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Abstract: Two-dimensional (2D) materials have shown promise in various optical and electrical
applications. Among these materials, semiconducting transition metal dichalcogenides (TMDs) have
been heavily studied recently for their photodetection and thermoelectric properties. The recent
progress in fabrication, defect engineering, doping, and heterostructure design has shown vast
improvements in response time and sensitivity, which can be applied to both contact-based
(thermocouple), and non-contact (photodetector) thermal sensing applications. These improvements
have allowed the possibility of cost-effective and tunable thermal sensors for novel applications, such as
broadband photodetectors, ultrafast detectors, and high thermoelectric figures of merit. In this review,
we summarize the properties arisen in works that focus on the respective qualities of TMD-based
photodetectors and thermocouples, with a focus on their optical, electrical, and thermoelectric
capabilities for using them in sensing and detection.

Keywords: transition metal dichalcogenides; semiconductor; monolayer; temperature sensor;
photodetector; band gap; thermocouple; broadband

1. Introduction

Two-dimensional (2D) materials have been heavily studied over the past two decades since the
first synthesis of graphene in 2004 [1]. By separating the weak Van der Waals structure of different
bulk materials, researchers have reduced layered materials to their limit of a single atomic layer.
This development has been shown to cause new characteristics of materials in their single- and
few-layer form, creating an entirely new class of material with new structural, electrical, and optical
properties [2–4]. The layered nature of these materials also allows layer-dependent properties to
be exploited, showing altered optical and electrical properties which can be tailored for specific
applications as well as developing heterostructures with multiple materials for enhanced performance.

Of these layered materials, semiconducting transition metal dichalcogenides (TMDs) are of the
form MX2, which consists of a transition metal M (Mo, W, etc.) sandwiched between two chalcogenide
atoms X (S, Se, Te, etc.), with a thickness of less than 1 nm [5]. The atomic diagram of TMDs is shown
in Figure 1. These materials have been gaining much attention recently in various research field due
to the fact of their unique properties [6]. Bulk TMDs are formed by stacking the layers. Weak Van
der Waals forces hold the TMDs layers together, and they can be easily separated to form monolayer
or few-layers [7]. Monolayer TMDs can have much different properties than their bulk counterparts.
For example, monolayer TMD materials have a direct band gap, opposed to few-layer and bulk TMDs,
giving monolayer TMDs very strong light absorption and photoluminescence properties [8,9]. The band
gap characteristics also allow them to be used in many semiconducting as well as optoelectronic
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applications such as photodetection, thermoelectric generation, and transistors [10]. Furthermore,
TMDs can alter their properties by changing the strain [11], defect engineering [12], and alloying
of materials [13]. The semiconducting properties and tunability allow them to be useful in both
photodetection and thermoelectric generation.

Thermal sensing is very important in research, industry, military, and consumer applications and
have been developed for hundreds of years. The ability to accurately measure or sense temperature
change is dependent on the application and material which can be used for that particular case.
Recent advances in material science and electronics have given highly sensitive contact and non-contact
methods of measuring a very wide range of temperatures [14,15]. However, many of these materials
are bulky, toxic or expensive. For example, short wave infrared detection is commonly performed
by mercury cadmium telluride (MCT) and InGaAs thermal photodetectors, but MCT is very toxic
and expensive to produce and cool [16], and InGaAs lacks wide broadband photodetection [17].
However, some TMD optoelectronics offer the capability of measuring some of the spectral range
of these materials with drastically lower cost and toxicity while also not requiring cooling to the
system [18]. Also, since some of the 2D TMDs have good thermoelectric properties, namely, its low
thermal conductivity compared to graphene [19] and high power factor [20], they have the possibility
of being utilized in contact-based thermal sensors as well [21].
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The ability to minimize the size of sensing devices has become useful for both contact and
non-contact-based sensing [16]. Ultrathin and flexible devices can be used in novel research and
industrial applications in the technology world as devices become smaller and more advanced. Due to
the tunability, compactness, low-cost, flexibility, and non-toxic nature of many of these materials,
2D TMDs can have a great impact on the development of thermal and photo sensing devices and
mechanisms. In this review, we look at the optical, thermal, and electrical capabilities in TMDs and
heterostructures and show their usefulness in novel optoelectronic and thermocouple based systems.

2. Theory

2.1. Non-Contact

There are various methods of non-contact thermal sensing, but many of them utilize the blackbody
radiation of the object in question. The peak light radiation is proportional to the temperature of the
object described in Planck’s law of blackbody radiation, given by the equation [23]:

Bν =
2hν3

c2
1

e
hν
kT − 1

(1)

where Bν is the spectral radiance at a given temperature, h is Planck’s constant, c is the speed of light, k is
the Boltzmann constant, v is the frequency of the electromagnetic radiation, and T is the temperature of
the body. Figure 2 shows how the peak spectral radiance changes with the temperature of a blackbody.

The photodetection capabilities of a semiconductor is mostly influenced by the size of the band gap
of the material [24]. If incident photons on a semiconductor material are of an energy greater than or
equal to the bandgap of the semiconductor, then an electron–hole pair is generated, and electrons from
the valence band move to free states in the conduction band, where they can move as free electrons,
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generating a photocurrent [25]. Many properties and development methods can affect the band gap of
the semiconductor, such as doping, strain, crystallinity, and defects [26,27].Micromachines 2020, 11, x FOR PEER REVIEW 3 of 22 
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As Equation (1) and Figure 2 show, peak spectral radiance blue shifts to shorter wavelengths as the
temperature increases. The most emissive wavelength of light is simply shown by Wien’s displacement
law, given as [28]:

λpeak =
b
T

(2)

where, λpeak is the peak wavelength of light emitted by a blackbody of temperature T, and b is Wein’s
displacement constant whose value is given as 2.8977 × 10−3 m-K. Therefore, in order to provide the
highest sensitivity of a photodetector for blackbody measurement, one would choose a sensor tailored
to measure the peak emission of the blackbody in question. Table 1 displays some emitted photon
energies by the temperature of various common applications. Thermal sensing via photodetection is
most commonly used and described in the wavelength range of 8–12 µm, since this accounts for the
temperature distinguishing between the blackbody radiation of humans (~310 K) and background
(~290 K) with good atmospheric transmission.
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Table 1. Common blackbody temperatures with their corresponding photon energy, wavelength, and
application or phenomenon.

Temperature Photon Energy Peak (eV) Peak Wavelength (nm) Application/Reference

290 K 0.124 9992 Common outside temperature 70 deg F
310 K 0.132 9348 Human body temperature (98 deg F)
373 K 0.16 7769 Water boiling temperature

1300 K 0.56 2229 Flowing lava, open flame
3500 K 1.49 828 Rocket combustion temperature
5800 K 2.47 500 nm Surface temperature of the Sun

Transition metal dichalcogenides (TMDs) offer the capability of being tuned to a variety of band
gaps due to the layered nature of the semiconductor. This capability allows a TMD-based photodetector
to be tailored to have maximum absorption for peak blackbody emission, allowing high-performance
devices to be made for specific cases. The low cost, ability to alloy, and simplicity of growth allows a
wide variety of applications for optoelectronics, light detection, and optical assembly [29].

2.2. Contact

Contact-based method of thermal sensing requires the sensor to be in direct contact with the
object in question. Many different mechanisms involve contact thermal sensing, but the most common
is the thermocouple, and is used commonly in industrial, automotive, and consumer applications.
Thermocouples utilize the thermoelectric effect, where the temperature change of a junction of two
different materials, such as different metals or semiconductors, create an electrical response given
as [30]:

V = S∆T (3)

where V is voltage, ∆T is the temperature difference across the junction, and S is the Seebeck coefficient,
which describes the induced thermoelectric voltage over a temperature difference of the material.
When a temperature gradient is generated in thermoelectric materials (usually semiconductors),
electrons and holes with high thermal energy at the hot end diffuse to the cold end, creating a potential
difference to power an external load. Figure 3 shows the basic mechanism of a thermoelectric generator.
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Although metal thermocouples are commonly used due to the fact of their cheap cost,
highly sensitive thermocouples are made with an n- and p-doped semiconductors. In order to
determine the ability of a thermocouple to have good temperature-to-electric conversion efficiency, it is
ideal to maximize the figure of merit ZT, given by [31]:

ZT =
S2σ
κe + κph

T (4)

In which, σ is the electric conductivity, κe is the electron thermal conductivity, and κph is the lattice
thermal conductivity. In order to optimize the figure of merit, it is ideal for a semiconductor to have
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a high Seebeck coefficient and electrical conductivity, while minimizing the thermal conductivity of
the material. Conventional thermoelectric materials have a ZT value of about 0.7–1, while very good
devices have a ZT value of about 1.5–2.5, with very few materials achieving above 2.5 [32]. Very few
outliers achieve a figure of merit above 3, although some reports have shown a ZT value as high as 6 in
some cases [33].

3. TMD-Based Photodetectors

Broadband photodetection is a method of thermal sensing with TMDs as well as many different
semiconductor materials for broadband temperatures. TMDs are a class of semiconductors that have
energy band gap range of about 1.2 eV to 2.1 eV, which corresponds to a wavelength of 590–1033 nm or a
temperature peak of 2800 K–4900 K. The visible and NIR range of common TMD-based photodetectors
make these detectors possible to sense high temperature objects such as—thrusters, high temperature
metals, and some devices used in solar applications. Also, the ability to tune and extend the band gap by
altering the number of layers can make these materials attractive for novel thermal sensing applications.

3.1. Mono- and Few-Layer Photodetectors

When a TMD is a monolayer, the material is a direct band gap semiconductor, and it becomes an
indirect band gap semiconductor when in few layers [34]. At the monolayer level, the band gap of
TMDs range from about 1.2–2.1 eV, which limits photodetection in the UV, visible, and NIR range,
with varying performance based on the quality and type of material [35,36]. Although various reports
have shown high performance devices of these materials intrinsically, the use in thermal photodetection
is limited to very high temperature detection, as the detection is mainly in the visible range, with some
detection in the NIR range.

The most common TMD for photodetection is MoS2, with many studies focused on its
photodetection capabilities. Lopez-Sanchez et al. [37] developed a highly sensitive MoS2 photodetector
with a spectral range of 400–680 nm with a photoresponsivity of 880 AW−1 with a drain-source
voltage of 8 V and a backgate voltage of −70 V, shown in Figure 6a. Although this could only be
used for very high thermal sensing in a small wavelength range among other novel applications,
this photodetector far surpassed previous monolayer MoS2 photodetectors, and opened the window
to new development in TMD photodetector technology. However, although the photodetector in
their work was highly sensitive, the presence of trap states greatly reduced the response time of
the device, with a field-effect mobility µ of about 4 cm2V−1s−1. Yu et al. [38] resolved this issue by
using (3-mercaptopropyl)trimethoxysilane (MPS) in thiol chemistry to repair sulfur vacancies in MoS2

monolayers in both top-side and double-side methods. The group reported a double-side-treated
MoS2 monolayer mobility of ~81 cm2V−1s−1, higher than any reported experimental mobility at the
time, with theoretical maximums of over >400 cm2V−1s−1. The benefit of this method is the capability
to be used in other TMD materials as well. For example, WS2 has a phonon-limited electron mobility of
up to 1100 cm2V−1s−1, much higher than MoS2 [39]. Cui et al. developed a monolayer WS2 field-effect
transistor and enhanced electron mobility using the abovementioned thiol chemistry alongside adding
an ultrathin dielectric layer between WS2 and SiO2, further reducing the density of charge traps. Both
methods allowed them to achieve a mobility of 83 cm2V−1s−1 at room temperature, and 337 cm2V−1s−1

at low temperatures. Other strategies can also further enhance the electron transport in monolayer
TMDs, such as strain engineering and doping, for further improvement in the electron mobility of
TMDs, leading to faster, high-performance photodetectors [40,41].

Optical absorption of mono and few-layer TMDs have three prominent peaks. Two are due to
the direct transitions at the K point of the Brillouin zone from generation of A and B excitons [42].
The other one is a broad peak due to singularities in joint density of states between the first valence
and conduction band near the Γ point of the valence band [43]. Trion’s also contribute a small amount
to optical absorption, with a small absorption tail with a slightly lower energy than the A exciton
peak [44].
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Several methods have been imposed to enhance the absorbance of TMD’s for better photodetector
performance. Butun et al. [45] incorporated Ag plasmonic nano-discs on a monolayer WS2 sample
by e-beam lithography. By using 100 nm diameter disks, they were able to increase the absorption at
the absorption peak (610 nm) up to over 20%, a 2.5-fold increase in optical absorption compared to
the bare WS 2 sample. Huo et al. [46] used a similar approach, but used hexagonal titanium nitride
nano-disc array, which showed near-perfect absorption (>98%). Although there was a slight decrease
in absorption with the MoS2 layer at the peak as opposed to only the nano-discs, the addition of
MoS2 broadened the absorption band, allowing better broadband absorbance from 475 nm to 772 nm.
In order to extend light absorption to longer wavelengths, studies have also used more layers of
MoS2 to lower the band gap of the material [47]. Park et al. [48] used chemical exfoliation to develop
MoS 2 photodetector with thicknesses of 5, 10, and 25 nm, equating to approximately 8, 17, 42 layers,
respectively. They found a linear increase in absorption with increase in film thickness, with the 25 nm
photodetector outperforming others from 400–1600 nm wavelength range (See Figure 4). The increased
thickness led to a larger number of defects, which not only increased photocurrent and dark current,
but also increased the response time of the device. The increase in these values are due to the increase
of defects present in thicker films, which causes a further reduction in band gap [49]. Furthermore,
the group implemented a layer of plasmonic silver nanoparticles (AgNPs) in order to concentrate
incident near infrared (NIR) light, resulting about three times stronger absorption than the plain film.
They were able to achieve the responsivity of 0.881 mA/W and a detectivity of 1.28 × 109 Jones.
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400–1600 nm. Inset image shows a zoomed in view of A and B absorbance peaks for 25 nm thick film.
(b) Absorbance of 25 nm thick MoS2 and AgNP/SiO2/MoS2 between 400–1600 nm. Reprinted from
Reference [48], copyright 2018, with permission from Elsevier.

Molybdenum ditelluride (MoTe2) has the lowest bandgap energy among the un-altered TMDs
(by layer), with a direct gap of about 1.2 eV. The material’s high absorption and good electrical
capabilities made it a good contender for NIR and short-wave infrared (SWIR) photodetectors, which is
useful for telecommunications as well as thermal sensing at high temperature. Huang et al. [50]
displayed a sensitive VIS-NIR photodetector by mechanically exfoliating 2H-MoTe2 onto a SiO2/Si
substrate. The detector was enhanced by the photogating effect. When electrons or holes are trapped
in localized states in the valence and conduction band of the material, this leads a voltage to be applied
to the device. This way, it extends the lifetime of the electrons, thus increasing the photoconductive
gain of the device and this effect is known as photogating effect [51]. Through their work, they were
able to achieve a responsivity of about 24 mAW−1 and a detectivity of 1.3 × 109 cmHz1/2W−1, with a
backgate voltage of 10 V, with a detected photo response of 600–1750 nm. The group noted that a higher
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backgate voltage allowed for a higher responsivity, but increased the dark current, thus lowering the
detectivity of the device.

In the mid and long wavelength range, there have been some demonstrations of few-layers of TMD
photodetectors for sensing these ranges of heat. Thermal sensing in the mid-long wavelength infrared
region is regarded as “thermal radiation” and refer to radiated light in the range of approximately
3–15 µm, or a temperature of 193–966 K. Mid-wavelength infrared thermal sensing around 3–5 µm is
useful for vehicle engine and missile heat sensing, but the 5–7 µm range is of little use to photodetection
due to high atmospheric absorption [52], while long-wave infrared (LWIR) can be used for distinguishing
human temperatures with background, allowing night vision sensing. Further development of inducing
defects into multi-layered TMDs have shown to be promising for further lowering the band gap of the
material for mid-long IR absorption.

Very few studies have shown that a few layer-thick TMDs are capable of extending their optical
absorption to the mid and LWIR range. However, studies have shown that altering the ratio of
Mo and S atoms in few layered MoS2 samples allowed great reduction of the band gap, allowing
longer wavelength light absorption. Xie et al. [53] used pulsed laser deposition of MoS2 to alter the
ratio of sulfur and molybdenum atoms in grown layers. This way they altered the band gap of the
film. The prototype photodetector showed a broadband detection response ranging from 445 nm to
9.5 µm. This wide range allows for mid-infrared and some LWIR thermal sensing from an uncooled
photodetector, with a responsivity of 21.8 mAW−1 at 7.79 µm (see Figure 5), which is higher than
any other realized room-temperature photodetectors currently used at this wavelength. The realized
detector was sensitive from visible light to 9.5 µm, making it the widest band room-temperature
photodetector to date.
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3.2. Heterostructure Photodetector Devices

Although properties of various TMDs can be altered by material engineering, the development of
heterostructures and interfaces have given new capabilities to photodetection for possible thermal
sensing applications. Since many 2D materials, including TMDs, are held by weak Van der Waals
forces, complex heterostructures can be made by manually stacking layered materials, resulting in
many possibilities in optical devices.

Different layered materials can offer different capabilities in the heterostructure photodetector.
For example, graphene has been used commonly with TMDs in order to create layered electrodes on
the device which are easy to use and have fast electrical transport, while maintaining the atomic-level
thinness of the device, as shown in Figure 6b [54]. Furthermore, the stacked graphene–TMD
heterostructures can even cause synergistic benefits to photodetectors such as modulation of
photoresponsivity and enhanced light–matter interactions [55]. Table 2 shows a summary of various
TMD-based photodetectors and their figures of merit.
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Table 2. Various TMD-based photodetectors and figures of merit.

Material Layers Spectral
Range (nm) Responsivity Detectivity Response Time

(Rise/Fall) Reference

MoS2 1 400–680 880 - - [37]
MoS2 3 380–800 0.57 1010 70/110 µs [56]
MoS2 >40 445–9500 21.8 (At 7790 nm) - - [53]

AgNPs-MoS2 ~8–40 400–1600 0.881 mA/W 1.28 × 109 J [48]

MoS22/1L-Gr/WSe2 3 400–2400 Visible–104 A/W
2400 nm–~1A/W

Visible-
1015 Jones
2400 nm-
109 Jones

30 ms (rise) [57]

MoTe2 (mechanically
exfoliated) 2H? 600–1750 24 mA/W 1.3 × 109 - [50]

1T’ MoTe2 4 500–1100 62–109 mA/W - 0.82 µs (rise)
7.29 (fall) [58]

Si/MoS2 heterojunction 6–10 450–1000 8.75 A/W 1.28 × 109 J 10/19 s [59]
WS2/Si (Type II) ~5 200–3043 224 mA/W 1.5 × 1012 J 16/29 µs [60]

WS2/graphite on paper Nanosheets 390–1080 6.66 mA/W 1.94 × 108 J 800/1400 ms [61]
p-CuO/n-MoS2 1 - 11.4 mA/W 3.27 × 108 J - [62]

Long et al. [57] demonstrated a TMD and graphene-based heterostructure using MoS2 and WSe2 for
a p-g-n diode for broadband photodetection capabilities. Figure 6c shows the top and side view of the
MoS2/WSe2 heterostructure. The device utilizes the broadband photodetection of graphene to extend
the photodetection past the band gap limitations of MoS2 and WSe2, for a VIS-NIR photodetection
range of around 400–2400 nm. While the TMDs and graphene both generate photocurrent in the visible
range, longer wavelength light is not absorbed by the TMDs resulting in only graphene providing
photocurrent for the infrared range, resulting in a lower responsivity of the device in that range.
However, the group reported a responsivity 106AW−1 and detectivity of up to 1015 Jones in the visible
range, while in the infrared region they found a responsivity and detectivity of about 1AW−1 and 1011

Jones, respectively.
The ability to scale up simple p-n junction design and compatibility with complementary

metal-oxide-semiconductor (CMOS) technology is highly sought for moving TMD-based photodetectors
into applications outside of research. Dhyani et al. [59] demonstrated a Si/MoS2 heterojunction
using wafer-scale processes which can easily be scaled and reproduced for photodetector arrays.
The photodetector exhibited a response of ~8.75 A/W (at 580 nm) and detectivity of 1.4 × 1012 Jones,
with a fast response time of 10 µs. The formation of the heterojunction also has an inherently higher
depletion region which becomes stronger under reverse bias. The process gives an increased responsivity
for higher wavelengths (>500 nm) when compared to only MoS2, leading to its use in broadband
photodetector applications. Other groups have also used TMD-silicon heterostructures for high-speed,
high-sensitivity photodetectors. Wu et al. [60] also developed a TMD/Si heterostructure, but using
few-layer WS2/Si with a type-II band alignment formed in situ. Furthermore, they formed a 4 × 4
array with similarly high reproducibility and stability. The type-II band alignment allows broadband
absorption of up to 3043 nm with a responsivity of 224 mA/W and detectivity of 1.5 × 1012 Jones.

Xue et al. [63] demonstrated a few-layer-thick MoS2/WSe2 heterojunction array by performing a
thermal reduction sulfurization process. Using their two-step chemical vapor deposition approach,
the group was able to create arrays of MoS2/WSe2 stacks with well-defined interfaces, allowing the
possibility of building various Van der Waals heterojunctions in a large scale. The MoS2/WSe2 devices
in the report showed a responsivity of 2.3 AW−1 over the visible spectrum, with highly stable and fast
switching behavior. The array is also flexible, which gives some niche applications, allowing some
novel photodetectors for possible high-temperature blackbody sensing. Lee et al. [64] also showed the
enhanced photodetection with p-n heterojunction, shown by using MoS2/WSe2 sandwiched between
graphene electrodes. The combination of these qualities and techniques allow the possibility for
sensitive, large scale, and easily producible photodetector arrays. A diagram of their heterostructure
device is shown in Figure 6d.
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Monolayer and nano-scale materials have been shown to have promising capabilities in 
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Figure 6. (a) Basic 3D monolayer MoS2 photodetector schematic with incident laser light source.
Reprinted with permission from Springer Nature [37], Copyright 2013. (b) 3D and sideview of WS2

photodetector with graphene electrodes. Reprinted (adapted) with permission from Reference [54],
copyright 2016 American Chemical Society. (c) Image of (top) top view of WSe2/graphene/MoS2 with
electrodes and (bottom) cross-sectional view. Reprinted (adapted) with permission from Reference [57],
copyright 2016 American Chemical Society. (d) MoS2/WSe2 heterostructure sandwiched between
two graphene layers. Reprinted by permission from Reference [64], copyright 2014 Springer Nature
Publishing group.

Flexible devices have also sparked interest in various areas such as wearable electronics and
non-static or curved systems. The mechanical properties and band-selective capabilities of TMD’s
allow them to be a great candidate for flexible optoelectronics [65,66]. Several groups have used
nanosheets with graphite on paper with TMD nanosheets to make a simple, flexible photo-detecting
heterostructure with good performance [67,68]. For example, Pataniya et al. [61] displayed a simple
photodetector using ultrasonically exfoliated WSe2 nanosheets on pencil-drawn graphite. The sensor
was made on a paper substrate, with a responsivity of 6.66 mA/W and detectivity of 1.94 × 108 Jones,
with a response time of 0.8 s and broadband sensitivity. The simple design and low-cost materials,
along with the flexible structure, make the device useful for many possibilities, such as visible and
infrared photodetection of blackbody radiation.

Other flexible devices have utilized the strain effects on monolayer TMD’s in order to develop
a flexible heterostructure with increased performance. Zhang et al. [62] developed a flexible
photodetector based on a p-CuO/n-MoS2 heterojunction, and utilized the piezo-phototronic effect
to enhance performance with increased strain. The coupling among semiconductor, piezoelectricity,
and photoexcitation can cause a broadening of the depletion region at the heterostructure interface,
causing the piezo-phototronic effect [69]. The group showed that with 0.65% tensile strain,
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a photocurrent enhancement of up to 27 times than that of strain-free conditions, and a detectivity of
up to 3.27 × 108 Jones can be achieved.

4. TMD-Based Thermocouple/Thermoelectric Devices

High-quality thermocouple devices are needed for a variety of applications. These devices utilize
thermoelectric effect that are used for thermal sensing in contact mode. Since metal thermocouples
tend to have poor performance, semiconductor thermocouple devices can be used in specific situations
requiring ultra-compact or thin areas. In order to maximize the capabilities of TMDs as a thermocouple,
the Seebeck coefficient and electronic conductivity are maximized, while thermal conductivity is
minimized, in order to produce the highest possible figure of merit. The electrical conductivity, Seebeck
coefficient, and thermal conductivity are not independent, which makes it difficult to optimize one
parameter without affecting the other parameters. Hence, substantive efforts on improving ZT focus
on the development of new TE materials and/or their structural optimizations [70]. The intrinsic
quantum size effects make the physical factors defining ZT free from the interdependence mentioned
above [21,71].

Monolayer and nano-scale materials have been shown to have promising capabilities in
thermocouple devices. For example, graphene has been shown to have a high Seebeck coefficient
and electronic conductivity, but is limited by its extremely high thermal conductivity of about
5300 Wm−1K−1 [72,73]. TMD monolayers on the other hand, have shown thermal conductivity in
few layer materials of about 52 Wm−1K−1 for exfoliated monolayer MoS2, a vast improvement from
graphene in terms of 2D thermoelectric materials [74]. Furthermore, theoretical calculations and other
materials have shown the possibility of much lower thermal conductance values [75]. This along
with the other groups working to maximize the power factor makes TMD’s a great contender for
thermoelectric generation.

It is also important to note the many factors that can alter the characteristics of TMD-based
thermoelectric devices. Strain effects [76], doping [77], layer number [78], fabrication methods, and
measurement techniques can all be factors in theoretical and experimental properties [79]. This allows
the capability of using and combining engineering and measurement methods to develop devices with
higher performances or tuning a device for specific needs in thermal sensing. The resulting devices can
possibly produce higher thermoelectric figure of merit values at certain temperatures than common
bulk thermoelectric materials, shown in Figure 7.
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In order to create an efficient TMD-based thermocouple, the thermoelectric figure of merit
and temperature range are the deciding factors in such devices. Huang et al. [81] did theoretical
thermoelectric performance calculations using a 2D ballistic transport approach for multiple monolayer
TMD’s from 60–500 K. The study found a temperature-dependent figure of merit for MoS2, MoSe2,
WS2, and WSe2 in both n and p-doped forms. The calculated figure of merit ranged from 0.2–0.55 at
room temperature (300 K), and about 0.5–1.1 at 500 K. The highest figure of merit at room temperature
was of p-MoS2 at 0.55, while WSe2 showed the highest value at 500 K of 1.1. While MoS2 showed a
high Seebeck coefficient at high temperatures, the material has a high thermal conductivity from its
large Debye temperature, which is due to its low atomic mass [82].

Wickramaratne et al. [71] theoretically investigated the electronic properties and the thermoelectric
performance of bulk and 1–4 monolayers of 4 different TMD materials doped with p and n type
impurities: MoS2, MoSe2, WS2, and WSe2. By using density functional theory with spin-orbit coupling,
they reported n-type ZT values ranging from 1.91–2.39 at 300 K for the compounds, with 2L MoSe2

being the highest figure of merit, and an improvement of a factor of 7.5 over the bulk values. For p-type
ZT, the maximum value was of 1.15 for 2L-MoS2, an improvement of a factor of over 14 from bulk,
with a range of 0.62–1.15 for all materials. The group also calculated the Seebeck coefficient of the
compounds at the reduced Fermi energy correlating to peak figure of merit and power factor for
the materials. The result was a Seebeck coefficient at maximum ZT of 287 µVK−1 for n-type MoSe2,
and 245.6 µVK−1 for MoS2, while at maximum power factor was a best S value of 171 µVK−1 for
n-WSe2 and 90.4 for p-MoS2. The application of these materials may affect the optimization of realized
materials to achieve the desired figure of merit or power factor for a specific use.

Ge et al. [83] investigated the electronic structures and transport properties of the 1T” phase
MX2 (M = Mo, W; X = S, Se, Te) using first-principles calculations with Boltzmann transport theory.
They found a direct band gap at the K point for all molybdenum TMDs, and among these three cases,
the hole carrier mobility of MoSe2 was far higher than the other compounds, estimated to be as high as
690 cm2/V-s at room temperature. For this reason, along with the weak electron–phonon coupling
of 1T” MoSe2 showed outstanding transport performance of the compound. They also evaluated
the Seebeck coefficient of MoSe2, which was as high as ∼300 µV/K at room temperature. In their
work, the highest thermoelectric power factor of MoSe2 was found to be 10.2 × 103 µW/mK2 at 200 K,
with a power factor of about 6 × 103 µW/mK2 throughout the range of 100–500 K. This makes the
1T” phase MoSe2 promising thermoelectric material with capabilities in thermal sensing for ultrathin
applications, as it is comparable to the more common 1H, but has lower thermal conductance of about
10.7 Wm−1K−1, which can result in higher ZT values [84].

Single crystalline 2D MoS2 layers have exhibited a significantly large value of Seebeck coefficient
of ~105 µVK−1 via tuning of an external electric field [85]. Figure 8a shows an image of a tested MoS2

thermoelectric generator from their work. Mechanically-exfoliated few layer 2D WSe2 layers also
presented similar increase in performance, measured via ionic gating by Yoshida et al. [86]. The group
optimized electric field tuning and found an increase of Seebeck coefficient of one order or magnitude.

Pu et al. [87] also developed and studied thermoelectric generation of monolayer MoS2 and WSe2

devices. In many works, the size of 2D TMD flakes used have an area of about ≤10 µm2, which made
them unsuitable for determination of the thermoelectric properties. To solve this problem, the group
incorporated large-area CVD-grown 2D MoS2 and 2D WSe2 monolayers and their thermoelectric
properties were determined in a FET configuration. A FET channel length of 400 µm was maintained
to ensure reliable thermoelectric measurements via uniformly large temperature gradient. From this,
large Seebeck coefficient (|S| >200 µVK−1) and power factor (>200 µWm−1 K−2) were observed in 2D
MoS2 and 2D WSe2.

Defect engineering has also been shown to alter and enhance thermoelectric performance in TMD’s.
Thermal conductance has been shown to reduce under monolayer TMD samples with higher number
of defects than monocrystalline samples. Yarali et al. [88] compared monolayer crystalline MoS2 with
CVD-grown MoS2 and found that CVD-grown samples showed a decreased thermal conductivity
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by up to 50% due to their low angle grain boundaries. For atomic-level defects, Chen et al. [89]
showed through theoretical simulations of monolayer MoS2 that decreased phonon group velocity
by defects, as well as phonon localization around lattice defects, resulted in a decrease in thermal
conductivity of up to 75%, from ~42.2 Wm−1K−2 to 10.5 Wm−1K−2. However, thermoelectric power
factor is negatively affected due to the larger scattering in the conduction band of defect-induced
monolayer MoS2, as Adessi et al. showed [90]. The group found through theoretical calculations that
through p-type doping, electronic transport is not very affected by sulfer vacancies, resulting in a ZT
nearly independent of both vacancies and length of the system. However, for n-type doping, a drastic
reduction of ZT was shown with change of length, thus very low vacancy concentration is needed to
maintain significant ZT values.

It has been reported that utilizing metal chalcogenides and 2D TMD hybrids with other functional
materials such as graphene or reduced graphene oxide (rGO) can achieve better TE properties compared
to mono-component nanostructures. Doing so, it had been reported to achieve decoupling between
phonon scattering and electron transport by using hybrid interfaces, allowing reduced thermal
conductivity without altering the electrical conductivity, resulting in a higher figure of merit [91].
Wang et al. [92] incorporated metallic 1T phased 2D MS2 (M: Mo, W) layers into rGO. They obtained
a maximum power factor of 15.1 and 17.4 µWm−1K−2 in rGO/MoS2 and rGO/WS2, respectively.
Oh et al. [93] displayed a TMD/graphene hybrid device, developing a MoS2/Graphene nanoribbon
heterostructure with enhanced electrical conductivity and power factor of 700 S/m and 222 µWm−1K−1,
respectively. Although graphene thermal conductance is very high, it can be significantly reduced
from about 3200 Wm−1K−2 to ~80 Wm−1K−2 by using nanopatterned graphene such as graphene
nanoribbons (GNR), which would result in very high ZT values [94].

2D WS2/poly(3,4-ethylenedioxythiophene) (PEDOT): poly(styrenesulfonate) (PSS) hybrids were
also developed by sonicating 1T phase 2D WS2 flakes into an aqueous solution of PEDOT: PSS [95].
They reported that the presence of PEDOT: PSS chains in WS2 reduced the energy barrier within adjacent
WS2 flakes and also facilitated the transport of charge carriers. A TE power factor of 45.2µWm−1k−1 was
achieved in these hybrids, which was four times higher than their pure WS2. Li et al. [96] performed a
similar study using PEDOT:PSS with MoSe2 nanosheets, resulting in an power factor of 48.6 µWm−1k−1,
and improvement compared to individual polymer or MoSe2 devices. The combination of such studies
can be used with others shows that the 2D inorganic/polymer composites can be easily fabricated,
and can have a large effect on the capabilities of thermal sensors or other thermoelectric applications.

TMD/TMD heterostructures have also utilized the above-mentioned benefits of interlayer
interactions for increased thermoelectric performance. Wu et al. [97] investigated thermoelectric
properties of bulk and bilayer 2D MoS2/MoSe2 heterostructures using density functional theory
in conjunction with semiclassical Boltzmann transport theory. They predicted that the bulk 2D
heterostructures could considerably enhance the thermoelectric properties as compared with the bilayer
MoSe2. The enhancement originates from the reduction in the band gap and the presence of interlayer
van der Waals interactions. They reported the variation of Seebeck effect and thermal conductivity at
various temperature between 300 K to 1200 K with doping concentration and found that p-type heavily
doped one had shown enhanced TE properties as compared to its n-type counterpart. At 300 K, they
found the value of relaxation time dependent power factor (S2σ/τ ) to be 1.23 × 1011 Wm−1K−2s−1).
At the same temperature they reported the value of Seebeck coefficient to be ~400 µV/K for both
in-plane and cross-plane conditions at a doping concentration of 1019 cm−3. Thus, for TMD/TMD
heterostructures to be effectively utilized, several layers should be incorporated to the structure.
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Figure 8. (a) Image of fabricated monolayer MoS2 photo-thermoelectric generator. Reproduced from [77].
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TMD nanoribbons have also pushed thermoelectric generators to further capabilities by layering
different interfaces of devices. Layer mixing has shown to both improve power factor of 2D TMD-based
thermoelectric devices and reduce the thermal conductance of the device [99]. Ouyang et al. [100]
showed via first principles calculations that hybrid interfaces drastically reduced thermal efficiency
in armchair nanoribbons, resulting in extremely high ZT. Through their calculations, they found a
MoS2/MoSe2 armchair structure with an optimized ZT value of 7.4, higher than any other thermoelectric
material previously calculated or fabricated. Figure 8b shows a diagram of a MoS2 nanoribbon armchair
thermoelectric generator design [98].

Table 3 shows a summary of the thermoelectric properties of various TMD-based devices and
theoretical calculations. Although there is no definitive “best” TMD device, the tunability of many
figures of merit in such devices allow the ability to tailor a device for specific applications and have
comparable or better thermoelectric properties than currently used bulk materials.

Table 3. Various TMD-based thermoelectric devices and thermoelectric figures of merit.

Material/Type Layers S2σ (µWm−1K−2) S (µVK−1) σ (S/cm) κ (Wm−1K−1) ZT Temperature Reference

p-MoS2
(theoretical) 1 - - - 0.55 300 K [81]

n-WSe2
(theoretical) 1 - - - 1.1 500 K [81]

MoS2 1 - −4 × 102

−1 × 105 - - - [85]

n-WSe2 and
p-MoS2

1 >200 >200 1.5 (from [101]) 0.1 300 K [87]

WSe2 (gate
optimized) 3 3200 (n-type)

3700 (p-type) ~100 ~5 × 103 - - 300 K [86]

rGO-MoS2 - 15.1 ~80 130.8 0.206 0.022 300 K [92]

rGO-WS2 - 17.4 ~80 136.4 0.208 0.025 300 K [92]

WS2 PEDOT:PSS
(50%) Nano-sheets 45.2 ~83 1333 0.36 (cross-plane)

1.2 (in-plane) 0.01 300 K [95]

MoS2/MoSe2
(armchair) Nano-ribbon - ~600 - - 7.4 800 K [100]

5. Challenges and Future Efforts

Although many high-performance TMD-based sensors have been made, many challenges face
the future of their use in commercial or industrial use, and the ability to be competitive with current
standard devices. First, the synthesis and growth of large, high-quality samples is difficult. Although
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mechanical and chemical exfoliation techniques cheap and effective for research purposes, they rarely
form large area samples and cannot properly control the layer number. CVD is a common approach
for growing TMD’s, with the capability of single mono or few-layer crystals up to centimeter size [102].
However, this requires a long development time for production, and can allow debris and non-uniform
size of samples. Another challenge is the current transfer methods of TMD’s. The transfer of samples
usually involves etching the oxide layer underneath and physically transferring to other substrates or
semiconductors, which can cause dirt or particulates to become trapped underneath samples, hindering
their adhesion and performance. The transfer can also cause changes in strain for CVD-grown samples,
as intrinsic tensile strain in caused during the growth process, which can cause dissimilarities before
and after transfer [103]. Until the growth can become automated or utilize CMOS methods such as
photolithography, the development of large arrays is reduced to single diode or very small arrays.
Also, the degradation from various elements such as presence of oxygen in water and UV irradiation
for the long-term use of TMD sensors [104]. The incorporation of new growth or preservation methods
may be required for durable photodetectors and thermocouples [105].

As for TMD photodetectors and heterostructures, there is much room for improvement in terms
of response time sensitivity. Since absorption of monolayer TMD’s are rather low (<10%), methods
must be used to improve the light absorption such as material quality, heterostructure development,
and doping. For the sensitivity of photodetector devices, the rather high band gap of mono- and
few-layer materials limits TMD’s to mostly visible and near-infrared detection, and increasing the
number of layers for longer wavelength absorption can drastically reduce the sensitivity, mobility,
and other properties. The inclusion of nanoparticles and quantum dots, however, can greatly improve
broadband absorption while preserving and even improving the sensitivity and response time of
the device [106]. For low carrier mobility, several options, such as high-quality growth and the
abovementioned thiol chemistry and high-
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dielectrics can greatly improve performance. Ultimately,
for competitive photodetectors, a combination of the abovementioned methods will be required for
maximum performance.

Transition metal dichalcogenides (TMD)- based thermocouples succumb to the same limitations in
growth and quality of materials as photodetectors, so the progression in the development in fabrication
strategies is important to high thermoelectric performance. Also, the contact between source and
drain electrodes with TMD thermoelectric materials inhibits the performance of thermoelectric
devices [107,108]. Several strategies can be used to address this. For example, low work function
metals, such as scandium and aluminum, can provide ohmic contacts to MoS2, allowing thermoelectric
devices with enhanced performances. The combination of metal selection with proper doping and
material growth can create thermoelectric devices with high figure of merit [109].

6. Conclusions

Transition metal dichalcogenides have made incredible progress recently in the development of
materials and heterostructures for the capabilities of both contact and non-contact thermal sensing in a
wide range of temperatures. Several devices have shown broadband photoresponse in visible and
infrared ranges by incorporating defects, heterostructures, and photogating in their devices, as well as
shown enhanced responsivity, detectivity, and response time with the ability to tune the devices for
a wide range of applications. Also, highly accurate and ultrathin thermal sensing is possible using
2D TMD-based thermoelectric devices reported. The tailoring of heterostructures, inorganic/polymer
composites, and nanoribbon armchair devices have shown to drastically increase thermoelectric
performance, which can lead to industrial or consumer applications.

Though TMDs have shown a wide range of properties which can be useful to temperature
sensing, many challenges are ahead in the further development of such devices. For one, the growth of
high-quality, tailored materials poses a strong challenge that many groups are working toward
resolving. Also, some of the limiting band gap qualities of the material inhibits it to niche
applications in high-temperature thermal sensing. Although some groups described in this review
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show broadband-sensitive TMD devices, there is much more work to do in developing heterostructure
devices and sensors. Regardless, mono and few-layer TMDs have shown very promising capabilities
in this field for a wide range of applications.
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