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ABSTRACT
Background. Animal models are significant for understanding human osteoarthritis
(OA). This study compared the synovial fluid proteomics changes in surgical and
chemical induced OA models.
Methods. Thirty rabbits either had anterior cruciate ligament transection (ACLT)
procedure or injected intra-articularly with monosodium iodoacetate (MIA, 8 mg)
into the right knee. The joints were anatomically assessed, and the synovial fluid
proteins analyzed using two-dimensional polyacrylamide gel electrophoresis (2DGE)
and MALDI TOF/TOF mass spectrometry analysis at 4, 8 and 12 weeks. The proteins’
upregulation and downregulation were compared with control healthy knees.
Results. Seven proteins (histidine-rich glycoprotein, beta-actin-like protein 2 isoform
X1, retinol-binding protein-4, alpha-1-antiproteinase, gelsolin isoform, serotransferrin,
immunoglobulin kappa-b4 chain-C-region) were significantly expressed by the surgical
induction. They characterized cellular process (27%), organization of cellular compo-
nents or biogenesis (27%), localization (27%) and biological regulation (18%), which
related to synovitis, increased cellularity, and subsequently cartilage damage. Three
proteins (apolipoprotein I-IV precursor, serpin peptidase inhibitor and haptoglobin
precursor) were significantly modified by the chemical induction. They characterized
stimulus responses (23%), immune responses (15%), biological regulations (15%),
metabolism (15%), organization of cellular components or biogenesis (8%), cellular
process (8%), biological adhesions (8%) and localization (8%), which related to
chondrocytes glycolysis/death, neovascularization, subchondral bone necrosis/collapse
and inflammation.
Conclusions. The surgical inducedOAmodel showed a wider range of protein changes,
which were most upregulated at week 12. The biological process proteins expressions
showed the chemical induced joints had slower OA progression compared to surgical
induced joints. The chemical induced OA joints showed early inflammatory changes,
which later decreased.
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INTRODUCTION
Osteoarthritis (OA) is a joint degeneration disease caused by the imbalance between
cartilage degradation and synthesis, commonly due to aging. OA symptoms include joint
pain, inflammation, morning stiffness, and decreased physical function, especially in the
knee and hip. OA is characterized by deterioration of cartilage, formation of osteophyte
and osteosclerosis, degradation of subchondral bone and tendons, inflammation of the
synovium tissue, perforation of the trabecular plate, loss of trabecular bone and bone cysts
(Burr & Gallant, 2012; Li et al., 2013).

OA includes cartilage disorder and subchondral bone deterioration (Burr & Gallant,
2012;Goldring & Goldring, 2016). Articular cartilage degradation involves overexpression of
matrix catabolic enzymes, inflammation, oxidative stress, and deterioration of proteoglycan
and collagen matrix. Around 9.6% of males and 18% of females exceeding 60 years of age
are impacted by OA (World Health Organization, 2013), resulting in reduced quality of
life and productivity as well as an increased economic burden or medical cost (Salter, Su
& Lee, 2014). Current therapies, which include physiotherapy, orthopedic aids (orthoses),
drugs, and surgery have limited efficacy. Pharmacological treatment has been limited due
to adverse effects on cartilage (Huskisson et al., 1995) and gastrointestinal tract (Davies
et al., 1997), whereas surgical intervention possesses many risks such as infection, blood
clot and longer recovery rate.

Animal models used in pre-clinical OA research are classified into spontaneous and
induced OA, further subcategorized into surgically or chemically induced OA models.
Surgical OA induction modifies the joint strain/stress, leading to joint instability and
damage. The anterior cruciate ligament transection (ACLT) is the most common method
for surgical induced OA, entailing subchondral bone destruction and resulting in drastic
cartilage changes (Lampropoulou-Adamidou et al., 2014). ACLT causes joint destabilization
followed by post-traumatic osteoarthritis and reproduces the articular cartilage degradation
after ACL injury (Piskin et al., 2007), or blunt trauma to cartilage, menisci, and subchondral
bone (Teeple et al., 2013). The surgical model effectively yields a rapid OA progression;
hence, it is convenient for short-term research but not for studies on early OA (Kuyinu et
al., 2016). ACLT also causes changes in cell morphology and tissue equilibrium, especially
in the femoral condyle cartilage (Buckwalter, Mankin & Grodzinsky, 2005). For chemical
induced OA, monosodium iodoacetate (MIA) is most commonly used (Guingamp et
al., 1997; Takahashi, Matsuzaki & Hoso, 2017). MIA suppresses the glyceraldehyde-3-
dehydrogenase activity required for glycolysis in chondrocytes, resulting in apoptosis,
cartilage degradation, proteoglycan loss, functional joint impairment and subchondral
bone lesions (Pitcher, Sousa-Valente & Malcangio, 2016; Xie et al., 2012), similar to human
OA.
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Previous reports compared bone changes, histology, biochemistry and biomechanics
of surgical versus chemical induced OA (Naveen et al., 2013) and concluded that chemical
induced OAmimicked human OA. Each of the induced OAmodels has its own advantages,
and no single model is considered the gold standard in assessing OA.

To the best of our knowledge, the synovial proteomic profiles between the two induced
models have not been compared yet. This study analyses the proteome profiles of synovial
fluids at different stages of surgical or chemical induced OA in rabbits, to provide further
insights on the pathophysiology of OA and pave the road for future applications.

METHODS
Animals
Thirty male New Zealand white rabbits (A-Sapphire Enterprise, Malaysia) aged 8–9
months and weighing 1.8–2.0 kg were placed in Animal Research Facility, Faculty of
Veterinary Medicine, Universiti Putra Malaysia. Each rabbit was kept in an individual
stainless-steel cage at 22–25 ◦C, under a 12hr/12hr light/dark cycle with 50–60% relative
humidity. Rabbits were fed with commercial rabbit pellets (Penternakan Hong Lee Sdn.
Bhd., Malaysia) and given fresh water ad libitum. The rabbits were acclimatized for
one week prior to OA induction. Approval by the Institutional Animal Care and Use
Committee (IACUC), Universiti PutraMalaysia was obtained for the experimental protocol
(UPM/IACUC/AUP-R034). The rabbits were randomly grouped into surgically induced
OA rabbits and chemically induced OA rabbits, with 15 individuals in each group. Rabbits
were further subdivided into week 4, week 8 and week 12 time groups with five individuals
in each group. OA was induced at the right knees of the animals, and the contralateral joint
was used as a healthy control.

Preparation of animal model of surgically induced and chemically
induced osteoarthritis
Anterior cruciate ligament transection (ACLT) was done for surgically induced OA
group on the right stifle with a scalpel, under surgically sterile conditions, as described
by Vignon et al. (1987). The animals were anesthetized with Zoletil R© (Virbac, Milperra,
Australia) at 3 mg/kg via intramuscular route and maintained with isoflurane (3%)
(Piramal Healthcare, India). In order to expose the anterior cruciate ligament, medial
patella dislocation was performed by lateral parapatellar arthrotomy approach with the
stifle joint being fully flexed. Once visualized, irrigation with sterile saline was made onto
the stifle joint. Subsequently, using 4-0 polydioxanone suture, closure of the joint capsule
and subcutaneous tissue was done. Skin closure was done using 3-0 nylon suture. Tramadol
(Duopharma, Kuala Lumpur, Malaysia) 2mg/kg was given twice daily for three days as
painkiller. The animals were caged with unrestricted movement until anaesthetic recovery.

The OA chemical induction was administered with 0.32 ml of 25 mg/ml monosodium
iodoacetate (MIA) (Sigma-Aldrich, Burlington, MA, USA) dissolved in saline, injected into
the intraarticular space of the stifle joint, under general anaesthesia (Zoletil R©) at 2 mg/kg
via intramuscular route.
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Euthanization and sample collection
Rabbits were visually inspected for any clinical signs, such as weight loss or immobility. In
each group, rabbits were subdivided into week 4, week 8 and week 12 time groups. Because
both joint amputations were required to collect the samples, rabbits were euthanized
following the experiment with 120 mg/kg pentobarbital sodium (Vetoquinol, Magny-
Vernois, France) to avoid suffering caused by risk of infection and also immobilization.
Knee joints were removed and immediately fixed in 10% buffered formalin (Sigma-
Aldrich). After 24 h, the muscle and tissue surrounding the femur and tibia were removed
carefully to avoid damaging the cartilage surface. The proximal femur and distal tibia were
placed in 10% buffered formalin. Medial and lateral femoral condyle and tibial plateau
of left and right stifle joints were photographed by P7000 digital camera (Nikon, Tokyo,
Japan) at macro setting. They were examined for gross morphological changes, including
erosions at the medial and lateral articular cartilage surfaces. Synovial fluids were collected
via arthrocentesis, placed in a 1.5 ml microcentrifuge tube and stored immediately at
−80 ◦C until subsequent analysis.

Histology
Bones from harvested joint were decalcified immediately fixed in 10% buffered formalin
(Sigma-Aldrich) and were decalcified with 10% formic acid (Nacalai Tesque, Japan) for 10
days. The femur and tibia were cut at a dorsal plane. Samples were dehydrated in a series of
immersion in alcohol using Leica TP1020 Semi-enclosed Benchtop Tissue Processor (Leica
Biosystem, Wetzlar, Germany). Next, the samples were embedded in paraffin using Leica
EG1150H and EG11559 Modular Tissue Embedding Center (Leica Biosystems, Wetzlar,
Germany) and sliced at 5 µm using Reichert-Jung 2045 Multicut Rotary Microtome (Leica
Biosystems, Germany) and mounted on glass slides. Prior to staining, the slides were
deparaffinized and hydrated using distilled water. Next, they were stained using Fast Green
(FCF) solution for five minutes and rinsed with 1% acetic acid before being stained using
0.1% Safranin-O solution for five minutes. The slides were dehydrated and cleared with
95% ethyl alcohol and absolute ethyl alcohol, alternately at two minutes each for two times.
The slides were then observed under microscope (Motic, China) under 20x magnification
and scored independently by two blinded observers. The changes of articular cartilage
were scored using OARSI Scoring System (Pritzker et al., 2006). Histological evaluation
of subchondral bone was done by measuring the percentage of bone volume over tissue
volume (BV/TV). The measurement was done according to Nagira et al. (2020). In brief,
the compartments of osteochondral units were defined, including cancellous bone (Cn.B),
bone marrow (BM) and trabecular bone (Tb.B)(Fig. 1). The calculation of BV/TV was
done as follows: Bone volume (BV/TV, %) = (Cn.B region - BM regions)*/Cn.B region
×100, (*Cn.B region - BM regions = Tb.B regions) (Fig. 1). Calculations were done using
ImageJ with bone histomorphometry method.

Statistical analysis
Sample size estimation using power analysis was performed before conducting the
experiment, which was based on prior work that detected 23 significantly differentially
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Figure 1 Definition of tissue compartment in subchondral bone.White square dotted line, cancellous
bone (Cn. B), yellow round dotted line, bone marrow (BM). Calculation of BV/TV: Bone volume (BV/TV,
%)= (Cn.B region –BM regions)*/Cn.B region×100, * Cn.B region –BM regions= Tb.B regions.

Full-size DOI: 10.7717/peerj.12897/fig-1

expressed proteins between OA induction group and control group (Luo et al., 2018). A
sample size of seven rabbits per group were determined (α= 0.05, power >80%). However,
in view of the large sample size, sample size of 5 rabbits per group was chosen as suggested
by the Animal Research Committee. Power analysis was done using G*Power software
(Faul et al., 2007). Articular cartilage scoring data were tabulated as median and statistical
comparisons for scoring between groups were analysed using the Kruskal-Wallis (K-W)
non-parametric ANOVA and followed up with Dunn’s multiple comparison tests. BV/TV
value of subchondral bone evaluation were analysed using one-factor analysis of variance
(ANOVA) and multiple comparison among groups were analysed using Tukey’s HSD post
hoc test. All analysis were done using Graphpad Prism 7 (Graphpad Software, San Diego,
CA, USA). The level of significance was at α= 0.05.

Protein precipitation from synovial fluid
Proteins from synovial fluid were precipitated using modified TCA/Acetone precipitation
method (Chen et al., 2005). Before protein precipitation, synovial fluid samples were
centrifuged at 3,000×g at ambient temperature for 10 min to remove cells and cellular
debris. The synovial fluid samples were pooled for each group and precipitated with
cold 10% trichloroacetic acid (TCA) (Chemiz, Selangor, Malaysia) in 1:4 ratio inside
a microcentrifuge tube. Samples were kept for 60 min in a −20 ◦C chiller, before
centrifugation at 12,000×g for 60 min at 4 ◦C. The supernatant was removed without
disrupting the protein pellet. Protein pellets were washed three times with cold 100%
acetone and centrifuged at 14,000×g for 20 min, then the supernatant was removed.
Finally, the microcentrifuge tube was inverted on the C-fold tissue and air-dried for 30 s.
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Protein concentration estimation
Protein pellets were resuspended and solubilized with rehydration buffer containing 7 M
urea, 2 M thiourea, 4% CHAPS, and 0.002% bromophenol blue. Protein concentration
was determined using the 2D Quant Kit (GE Healthcare, Stockholm, Sweden), following
manufacturer’s protocol. A standard curve was obtained using 2 mg/ml Bovine serum
albumin (BSA) stock solution. 500 µl precipitant was inserted into each tube, vortexed and
incubated at ambient temperature for 2–3min, then 500µl co-precipitant was added. Tubes
were then vortexed and centrifuged for 5 min at 10 000 x g and supernatant discarded.
The tubes were centrifuged again. The residual supernatant was decanted. Copper solution
(100 µl) and distilled water (400 µl) were added to each tube, and precipitated protein was
dissolved by vortexing. The working reagent (1 ml) was added to each tube and mixed by
inversion instantaneously. Absorbance was measured using Cary R©50 UV-Vis spectrometer
at 480 nm (Varian Inc., Palo Alto, CA, USA).

Isoelectric focusing
Synovial fluid protein (250 µg) was rehydrated overnight using 13 cm immobilized pH
gradient strips pH 3–10 ImmobilineTM DryStrip gels (IPG) (GE Healthcare, Stockholm,
Sweden). The samples were focused with a low starting voltage followed by a voltage
gradient of 15 000 to 20 000 V, with a 50 mA strip limiting current. Strips were stored at
−80 ◦C until further analysis.

Two-dimensional gel electrophoresis (2DGE)
For 2DGE, strips were first equilibrated for 15 min with 50 mg dithiothreitol (DTT) in
equilibrium solution (50 mM tris–HCl pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 0.002%
bromophenol blue) (GE Healthcare, Sweden), followed by 15 min alkylation using 125
mg iodoacetamide (IAA) (GE Healthcare, Sweden) in equilibrium solution. The strips
were positioned on top of 12% gradient slab polyacrylamide gels and secured with molten
0.5% agarose in running buffer (25 mM tris pH 8.3; 198 mM glycine; 0.1 percent w/v
SDS) with a drop of bromophenol blue. Gels were run at 140 V for 10 min, then at 200
V for 55–60 min using Ruby SE 600 system (GE Healthcare, Stockholm, Sweden). Gels
were stained using colloidal Coomassie R350 (GE Healthcare, Stockholm, Sweden) and
destained using destaining solution (40% methanol, 7% glacial acetic acid, 53% distilled
water).

Gel images were obtained using a GS-800TM Optimized Densitometer for intra-sample
and inter-sample variability evaluation (Bio-Rad Laboratories, Hercules, CA, USA).
The digitized images were aligned and analyzed using Progenesis SameSpots software
(Nonlinear Dynamics, Durham, NC, USA). According to manufacturer’s instruction,
spots were detected, matched and normalized. Differential protein spots between control
and inducedmodels were determined using normalized spots and compared with reference
gel image. Fold difference and p-values were calculated using one-way ANOVA. Threshold
value was set at 1.5 fold change for upregulation and downregulation with p≤ 0.05.
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Protein digestion and matrix-assisted laser desorption/ionization time
of flight/time of flight mass spectrometry (MALDI-TOF/TOF)
Gels were rinsed twice using distilled water, and 2DGE spots were excised manually
under sterile conditions. Spots were digested in a two-day process. On day one, the
excised gel spots were washed with 150 µl of 100 mM ammonium bicarbonate (ABC)
for 10 min and vortexed. Following that, wash solution (50% acetonitrile in 100 mM
ABC) was added twice, 5 min for each wash. This process was repeated until the gel dye
was utterly destained. Reduction solution (150 µl of 10 mM DTT in 100 mM ABC) was
then added and gel spots were incubated at 60 ◦C in water bath for 30 min. Alkylation
solution (150 µl of 55 mM IAA in 100 mM ABC) was added before incubation in the
dark for 20 min. The solution was removed, and wash solution was added twice, 20 min
for each wash. Next, 50 µl of 100% acetonitrile was added and incubated at ambient
temperature for 15 min. Gel spots were then vacuum-dried using ScanVac (Labogene,
Denmark) for 1 h. Finally, 25 µl of 7 ng/µl trypsin solution were added, before incubation
overnight at 30 ◦C. On the next day, 25 µl of 50% acetonitrile were added and gel spots
were incubated for 15 min at ambient temperature. After centrifugation at 14,000×g,
supernatant samples were collected and transferred to new tubes. Then, 20 µl of 100%
acetonitrile were added before incubation for 15min. The obtained solutionwas transferred
into a new tube and the peptide was vacuum-dried and resuspendedwith 5µl–10µl of 0.1%
trifluoroacetic acid. The digested protein sample underwent desalting and concentration
using µZipTipC18 pipette tips (Millipore, Bedford, MA, USA). Protein samples were then
analyzed using ultraflextreme MALDI-TOF/TOF mass spectrometer (Bruker, Bremen,
Germany). Peptide-matrix compounds were loaded using the dried droplet technique on
the instrument target plate. The used matrix compound was α-cyano-4-hydroxycinnamic
acid (CHCA) (Bruker, Bremen, Germany). Samples were analyzed with MASCOT version
3.5 (Matrix science, USA) using the MASCOT search engine against the sequence of
Oryctolagus cuniculus species in the NCBInr database. Samples with p≤ 0.05 were accepted
as significant.

RESULTS
General condition of rabbit models
Compared to the chemically induced OA joints, the joint effusion development in the
surgically induced OA joints showed a more severe time-dependent swelling and warmth.
Both groups showed no clinical signs of pain, immobility or reduction in body weight and
were healthy prior to euthanization. The rabbits’ average weight prior to euthanasia is 2.4
kg and ranged from 1.8 kg–3.6 kg.

Visual inspection of the joint and gross anatomy of the femoral condyle
and tibial plateau
The gross morphology of the femoral condyle and tibial plateau showed no significant
changes before week 4 and were similar to the control. The articular cartilage of the joints
from both induced OA groups was smooth and polished without any surface irregularities.
OA features such as surface erosions were observed on the femur and the tibia of both
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Table 1 OARSI histopathological grade of femur and tibia in the control, week 4, week 8 and week 12 for the surgically and chemically induced
group.

Control Week 4 Week 8 Week 12

ACLT
(median,
range)

MIA
(median,
range)

ACLT
(median,
range)

MIA
(median,
range)

ACLT
(median, range)

MIA
(median,
range)

ACLT
(median,
range)

MIA
(median,
range)

Femur 0 0 0 (0–1) 0.5 (0–1.5) 1 (0.5–2) 1.5 (1–1.5) 1 (0–2.5) 4.25 (2–5.5)
Tibia 0 0 0 (0) 1 (0.5–1) 0 (0–1) 3 (3–5) 2 (1.5–2.0) 5 (4.5–5.5)

groups in week 8. Erosions were more notable on the femur lateral condyle cartilage but
had generalized distribution on the tibia articular cartilage. The joints displayed similar
significant osteoarthritic features in both induced OA groups at week 12. Joints from
surgically induced OA had more apparent erosion on the medial condyle of femoral and
tibial cartilages. In contrast, joints from chemically induced OA showed evenly distributed
erosions at the articular cartilage surface.

Histopathological articular cartilage grading, subchondral bone
evaluation and statistical analysis
Significant cartilage erosion was found in surgically induced and chemically induced OA
group whereas control group showed a normal chondrocytes distribution and smooth
cartilage surface in both femur and tibia. OARSI histopathology score was shown in
Table 1 and Fig. 2, and representative histological images for femur and tibia was shown
in Figs. 3 and 4. For femur, in the surgically induced group, uneven articular surface and
superficial fibrillation were observed (Figs. 3B, 3C) at week 4 and week 8 after induction.
Superficial zone fibrillation was observed during week 12. Chemically induced group
showed a more severe articular cartilage changes indicated by cartilage erosion which was
observed during week 8 and week 12 (Figs. 3G, 3H). For tibia, surgically induced group
showed superficial fibrillation and chondrocytes apoptosis indicated by empty chondrons
during week 8. During week 12, deep fibrillation and surface discontinuity was observed.
Again, chemically induced group showed a more severe changes with surface erosion
presence during week 8 and week 12 (Figs. 4G, 4H).

Histopathological evaluation of subchondral bone recorded decreased BV/TV value in
surgically induced group for week 4 and week 8 in comparison with control (Fig. 5). At
week 12, BV/TV value in surgically induced group increased slightly compared to week 8.
For chemically induced group, BV/TV value decreased persistently from week 4 until week
12. The same pattern was recorded for both induction groups for tibia bone.

Evaluation of protein yield and two-dimensional gel electrophoresis
analysis
The precipitated protein concentrations from both induction groups ranged between 3.11–
19.9 µg/ml. The 2DGE gels showed that throughout OA progression protein expression
profiles are different from healthy control. The joints from surgically-inducedOA displayed
28 significant matched spots (p≤ 0.05; fold change expression ≥1.5) (Fig. 6A), whereas
joints from chemical induced OA displayed a total of 23 matched protein spots (p≤ 0.05;
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Figure 2 OARSI histopathological scores for (A) surgically induced femoral cartilage (B) chemically
induced femoral cartilage (C) surgically induced tibial cartilage (D) chemically induced tibial cartilage
Values are presented in median with 95% confidence interval (n = 5). Significant difference (Dunn’s
multiple comparisons, p< 0.05) between column with the same letter within the groups.

Full-size DOI: 10.7717/peerj.12897/fig-2

fold change expression ≥1.5) (Fig. 6B). The log normalized volume were calculated
using SameSpot software. The spots were then manually excised and identified using
MALDI-TOF/TOF.

Identification of proteins spots
Twenty eight and 11 non-redundant proteins were identified from joints with surgical
induced and chemical induced OA, respectively. However, only seven proteins from
surgical induced OA joints and three proteins from the chemical induced OA joints have
significantly different (p≤ 0.05) fold-change expressions (≥1.5) when analyzed as log
normalized volume (Table 2).

The proteins were classified by their biological process functions (Table 3). In the
surgically induced OA joints, proteins were characteristics of cellular process (27%),
organization of cellular components or biogenesis (27%), localization (27%) and biological
regulation (18%). For chemically induced OA joints, proteins were involved in stimulus
responses (23%), immune responses (15%), biological regulations (15%), metabolism
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Figure 3 Representative histology images of femoral articular cartilage. (A–D) Surgically induced
group. (E–H) Chemically induced group. Safranin-O/fast green stained with 20×magnification. Surgically
induced group showed apoptosis indicated by empty chondrons (red arrow) during week 4 and superfi-
cial fibrillation (red asterisk) during week 8. Chemically induced group showed surface erosion as early as
week 8 (red arrowhead).

Full-size DOI: 10.7717/peerj.12897/fig-3

Figure 4 Representative histology images of tibial articular cartilage (A–D) surgically induced group.
(E–H) chemically induced group. Safranin-O/fast green stained with 20x magnification.During week 4,
surgically induced group showed chondrocyte apoptosis (red arrow) and fibrillation (red asterisk) during
week 8. Cartilage erosion (red arrowhead) were present during week 12. For chemically induced group,
erosion can be observed during week 8 and week 12.

Full-size DOI: 10.7717/peerj.12897/fig-4

(15%), organization of cellular components or biogenesis (8%), cellular process (8%),
biological adhesions (8%) and localization (8%).
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Figure 5 Subchondral bone BV/TV values for (A) femur and (B) tibia in week 4, week 8 and week 12
for the control, surgically (ACLT) and chemically (MIA) induced group.No significant difference be-
tween groups were reported. The results are represented as mean (±SD).

Full-size DOI: 10.7717/peerj.12897/fig-5

Figure 6 Representative 2DGE (pI 3-10) image for rabbit synovial fluid in (A) surgically induced
group and (B) chemically induced group after staining with colloidal Coomassie stain.Gels from
respective groups were scanned and analyzed with Progenesis SameSpot software and protein spots
(circled in red) were selected to be picked.

Full-size DOI: 10.7717/peerj.12897/fig-6

DISCUSSION
The effusion developments in the surgically induced OA joints were observed as early
as week 4 and increased significantly until week 12. Other reports on in vivo OA rabbit
models detected severe joint effusion 2 weeks post-surgery, which grew prominent at week
8. The effusion in the surgically induced OA joints was more severe compared to the
chemically induced OA joints, probably indicating greater post-operative inflammation
severity (Bouchgua et al., 2009).
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Table 2 List of proteins and their log normalized volume for control, week 4, week 8 and week 12 for
both induction groups. The results are represented as mean (±SD).

Protein Mean (± SD)

Control Week 4 Week 8 Week 12

Surgically-induced group
alpha-1-antiproteinase F precursor 5.11(±0.3) 5.1(±0.37) 5.5(±0.3) 5.35(±0.23)
histidine-rich glycoprotein 4.94 (±0.17) 5.03(±0.06) 5.1(±0.39) 5.41(±0.35)
retinol-binding protein 4 5.26(±0.18) 5.49(±0.12) 5.12(±0.35) 5.38(±0.42)
beta-actin-like protein 2 isoform X1 4.56(±0.28) 4.83(±0.21) 4.49(±0.38) 4.91(±0.04)
Full=Ig kappa-b4 chain C region 6.19(±0.41) 6.35(±0.23) 6.22(±0.07) 6.38(±0.09)
Serotransferrin 5.15(±0.2) 5.34(±0.3) 5.58(±0.51) 5.75(0.18)
Gelsolin isoform 4.94 (±0.17) 5.03(±0.05) 5.1(±0.39) 5.41(±0.35)
Chemically-induced group
Serpin peptidase inhibitor 6.21 (±0.10) 6.47 (±0.08) 6.28± (0.22) 6.18 (±0.15)
Haptoglobin precursor 4.85 (±0.04) 5.05 (±0.13) 5.38 (±0.15) 5.07 (±0.27)
Apolipoprotein I-IV precursor 4.94 (±0.05) 5.45 (±0.20) 5.35 (±0.13) 5.21 (±0.11)

Table 3 Characterization of proteins according to biological group for surgically and chemically in-
duced group.

Biological process Percentage (%)

Surgically-induced group
Cellular process 27
Cellular Component Organization & Biogenesis 27
Localization 27
Biological Regulation 18

Chemically-induced group
Response to Stimulus 23
Immune System Response 15
Biological Regulation 15
Metabolic Process 15
Cellular Component Organization & Biogenesis 8
Cellular Process 8
Biological Adhesion 8
Localization 8

The gross morphology suggested that the OA damage in both groups was only manifest
after 8 weeks post-induction. In surgically induced OA, joint lesions were more prominent
on the medial condyle area, which is similar in humans, where the medial compartment
is the most commonly affected. This relates to the meniscus functions, as the medial
meniscus is the more important attachment for tibia movement at the knee (Campos et al.,
2013). Thus, the ACLTmodel most effectively mimics human post-traumatic osteoarthritis
(PTOA). Histological assessment of cartilage and subchondral bone is accepted as a gold
standard in assessing and monitoring OA progression in animal models. This assessment
can be used to observe different stages of joint degeneration (Rutgers et al., 2010).
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Histological analysis revealed slight articular cartilage changes in surgically and
chemically induced (Man &Mologhianu, 2014) OA during week 4 which indicated
initiation of OA in both groups that may be pronounced over time. This is in line with
previous report in which ACLTmodel in rabbits showed slower lesion progression between
3 and 6 weeks and the intensity of the lesion increases 6 weeks post-induction (Campos et
al., 2013). During week 8 and week 12, more severe changes were observed in chemically
induced group based on higher histological scoring. Similarly, previous study detected
obvious degenerative changes in the cartilage as early as six to ten weeks after monosodium
iodoacetate induction (Mohan et al., 2011). Subchondral bone histopathological evaluation
in surgically induced group showed increased BV/TV values during week 12, suggesting the
occurrence of bone remodeling indicating higher OA progression (Fell et al., 2019). As for
chemically induced group, continuous decline in BV/TV throughout 12 weeks may be due
to less loading of induced knee which triggered weight distribution alterations (Guingamp
et al., 1997).

Induction using monosodium iodoacetate will lead to chondrocytes apoptosis that will
first cause changes in morphological and histological features of articular cartilage before
changes in subchondral bones (Naveen et al., 2013). On the other hand, surgical induction
using ACLTmethodwill cause destabilization of the joint and increased load at subchondral
bone. Osteoclasts’ activity will increase and induced subchondral bone loss (Botter et al.,
2009) and subsequently bone remodeling at later stages. Therefore, subchondral bone
resorption is the initiating factor for articular cartilage degradation in surgically induced
group and it can be concluded that changes in the bone preceded changes in the articular
cartilage in ACLT induction (Yang et al., 2020).

The proteome profiles revealed four similar proteins detected in both groups: histidine-
rich glycoprotein (HRG), serotransferrin, alpha-1-antiproteinase and immunoglobulin.
Only HRG, serotransferin and alpha-1-antiproteinase expressions were significantly
changed in the surgically induced OA joints. Immunoglobulin is one of the most highly
expressed proteins, and its presence in both groups was expected since no depletion kit
was used in this study. HRG, detected in both groups, is a multifunctional plasma protein
interacting with the immune system. Previous studies showed that HRG binds strongly to
some complementary proteins such as c4b binding protein, C1q, and factor H, and is one
of the most present proteins in rheumatoid arthritis patients’ synovial fluid and plasma
(Manderson et al., 2009). However, the role of HRG in OA is still unclear.

An upregulation of most identified proteins was observed in joints from surgically
and chemically induced OA. Nevertheless, surgically induced OA displayed slight
downregulation of alpha-1-antiproteinase protein, an acute-phase protein that protects
tissue from uncontrolled proteolysis damage and is upregulated by pro-inflammatory
interleukin-6 (Ucar et al., 2007). Such decrease indicates that inflammation and
chondroprotection loss started at week 4 in the surgically induced OA model.

The retinol-binding protein 4 (RBP-4) was more upregulated in week 4 compared to
week 8 and week 12. It belongs to the lipocalin family and is a blood retinol carrier positively
correlated with the collagen degrading matrix metalloproteinases (MMPs) MMP-1 and
MMP-13 (Scotece et al., 2018). MMP-13 was released in response to mechanical injury or
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joint destabilization (Rose & Kooyman, 2016), so this could explain RBP-4 expression in
surgically induced OA joints.

In chemically induced OA joints, apolipoprotein I-IV precursor and serpin peptidase
inhibitor proteins were most upregulated at week 4 compared to week 8 and week
12. Apolipoprotein is a pro-inflammatory acute-phase protein involved in lipid and
cholesterol metabolism, found to be upregulated synovial fluids of OA patients (Nguyen
et al., 2017). Apolipoprotein induces IL-6 expressions in human primary chondrocytes
(De Seny et al., 2015). Serpin peptidase inhibitor inhibits serine proteases and MMPs
regulation, aggrecanase plasmin, angiogenesis activity, tissue mitogens and inflammatory
leukocyte proteases (Gobezie et al., 2007) in OA. These protein control processes such as
inflammation and coagulation. The upregulation of apolipoprotein suggested that joint
inflammation occurs early at week 4 post-induction. This consequently caused increased
serpin peptidase inhibitor expression, which is negative feedback for MMP regulation
following OA-related joint inflammation.

During week 8, downregulation of beta-actin-like protein-2 isoform X1 and RBP-4
was observed in surgical induced OA joints compared to the control group. Upregulation
during week 4 followed by downregulation during week 8 indicated that OA progression
was ongoing. Beta-actin-like protein 2 isoform X1 is a highly conserved protein responsible
for cell motility, structure and integrity. Beta-actin-like protein 2 isoform X1 was most
upregulated in the femur lateral secretome of early OA patients (Stenberg et al., 2013) and
was also identified in synovial fluid of OA patients (Gobezie et al., 2007).

In chemically induced OA joints, the haptoglobin precursor was highly upregulated.
Haptoglobin has immunomodulatory effects and reduces hemolysis-associated oxidative
damage by binding with free hemoglobin (Cray, Zaias & Altman, 2009). The upregulation
of haptoglobin precursor indicated that OA progressed from week 4 and persisted until
week 8. A previous study reported haptoglobin expression was reduced as much as 70%
in early shoulder OA patients (Wanner et al., 2013). The increased haptoglobin level in
advanced OA is due to later upstream cytokine release (Liao et al., 2015).

In the surgically induced OA joints, the strongest upregulation of gelsolin and
serotransferrin occurs at week 12, indicating advanced stage OA. Gelsolin is a major
extracellular actin scavenging system component and a novel MMP-14 substrate, as shown
in a previous study that demonstrates the cleavage of plasma gelsolin by MMP-14 (Park
et al., 2006). MMP-14 can activate MMP-2 and MMP-13, involved in tissue turnover
and upregulated in diseased state (Rose & Kooyman, 2016). Gelsolin was decreased in
rheumatoid arthritis patients (Osborn et al., 2008) but increased in OA individuals (Mateos
et al., 2012), where it is considered a putative biomarker. Thus, gelsolin upregulation in
surgically induced OA joints from the early stage until week 12 indicates rapid disease
progression because of MMP-14 activation.

Serotransferin upregulation was revealed in both types of OA joints. Serotransferin
is secreted from the liver and involved in iron transport from absorption sites, from
heme degradation to storage and utilization (Nylund et al., 2014). Serotransferin is
a traditional acute-phase protein that reflects increased OA and RA inflammatory
conditions. In this study, serotransferin levels are slightly downregulated in chemically
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induced joints and upregulated in surgically induced joints. Other studies reported
serotransferin downregulation in OA (Gharbi, Deberg & Henrotin, 2011; Nylund et al.,
2014), which contradicts the results from our surgically induced model. Serotransferrin
was downregulated in early shoulder OA patients but upregulated by 50% in late OA
patients (Wanner et al., 2013). This suggests that based on the protein expressed, surgically
induced OA progression may be more advanced at week 12 compared to chemically
induced OA.

Overall, surgically induced OA development occurred immediately after induction and
continuously progressed until the end of the experimental duration (week 12), when most
of the identified proteins were strongly upregulated. In chemically induced OA joints,
the levels of the identified proteins were highest during the initial stage of induction
and lowered at the final stage, suggesting that chemically induced OA develops rapidly
during the initial stage but slows down or partially recovers at the later stages, based on
the results at the molecular level. In the surgically induced group, destabilization of the
joint will trigger the release of proinflammatory cytokines which subsequently activates
acute phase response that were expressed by alpha-1-antiproteinase protein. Concurrently,
retinol binding protein-4 and gelsolin release activated MMP related pathways. As for the
chemically induced group, increased articular cartilage degradation will continue to release
pro-inflammatory cytokines which in turn stimulated the release of acute phase proteins
such as haptoglobin precursor and apolipoprotein I-IV precursor which involved in acute
phase response. In addition, local response in the joint triggered a negative feedback
mechanism on the inflammatory response through the expression of serpin peptidase
inhibitor.

Surgically induced OA joints were associated with more cellular process changes.
Synovitis is characterized by increased cellularity and cartilage damage at the advanced OA
stages. Surgically induced OA mimics post-traumatic OA, which promotes angiogenesis
(Liu et al., 2019). In surgically induced OA joints, angiogenesis involves cellular biological
migration, growth and differentiation of endothelial cells, and organization of cellular
components. Apolipoprotein is the metalloproteinase substrate that modulates angiogenic
responses (Quintero-Fabián et al., 2019). Gelsolin, which is upregulated in surgically
induced OA joints, is an important regulator of cellular functions for osteoclasts motility
and podosomes (cell adhesion structures) formation (Silacci et al., 2004).

Chemically induced OA joints were associated with more diverse biological processes,
although this group has fewer significant protein changes. The most represented proteins
were involved in response to stimulus (23%) and in immune responses, biological
regulation, and metabolic process (15%). The MIA induction disrupts chondrocytes
glycolysis by suppressing glyceraldehyde-3-phosphatase dehydrogenase, subsequently
causing mitochondrial pathway chondrocyte apoptosis involving reactive oxygen species
(ROS) production (Jiang et al., 2013), neovascularization, necrosis and collapse of
subchondral bone, as well as inflammation (Pitcher, Sousa-Valente & Malcangio, 2016).
These processes involve changes in cell states and activities following a stimulus, thus
causing major upregulation of stimulus–response proteins. In chemical induced OA
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joints, serpin peptidase inhibitor upregulation inactivates proteinase inhibition by ROS-
associated oxidative inactivation, which causes further joint inflammation (Jones et al.,
1998). Haptoglobin precursor and apolipoprotein are acute-phase proteins, released or
activated in acute response following defective chondrocyte metabolism (Sipe, 1995). In
auto-inflammatory and non-auto-inflammatory OA, immune regulation may be crucial
for altering cell osmosis and inflammatory response in periostitis, which is associated with
osteophytes formation in OA (Lu et al., 2014).

This study indicates that surgically induced OA developed more rapidly compared to
chemically induced OA, based on the expressed biological process of proteins associated
with advanced stage OA. The choice of OA induction is depending on the type of study
that will be conducted, where surgically induced OA is suitable studies with a shorter time
frame and chemically induced OA is suited for studies that needed a longer duration.

Several limitations were noted in this study. The main limitation to this study is the
small numbers of animals in each group (n= 5) for each time point which also reflected
the absence of sham control group. This is due to the suggestion by the Animal Care
Committee as a consideration for the welfare of the rabbits. While this may hampers a
more robust conclusion, it does provide significant preliminary data which may justify
larger scale studies to be conducted. Also, decision to use contralateral joint as control
was to reduce the number of animals to be sacrificed. In a study by Mustafy, Londono &
Villemure (2018), contralateral joint can be accepted as a suitable control model as they
showed high degree of similarities, with no significant differences among all evaluated
mechanical, geometrical and morphological parameters. In addition, proteomics analysis
was done using synovial fluid which was in direct contact with primary tissues of each joint.
Hence, the results obtained for each joint would not completely correlated with each other
as proteins expressed in each joint were relatively different as synovial fluid reflected the
condition of each individual joint, showed focal changes in particular joints and therefore
was reliable in characterizing changes in control and experimental joints.

The limitations in using rabbit models is the difference in joint biomechanics and
gait in comparison with human, and structural difference in joint tissues (McCoy, 2015).
However, although the translatability of each animal models to human clinical conditions
are different, rabbit models are one of the widely used animal models as it is easily
reproducible, low cost and easier in handling.

Changes in meniscus and synovium can also be observed to further elucidate disease
progression as OA will cause degenerative changes in the meniscus by the loss of Type
1 and Type II collagen. In addition, synovial macrophage which is originated from
synovium will be activated during inflammation process (Kuyinu et al., 2016). However,
in this study, as synovial fluid is originated from synovium that releases various cytokines
and pro-inflammatory mediators during disease progression (Danila, 2014), we would
like to propose a non-invasive or less invasive method to assess the progression of OA
using synovial fluid. This method will provide an early indication of OA development
and intervention to stop or reduce further degeneration of joint and can represent OA
progression.
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CONCLUSIONS
This study showed the surgical induced model showed a wider range of proteome profile
and had the highest upregulation of most proteins at week 12. On the other hand,
chemically induced joints have slower OA progression compared to surgically induced
joints, based on the biological process proteins expressed. The chemically induced joints
showed inflammatory changes at the early phase but had decreased expression at the later
stages.
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