to positive and
negative evidence sentences, we calculate a likelihood
ratio of features.

LðfeaturesÞ ¼
pðfeatures j positiveÞ

pðfeatures jnegativeÞ
ð1Þ

The naive Bayesian approach, which assumes conditional
independence among features, works well in general
despite its simplicity. After analyzing the feature selection
data set, however, we empirically chose to add two types
of dependencies, a dependency between cancer keyword
and event–cancer distance and a dependency between

Table 1. Gold-standard data

Events Binding Gene expression Local Phosphorylation Protein catabolism Transcription

Positive 11 (18) 20 (52) 9 (19) 19 (18) 6 (8) 5 (22)
Negative 26 (29) 20 (46) 23 (38) 24 (38) 24 (17) 45 (26)
Total 37 (47) 40 (98) 32 (57) 43 (56) 30 (25) 50 (48)

Positive and negative gold-standard evidence sentences for binding, gene expression, localization, phosphorylation, protein catabolism and tran-
scription are collected. For each event type, the numbers of feature selection (performance testing) sentences are shown.
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agent and hallmark keyword, due to the following obser-
vations: The presence of a cancer keyword in a candidate
evidence sentence plays an important role in approving the
sentence when the event–cancer distance is large, which
means that the cancer name does not co-occur with the
event keyword in the candidate evidence sentence; and
whereas the presence of an agent usually puts more
weight on negative sentences, it does not do so when a
hallmark appears in the candidate evidence sentence.
The likelihood ratio can be rewritten as follows:

LðfeaturesÞ ¼
Y

featuresi

pðfeaturesi j positiveÞ

pðfeaturesi j negativeÞ

�
pðcancer keywords j positive, event-cancer distanceÞ

pðcancer keywords j negative, event-cancer distanceÞ

�
pðagent j positive, hallmark keywordsÞ

pðagent jnegative, hallmark keywordsÞ

ð2Þ

Candidate evidence sentences are ranked based on the
likelihood of features. We expect that sentences with
higher values are more likely to be positive evidence sen-
tences. However, we do not have a threshold to filter out
low-ranked candidates. Therefore, its results would
include negative evidence sentences with less relevant
events, expectedly at the bottom of the ranked list. In
case of Localization, we applied an additional step to
rank relevant events at higher position. According to
BioNLP’09 and ’11 Shared Tasks, Localization represents
a change of the location or the presence of a protein, so
that the presence of a protein is often captured by the
Turku event extraction system. However, we see that
sub-cellular localization information is more important
for the gene–disease association analysis, and thus, as a
post-processing step, we placed sentences with sub-cellular
location higher than other sentences by decreasing the
relevance score of the evidence sentence without sub-
cellular location information. This post-processing step
was applied to develop and evaluate the DigSee system.
In constructing DigSee system, a score from the Bayesian
classifier was converted into a value in the range between 0
and 1 using a sigmoid function.

For comparison, a support vector machine model with
bag of words was used. This model represents a text as a
set of words, ignoring word order and frequency. We con-
struct the bag of words model using gold-standard feature
selection data. After excluding stop-words and words ap-
pearing once, 239 words were identified. A libsvm library
was used for implementation of the SVM method.

Accuracy of the proposed method for scoring evidence
sentences

Performance of the proposed method was measured by
5-fold cross-validation using the performance testing
data, in terms of both F-measure from precision and
recall and area under the curve (AUC) score of true-
positive and false-negative rate. We applied cut-off
values to classify the top k ranked sentences, for all
possible values of k, into positive sentences and the

remaining sentences into negative sentences. For each
cut-off value, the average F-measure of 5-fold cross-valid-
ation was calculated. Then, the cut-off value giving the
highest average F-measure was selected for reporting the
performance.
Table 2 shows accuracies of individual features. The

event–cancer distance and cancer keywords count were
the most useful features, having AUC values larger than
70%. Several features such as ‘Event depth’ did not show
high performance on the testing data. Even though these
poor-performing features may not be highly useful in
general, we did not remove them because they did not
decrease the performance of the system when they were
integrated with other features. Also, when accuracies of
‘Cancer keywords count’ and ‘Agent’ were measured
without conditional dependencies on ‘Event-cancer
distance’ and ‘Hallmark keywords count’, respectively,
AUC values were decreased to 68.8% and 53.4%, respect-
ively. This confirms the importance of these two depend-
ences. Note that although F-measures and AUC scores
represent different aspects of the system performance,
these two measurements produce similar relative orders
of individual features; features with higher F-measure
have higher AUC values, and vice versa, giving positive
correlation of 92.8% between the values of two measure-
ments. When all features were combined, the accuracy
achieved an AUC value of 80.5% and an F-measure of
72.7% (precision 62.6% and recall 86.9%).
To check whether the training data used are large

enough to build robust models for the identified
features, we tested the Bayesian classifier using different
numbers of training data, and results are shown in the
Supplementary page of the DigSee Web site. We found
that the relative order of feature performance is not
related to the size of training data, and that the perform-
ances of the features do not change so much, although
slightly increasing with a larger number of data.
Table 3 shows the performance of the classifier models

to classify positive and negative evidence sentences that
are associated with each of the six biological event types.
Binding shows the highest accuracy and Localization the
lowest accuracy. Also, the Bayesian classifier using all the
10 features outperformed the SVM classifier using bag of

Table 2. Accuracies of individual features using performance testing

data

Features F-measure AUC

Normalized event SVM score 62.7 57.8
Normalized edge SVM score 60.3 42.5
Gene–event distance 62.1 52.0
Event–regulation distance 64.5 59.7
Event–cancer distance 71.5 74.1
Cancer keywords count
(depending on event–cancer distance)

72.5 72.5

Hallmark keywords count 64.4 58.8
Event depth 60.2 47.7
Negative score 68.7 59.3
Agent (depending on hallmark keywords count) 64.1 62.6
Total 72.7 80.5
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words. A baseline method, called ‘random order’, was
compared with our proposed method. In this method, sen-
tences in the performance testing data were randomly
ordered 100 times and the average performance was
assessed. In the random order, precisions may be close
to the ratio of positive evidence sentences and consistent
for any cut-off values due to the random distribution of
positive sentences, so that F-measure, the harmonic mean
of precision and recall, often shows the highest value when
recall is close to 100%. For instance, the random order
method shows, for the event type of gene expression, 54%
precision (similar to the ratio of positive sentences in
Table 1), 99% recall (as explained previously) and 70%
F-measure. The random order method may show a high
F-measure for an event type, if the ratio of positive
evidence sentences of the event type is high. Note that
our proposed method outperforms the random order
method for all the event types, as shown in Table 3.
We further evaluated the constructed DigSee system

with a query of all genes and all event types for each of
four cancer types (glioblastoma, breast cancer, pancreatic
cancer and prostate cancer). We examined the top 10 sen-
tences retrieved by each of the four queries and found that
6, 5, 5 and 8 sentences among them describe valid relations
between genes and diseases, respectively, altogether
showing the average precision of 60.0%, which is similar
to the precision in Table 3. These top 10 sentences from
four cancer types and gold-standard sentences are
provided in the Supplementary page.

DISCUSSION AND CONCLUSION

DigSee is a search engine to find explicit association
between genes and cancer through biological events.
Although several Web-based text-mining systems are
available to extract implicit relationship between genes
and cancer, most of them do not provide fine-grained in-
formation about the molecular context of gene–disease
association. DigSee is a unique system in this aspect,
and its accuracy was validated using manually curated
evidence sentences.
Although DigSee may provide a new insight in

searching for a gene–disease relationship, its performance
can be improved further. When we examined the negative
sentences among the query results for the four cancer

types in the Supplementary page, we found that they
often include descriptions about experimental procedures
and association of a gene with another gene/phenotype/
drug, but not with the disease in question. Also, incor-
rectly identified biological events were included in the
negative sentences. Therefore, an important future work
would be to further improve the performance of the
ranking method. We will continue to work on filtering
out irrelevant events. Also, we may incorporate inter-
sentence dependencies such that similar sentences are
assigned synergistically higher scores and contradicting
sentences are assigned lower scores.

As the coverage of DigSee depends on biological event
types supported by the system, we will incorporate more
biological events such as methylation, alternative tran-
scripts and single nucleotide polymorphisms into the
system in the future work. Although LSAT (32) provides
a Web service to identify sentences containing alternative
transcripts for a given gene, the relation of alternative
transcripts in disease was not provided. GeneView (9)
allows a combined query of genes, single nucleotide poly-
morphisms and disease. However, it was designed for
general purposes rather than for explicit triple
relationships.

The graphs of gene co-occurrences from our current
system can be further enhanced, borrowing ideas from
other tools such as STRING (33), PESCADOR (34) and
iHOP (35) that also provide services to explore relation-
ships between genes. For example, PESCADOR builds a
co-occurrence network and filters the network based on a
given biological concept, whereas it is not specialized to
the biological event level. We can narrow down the DigSee
graphs to show the relationships between genes sharing
the same molecular events.

In the future work, we will incorporate more disease
types other than cancers into the system. Among features
for the Bayesian classifier, ‘Cancer keywords count’ and
‘Hallmark keywords count’ are specific to cancer and are
useful in classification, as shown in Table 2. To maintain
the current performance of DigSee, it is necessary to
provide these two features for other disease types.
Whereas we can similarly use WordNet (30) for the other
diseases in the case of ‘Cancer keywords count’, the
‘Hallmark keywords count’ were manually collected for
the cancers. We will develop an automatic method to find

Table 3. Accuracies of biological events

Biological events Bayesian classifier SVM classifier Random order

P R F AUC P R F AUC P R F AUC

Binding 80.0 91.2 83.6 87.1 45.7 88.3 60.0 62.6 42.2 94.1 57.8 50.7
Gene expression 66.7 96.2 78.7 79.3 65.7 88.7 75.5 73.7 54.4 98.6 70.0 50.7
Localization 66.7 53.3 59.0 72.5 56.0 75.0 63.9 71.5 37.5 90.7 52.1 50.5
Phosphorylation 75.0 85.0 79.3 93.7 90.0 51.7 65.3 75.2 37.2 90.0 51.4 50.9
Protein catabolism 100.0 70.0 80.0 96.7 40.0 80.0 52.0 61.7 42.6 87.4 55.4 52.0
Transcription 63.3 87.0 73.1 74.7 54.3 86.0 66.4 71.0 48.5 97.2 64.5 48.6
Total 62.6 86.9 72.7 80.5 53.7 81.0 64.5 71.2 43.7 93.0 59.4 49.8

In the table, a precision is shortened to ‘P’, a recall to ‘R’ and an F-measure to ‘F’.
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hallmark keywords for the other diseases, for example, by
identifying relatively frequent keywords in the collection of
articles related to a given disease.
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