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Abstract: Aryl Hydrocarbon Receptor (AhR) is an evolutionary transcription factor which acts as
a crucial sensor of different exogenous and endogenous molecules Recent data indicate that AhR
is implicated in several physiological processes such as cell physiology, host defense, proliferation
and differentiation of immune cells, and detoxification. Moreover, AhR involvement has been
reported in the development and maintenance of several pathological conditions. In recent years,
an increasing number of studies have accumulated highlighting the regulatory role of AhR in the
physiology of the skin. However, there is evidence of both beneficial and harmful effects of AHR
signaling. At present, most of the evidence concerns inflammatory skin diseases, in particular atopic
dermatitis, psoriasis, acne, and hidradenitis suppurativa. This review exam-ines the role of AhR
in skin homeostasis and the therapeutic implication of its pharmacological modulation in these
cutaneous inflammatory diseases.

Keywords: aryl hydrocarbon receptor; atopic dermatitis; psoriasis; acne; hidradenitis suppurativa

1. Introduction

Aryl Hydrocarbon Receptor (AhR), a ligand-dependent transcription factor, is known
to mediate the biochemical and toxic effects of xenobiotics, environmental stresses, endoge-
nous ligands, microbial-derived products, and physiological compounds such as trypto-
phan derivatives [1–5]. Recent data indicate that AhR is implicated in several physiological
processes such as xenobiotic metabolism, cell cycle regulation, reproduction, development,
and immune response, by playing a pivotal role in signaling networks [5–7]. Moreover,
AhR involvement has been described in the pathogenesis of different diseases [7].

AhR signaling appears to play an important role in maintaining skin homeostasis by
regulating metabolism of environmental toxins, oxidative stress, photoinduced response,
keratinocytes differentiation, epidermal barrier function, melanogenesis, and skin immune
network [8–10]. Several studies showed that the positive or negative biological conse-
quences of AhR activation in the skin are highly dependent on the presence or absence
of a pathological condition, the specific ligand triggering AhR activation or inhibition,
and other contributing factors [11,12]. In healthy skin, AhR is constitutively active, and
canonical and non-canonical-mediated signaling processes are tightly balanced [13]. In
xenobiotic AhR ligand–exposed skin, canonical AhR signaling may become dominant
and lead to a set of adverse effects such as increased expression of reactive intermediates,
aging, or development of skin cancer [13]. Conversely, in chronically inflamed skin disease,
such as atopic dermatitis (AD) and psoriasis, high levels of non-canonical AhR-partner
molecules are expressed [13] (Table 1).
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Table 1. Effects of activation of AhR signaling in inflammatory chronic skin diseases.

Atopic Dermatitis Psoriasis Acne Hidradenitis
Suppurativa

Effects of AhR
Activation in

Inflammatory Skin
Disease

Expression of genes
encoding FLG, LOR, IVL,
and other barrier-related
proteins in the EDC loci
Up-regulation of OVOL1

transcription factor
important for the

epidermal differentiation
AHR axis activation

inhibits the
IL-13/IL-4-mediated

STAT6 phosphorylation
and restores the

IL-13/IL-4-mediated FLG
decrease

Induction of ARTN gene
expression

Significant reduction in
epidermal and scale

thickness with milder
parakeratosis and cell

infiltration
Reduced expression of

proinflammatory
cytokines IL-22, IL-17a,

and IL23
Reduced neutrophil

recruitment

Inhibitory effects in
human sebocytes, with
a reduction in sebum

production

Modulation in
release of IL-17

Aryl hydrocarbon receptor (AhR); Filaggrin (FLG); Loricrin (LOR); Involucrin (IVL); Epidermal Differentiation Complex (EDC); OVO like1
transcription factor (OVOL1); Interleukin (IL); Signal Transducer, and Activator of Transcription 6 (STAT6); Artemin (ARTN).

General observations regarding AhR function in the skin are also complicated by
the responses of various cell types found in the skin, including keratinocytes, dermal
fibroblasts, Langerhans cells (LCs), melanocytes, sebocytes, and immune skin cells (mast
cells, CD8+ T cells, and dendritic cells (DCs)), all of which have been shown to express AhR
at different levels [8]. AhR expression correlates very well with the differentiation status
of the skin cells. Proliferating keratinocytes show low nuclear AhR levels and are greatly
unresponsive to ligand activation, whereas differentiated cells have high cytoplasmic
receptor levels [14].

We performed a narrative review of the international literature regarding the role of
AhR and therapeutic implication of its pharmacological modulation in some skin diseases.

2. Aryl Hydrocarbon Receptor Signaling

To exert its role at transcriptional level, AhR forms a heterodimer with its Class II
partner Aryl Hydrocarbon Receptor Nucleus Translocator (ARNT), thus recognizing a
specific Xenobiotic Response Element (XRE, or DRE for Dioxin Response Element) in the
promoter of downstream genes [15]. Both AhR and ARNT contain a transactivation domain
(TAD) in their C-terminal region, mediating the transcription initiation by recruiting
transcription factors and co-regulators to the transcriptional site [16,17].

Canonical and non-canonical signaling pathways activated by AhR have been identi-
fied (Figure 1). Canonical AhR is described in detail in several studies [18,19]. In inactive
state, AhR is located in the cytoplasm in a protein complex including a dimer of 90-kDa heat
shock protein (Hsp90), co-chaperones p23, and the human hepatitis B virus X-associated
protein (XAP2) [20]. The chaperon complex maintains AhR in an inactive and stable confor-
mation with a high-binding affinity for ligand and retains the receptor in the cytoplasm [4].
Upon ligand-binding by either exogenous or endogenous agonists, AhR undergoes confor-
mational changes leading to the dissociation of p23 and XAP2, the unmasking of Nuclear
Localization Signal (NLS), and the consequent translocation in the nucleus through the
interaction with importin β [15]. The ligand-dependent nuclear import of AhR is negatively
regulated by phosphorylation for Ser-12 or Ser-36 at the two phospho-kinase C (PKC) sites
adjacent to the NLS of AhR, suggesting a two-step mechanism in the ligand-dependent
nuclear translocation of AhR involving firstly a phosphorylation event, then the binding
to importin β for the nuclear shuttling of the protein [21,22]. Upon nuclear transloca-
tion, Hsp90 is released with the formation of a AhR:ARNT heterodimer [15]. Then, the
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AhR:ARNT complex binds to upstream regulatory regions of its target genes which contain
canonical aryl hydrocarbon XRE elements. The complex with DNA then recruits coacti-
vators, which alter the chromatin structure into a more accessible configuration through
histone acetyltransferase and histone methyltransferase activities. In the canonical path-
way, the AhR–ARNT–XRE interactions regulate the expression of genes involved both in
phase I and phase II xenobiotic-metabolizing enzymes (e.g., cytochromes P450 (CYP) 1A1,
CYP1A2, CYP1B1 and UDP glucuronosyltransferase 1 family polypeptide A6), associated
with adaptive or toxic responses to exogenous agonists [23,24].
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Figure 1. Canonical and non-canonical signaling pathways activated by AhR. In canonical pathways upon ligand-binding
by either exogenous or endogenous agonists, AhR undergoes conformational changes leading to the dissociation of p23
and XAP2 with consequent translocation in the nucleus and formation of a AhR:ARNT heterodimer. The AhR:ARNT
complex binds to upstream regulatory regions of its target genes which contain canonical aryl hydrocarbon XRE elements.
In non-canonical pathway ligand-AhR complex can interact directly with sites distinct from the consensus XRE.

The AhR non-canonical pathway occurs through alternative binding of nuclear AhR
independent of ARNT and can result in expression of genes needed to maintain home-
ostasis [24]. Among genes recognized as AhR targets, many do not contain a consensus
XRE and ligand-AhR complex can interact directly with sites distinct from the consensus
XRE, such as unliganded estrogen receptor or retinoblastoma protein (RB) [24–26]. Indeed,
some genes regulated by AhR have sequences known as non-consensus XRE (NC-XRE)
containing a repeated tetranucleotide motif; thus, the interaction with ARNT is not neces-
sary [24,27]. KLF6 is a transcriptional factor involved in several cellular processes, such
as proliferation, differentiation and apoptosis, and alterations in its expression are asso-
ciated with various types of malignancies [28]. NF-κβ is another example of a protein
that interacts directly with AhR in the absence of ARNT AhR activity is influenced by
several endogenous and exogenous ligands [29]. Endogenous ligands are metabolites
derived from tryptophan catabolism, since AhR regulates the expression of enzymes of
the metabolic pathway converting tryptophan in kynurenine [30]. Endogenous ligands of
AhR may also derive from photo-oxidation of tryptophan, such as 6-formylindolo(3,2-b)
carbazole (FICZ) [31]. Instead, diet is a source of exogenous AhR ligands; in particular,
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tryptophan-derived flavonoids or indoles contained in some vegetables such as Bras-
sicaceae [29]. Indoles in the stomach are condensed in indolic agonists of AhR, while
flavonoids have both agonists and antagonist activity [29]. Other exogenous AhR ligands
are of microbial origin, namely from skin and gut microbiota. These ligands are mainly
tryptophan metabolites acting on AhR [29]. Finally, many environmental substances may
influence AhR function, including polycyclic aromatic hydrocarbons and halogenated aro-
matic hydrocarbons (dioxins) [29]. These substances can induce alteration of differentiation
and proliferation of keratinocytes [29], as well as may induce reactive oxygen species with
subsequent cellular oxidative damage [29–32].

3. The Role of AhR in Skin Physiology

AHR influences skin physiology through its ability to mediate UVB stress response
and antiapoptotic signaling in response to UV [33,34]. In keratinocytes, the AhR is activated
in response to UVB, resulting in the up-regulation of CYP1A1 and CYP1B1 expression,
and the activation of epidermal growth factor receptor (EGFR) signaling [33,35]. The
explanation is that photoproducts are formed endogenously upon exposure to UVB and
act as agonists for the AhR [36]. For example, some metabolites of tryptophan, an essential
amino-acid that acts as the strongest natural near-UV-absorbing chromophore, represent
a group of ligands for AhR involved in the induction and progression of skin cancer [37].
Additionally, the endogenous AhR ligand (FICZ) was found to be produced in human
keratinocytes after exposure to UVB [36,38]. However, the effect of AhR in the presence of
UVB seems to be twofold. By sensing UVB, if on the one hand AhR seems to contribute to
the UV stress response system which orchestrates adaptive changes [39], on the other AhR
is involved in the induction of regulatory T cells (Tregs) and in the maintenance of their
suppressive activity [40]. The first activity appears to be dependent on the activation of the
AhR in dendritic cells, the latter in the Tregs themselves [40]. So, AhR can be added to the
list of molecular targets that the UV utilizes for exerting immunosuppression.

Another factor by which the AhR contribute to skin homeostasis is through activation
by ligands of skin microflora. FICZ was detected in skin scale from patients suffering
inflammatory skin diseases associated with the yeast genus Malassezia, a commensal skin
microorganism that can become pathogenic [41]. Other high affinity AhR agonists were
identified in these patient-derived extracts, including indirubin, Indolo [3,2-b] Carbazole
(ICZ), tryptanthrin, malassezin, and pityriacitrin [41].

Notably, AhR:ARNT signaling has been reported to be pivotal in regulation of skin
barrier structure and function [42–48]. In particular, the activation of the axis by environ-
mental ligand such as dioxins, accelerates terminal epidermal differentiation, upregulating
the production of aberrant skin barrier-forming proteins in vivo and in vitro [42,43]. On the
other hand, both AhR and ARNT-deficient mice showed severe abnormalities in keratiniza-
tion and skin barrier function [44,45]. Mechanisms by which AhR signaling enhances skin
barrier function are not fully understood. However, it has been proven that AHR:ARNT
initiates the expression of OVO-like 1 (OVOL1) transcription factor which subsequently
improves the expression of filaggrin (FLG), hornerin (HNRN), and loricrin (LOR) proteins
specific to fully differentiated keratinocytes (KCs) and corneocytes [46,47]. Finally, in skin
cells the AhR appears to modulate the expression of genes such as metallo-proteinases
essential for cell motility during skin development and renewal [48].

4. Methods

The authors followed criteria established in the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines for this review [49]. A search
of the Pubmed, Embase, and Cochrane Skin databases and that of clinicaltrials.gov was
performed (until 1 October 2021). The search terms were “aryl hydrocarbon receptor”,
“AhR”, “dioxin-receptor”, “atopic dermatitis”, “psoriasis”, “acne”, “hidradenitis suppura-
tiva”. Only English-language publications were selected. Then, a revision of the abstracts
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and texts of the articles was made independently by each author. As a result, a total of
93 studies were selected for the evaluation in this review.

5. Atopic Dermatitis

AD is a chronic inflammatory T helper (Th)2 mediated skin disease clinically charac-
terized by eczema and itch. AD is usually localized in the flexures of the limbs, face, and
neck [50]. The AD rates have increased by 2- to 3-fold during the past decades in industri-
alized countries [51]. The latest estimates are that the prevalence of AD is about 15–20%
in children and 1–3% in adults [51]. Multiple factors contribute to the AD pathogenesis,
including skin barrier dysfunction, microbial dysbiosis, and immune dysregulation [52].
Interactions and crosstalk between these factors can reinforce and amplify atopic skin
disease [52]. Two pathogenetic models have been proposed to explain the pathogenesis
of AD: I) inside out model in which the abnormal epidermal phenotype in lesional AD
skin is initiated by increased expression of cytokines that induces the epidermal abnor-
malities; II) an outside-in one in which AD is a disease induced by a genetic epidermal
barrier defect that may trigger abnormal keratinocyte hyperplasia and secondary immune
activation [53–55].

In some atopic subjects, loss of function mutations of FLG have been observed [56].
FLG is a protein critical for epidermal differentiation and stratum corneum function [56,57].
FLG loss-of-function mutations may influence the physical skin barrier, resulting in antigen
penetration of the epidermis lower layers, activation of the immune response, and a deficit
in water homeostasis [58]. It has been reported that in patients with FLG mutations
AD is more persistent over time and more severe, more easily associated with allergic
sensitization, and with a more important deficit of the natural moisturizing factors [59].
In addition to FLG, other components of the skin barrier have been implicated in AD,
including tight junction proteins such as loricrin (LOR), involucrin (IVL) or claudin-1 [60].
All these proteins are encoded by genes in the epidermal differentiation complex (EDC)
located on chromosome 1q21.3 [59]. Several studies have demonstrated that the activation
of AhR is a crucial key of FLG expression in KCs [61–63]. Ligation of AhR to several
endogenous and exogenous ligands induces its cytoplasmic-to-nuclear translocation and
the expression of genes encoding FLG, LOR, IVL, and other barrier-related proteins in
the EDC loci [5,42,43,64–67]. In addition, the activation of AhR up-regulates the gene
and protein expression of OVOL1 transcription factor [63]. OVOL1 has been shown
to be a transcriptional factor important for the expression of epidermal differentiation
complex genes, including FLG, IVL, and LOR [46,62,68]. It was likely to be inhibited in
AD skin, leading to reduced FLG expression [62,68]. The AhR activation by agonist 6-
formylindolo[3,2-b]carbazole (FICZ), a tryptophan derivative, induces upregulation and
nuclear translocation of OVOL1 resulting in increased FLG expression [46].

Furthermore, AD has traditionally been considered a paradigmatic type 2 immunity
(T2)-driven disease [69]. In particular, interleukin-4 (IL-4) andIL-13 are produced at elevated
levels in the lesional and non-lesional atopic skin and are key regulators of many of the
hallmark features of AD, including epidermal hyperplasia, skin barrier dysfunction, and
production of eosinophil and chemokines [69]. The central role of IL-4, IL-13, and their
associated receptors in AD is best exemplified by the ongoing pursuit to pharmacologically
target these cytokines and/or their signaling components in AD [69]. Recently, some studies
have revealed that the Th1, Th2, Th22, and Th17 cells are also involved in the pathogenesis
of AD [70]. It has been demonstrated that Th22 and Th17 immune responses contribute
to chronic skin lesions of AD, especially in pediatric, intrinsic, and Asian patients [70].
Increased IL-17E levels have been found in the epidermis of AD patients and they seem to
inhibit the FLG synthesis in the keratinocytes [70].

AhR activation is associated with significant interference with Th2 cytokines IL-4 and
IL-13 [63]. IL-4 and IL-13 have partly shared receptor systems [69]. The binding of L-4
and IL-13 to their heterodimeric receptors activates Janus Kinase (JAK)1, JAK2, JAK3, and
tyrosine kinase (TYK)2, and induces the activation (phosphorylation) of signal transducer
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and activator of transcription (STAT)6 [64,69]. The IL-13/IL-4-JAK-STAT6 axis inhibits both
the AhR-mediated transcription of FLG, LOR, and IVL, and the cytoplasmic-to-nuclear
translocation of OVOL1 reducing the expression of FLG and LOR [64,69]. AhR can also
influence the itch of AD. Indeed, the gene ARNT encodes the neurotrophic factor artemin
responsible for epidermal hyperinnervation and pruritus; this gene and is keratinocyte-
specific and is targeted by AhR [69]. AhR activation and ARTN expression were positively
correlated in the AD skin of patients, and they are associated with alloknesis, epider-
mal hyper-innervation, and inflammation [71]. However, how AhR regulates immune
responses in sensitization phase of AD remained elusive [72]. Some authors showed that
benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans
cells and polarizes Th2/17 responses through the AhR, in atopic patients with a regulatory
mechanism [72]. Therefore, if on the one hand the AhR stimulation induced an increased
expression of proteins of the skin barrier, on the other hand the increased expression of
ARTN induced by AhR seems to be involved in the development of itchy symptoms.

So, although the pathogenic role of AhR in AD is not clear, recent clinical trials have
reported the efficacy of topical AhR agonist tapinarof in AD [73–78]. Tapinarof (DMVT-505;
previously known as WBI-1001 and GSK2894512) is a naturally derived hydroxylated
stilbene produced by bacterial symbionts of entomopathogenic nematodes with a high
affinity for AhR [73–76]. Tapinarof cream displayed significant efficacy in both patients
with AD or psoriasis, although its mechanism was not fully understood [79]. It activates the
AhR pathway through direct binding to the AhR-ARNT heterodimer and has antioxidant
properties probably due to its chemical structure that may also derive from Nrf2 pathway
activation [79]. It has been proposed that AhR/Nrf2 dual activation drives the efficacy of
coal tar, a traditional topical treatment for psoriasis and AD that contains complex mixtures
of polyaromatic hydrocarbons [67]. Furthermore, it has been showed that tapinarof induces
mRNA expression of the late differentiation biomarkers, including FLG and IVL, leads to
significant reduction of Th-17 cytokines, and reduces skin inflammation in an imiquimod
treated mice [79].

In a phase 2b, double-blind, vehicle-controlled, randomized study, adolescent and
adult patients tapinarof 1% cream demonstrated to be significantly more efficacious than
placebo and tapinarof 0.5% cream in achieving primary endpoint (proportion of patients
with an investigator global assessment (IGA) score of clear (0) or almost clear (1) or a
≥2-grade improvement in IGA score from baseline to week 12) [77]. This improvement
was maintained for 4 weeks after the end of the study treatment [77]. The adverse reactions
were more frequent for tapinarof compared to placebo, but they were mild to moderate in
intensity [78].

6. Psoriasis

Psoriasis is a common, chronic, immune-mediated skin disease characterized by hyper-
proliferation of keratinocytes with consequent scaly, erythematous, and well demarcated
plaques that can be painful and itchy [78]. Its pathogenesis can be explained by dysregula-
tion of immunological cell function as well as keratinocyte proliferation/differentiation [78].
Although Th-1 over-activation was thought to induce psoriasis occurrence, it has been
demonstrated that Th17 cells play a key role in psoriasis pathogenesis [78]. Th17 devel-
opment is maintained by IL-23 mainly produced by dendritic cells. Th17 cells produce
various cytokines, including IL-17A, IL-17F, and IL-22. IL-17A and IL-22 induce both
keratinocyte proliferation, and tumor necrosis factor (TNF)-α, chemokine (C-X-C motif)
ligand (CXCL)1 and CXCL8 production. TNF-α accelerates the infiltration of inflammatory
cells, including lymphocytes, monocytes and neutrophils, from the peripheral blood into
skin with dendritic cell activation.

In recent years, the involvement of AhR in the pathogenesis of psoriasis has been
reported [80–82]. In murine and human models of psoriasis induced by imiquomod, the
AhR stimulation with agonist FICZ resulted in attenuated psoriasiform skin inflammation,
with milder parakeratosis and cell infiltration, a significant reduction in epidermal and
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scale thickness, and reduced expression of proinflammatory mediators [82]. Conversely,
the blocking of AhR signal with the antagonist CH-223191 exacerbates psoriasis gene
expression in patient biopsies [82]. A dysregulation of genes implicated in the catabolism
of tryptophan has been described in psoriatic skin, leading to a low expression of naturally
derived products, such as FICZ, and subsequently to a decreased activation of AhR [83].
In addition, in mouse models the AhR gene silencing exacerbates skin inflammation with
upregulated gene expression of IL-22, IL-17a, and IL-23 [82]. Indeed, the AhR signaling
controls the expression of IL-22 and plays a central role in Th17 cells differentiation in vivo
and in vitro [84]. Studies in psoriatic patients have shown an increased AhR expression in
both peripheral blood mononuclear cells and skin biopsy samples [85,86]. These increased
levels are correlated to increased levels of Th22 cells and IL-22 [85–87]. IL-22 inhibits
terminal differentiation of keratinocytes and synergizes with the other pro-inflammatory
cytokines inducing psoriasis-like epidermis alterations [84]. Recently, Cardinali et al. have
tested the effects of two new synthetic AhR agonists, NPD-0614-13 and NPD-0614-24, in
human epidermal and full-thickness reconstituted skin models of psoriasis [88]. These
agonists are related to the natural agonist FICZ [67], have a pro-differentiating activity,
and reduce the expression of pro-inflammatory cytokines and antimicrobial peptides [88].
Finally, emerging evidence in psoriasis indicated that vascular endothelial cells (VECs)
participate in physiological and immunological functions such as in regulating leukocyte
recruitment [89]. Recently, it has been demonstrated that the stimulation of AhR expressed
on VECs is involved in the reduced neutrophil recruitment to the site of inflammation in
psoriatic skin [89].

AhR stimulation is proposed as a therapeutic mechanism for the treatment of psori-
asis, and tapinarof is one of the most studied topical drugs [90–93]. Its efficacy has been
attributed to its capacity to modulate gene expression that leads to significant reduction
of Th-17 cytokines implicated in psoriasis, including IL-17A and IL-17F, to increase an-
tioxidant response and to regulate the skin barrier protein expression, including FLG
and LOR [90–93]. In a phase 2b, double-blind, vehicle-controlled study in adults with
psoriasis treated with tapinarof 1% cream, a statistically significant clinical improvement
was demonstrated starting at week 2, maintained through week 16 [93]. The safety and
effectiveness of tapinarof 1% cream once daily has been evaluated in two randomized
phase 3 clinical trials completed in 2020 and awaits full publication (NCT02564042 and
NCT03983980) [92].

7. Acne

Acne is a multifactorial inflammatory disease affecting pilosebaceous follicles [94]. Key
elements in its pathogenesis are Propionibacterium acnes, keratinocyte hyperproliferation
in the follicle, androgen-mediated increase in sebum production, and inflammation [94].
In recent years, several studies have been performed linking the expression of AhR and
the appearance of acne [94,95]. In 2014, Fabbrocini et al. demonstrated the presence of
an increased AhR expression in the skin lesions of patients affected by acne living in
Campania (Italy), where epidemiological studies have suggested a possibly increased
exposure to environmental dioxins [95]. The activation of AhR signaling pathway seems to
have inhibitory effects in human sebocytes, with a reduction in sebum production [96]. An
in vitro study conducted on immortalized sebocyte lines investigated the function of AhR
in the control of sebum production and showed that its stimulation leads to an attenuation
of the expression of genes involved in lipogenesis [97]. Probably, a cross-talk between
AhR and Toll-like receptor (TLR)-2 is responsible for this effect [98]. On cultured human
sebocytes the TLR-2 stimulation with the agonist peptidoglycan (PGN) induced secretion
of inflammatory factors TNF-α and IL-8, but it is suppressed after knockdown of AhR and
pre-treatment with the AhR antagonist CH223191 [98]. In addition, the AhR agonist TCDD
enhanced TNF-α and IL-8 secretion in PGN-pretreated sebocytes [98]. Finally, Cao K. et al.
have demonstrated that formalin-killed Corynebacterium acnes activates the AhR pathway
in vitro, leading to inhibition of lipogenesis and induction of sebocyte differentiation [99].
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Chloracne is an acne-like eruption subsequent to the exposure to high concentrations of
polycyclic and halogenated aromatic hydrocarbons [100]. It seems to be associated with
acceleration of terminal differentiation of sebocytes that highly express AhR [101]. Ligation
of AhR by hydrocarbons stimulate the differentiation of sebocytes towards keratinocytes
with secondary hyperkeratinization of pilo-sebaceum unit, resulting in the disease [101].
Cinnamaldehyde that inhibitsAhR-CYP1A1 signaling in sebocytes has been reported to
improve chloracne [102].

8. Hidradenitis Suppurativa

Hidradenitis suppurativa (HS) is a chronic inflammatory disease of the hair follicle,
affecting skin areas with apocrine glands [103]. It is characterized by the appearance of
abscesses, fistulas, and suppurative cysts primarily in the axillary, inguinal, and anogenital
regions [103]. Guenin-Macé L et al. have demonstrated that in HS patients an alteration
in tryptophan catabolism induced by a normal bacterial skin flora, causes alteration in
the production of AhR agonists [104]. These data suggest the hypothesis that the immune
dysregulation underlying HS skin lesions may be caused by an alteration in the AhR
pathway [105]. Furthermore, AhR activation has been shown to modulate the release of
IL-17 by Th-17 lymphocytes, a cytokine that appears to be an important mediator in the
pathogenesis of HS [105,106]. However certainly further studies are needed.

9. Conclusions

In recent years, an increasing number of studies have accumulated highlighting the
regulatory role of AhR on the physiology of the skin. Consequently, its role in skin diseases
has been researched. However, there is evidence of both beneficial and harmful effects
of AHR signaling. Therefore, understanding of AHR function in the respective disease
driving pathways is required. At present, most of the evidence concerns inflammatory
skin diseases, in particular atopic dermatitis, psoriasis, acne, and hidradenitis suppurativa.
Indeed, AhR altered function seems to be associated with both skin barrier impairment
and releasing of proinflammatory cytokines, two of the pivotal factors of most chronic
inflammatory diseases. These observations show that drugs acting on AhR could be useful
in the treatment of such diseases. At the present time, the AhR agonist tapinarof, has
shown, in a clinical trial, to be effective in the treatment of some of these diseases. Of
course, more experience will be needed to confirm these data. Basic and pharmaceutical
research will also be needed to better clarify the role of AhR in the physiological and
pathological mechanisms of the skin, also with the aim of identifying new molecules
targeting AhR for the treatment of skin, inflammatory, and other diseases.
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receptor, cytochromes P450 1A1 and 1B1 in patients with exacerbated psoriasis vulgaris. Folia Biol. 2018, 64, 97–102.

87. Luan, L.; Ding, Y.; Han, S.; Zhang, Z.; Liu, X. An increased proportion of circulating Th22 and Tc22 cells in psoriasis. Cell. Immunol.
2014, 290, 196–200. [CrossRef] [PubMed]

88. Cardinali, G.; Flori, E.; Mastrofrancesco, A.; Mosca, S.; Ottaviani, M.; Dell’Anna, M.L.; Truglio, M.; Vento, A.; Zaccarini,
M.; Zouboulis, C.C.; et al. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands
NPD-0614–13 and NPD-0614–24: Potential Therapeutic Benefits in Psoriasis. Int. J. Mol. Sci. 2021, 22, 7501. [CrossRef]

89. Zhu, Z.; Chen, J.; Lin, Y.; Zhang, C.; Li, W.; Qiao, H.; Fu, M.; Dang, E.; Wang, G. Aryl Hydrocarbon Receptor in Cutaneous Vascular
Endothelial Cells Restricts Psoriasis Development by Negatively Regulating Neutrophil Recruitment. J. Investig. Dermatol. 2020,
140, 1233–1243.e9. [CrossRef]

90. Rodríguez Baisi, K.; Tollefson, M. Tapinarof to treat psoriasis. Drugs Today 2020, 56, 515–530. [CrossRef]
91. Bissonnette, R.; Stein Gold, L.; Rubenstein, D.S.; Tallman, A.M.; Armstrong, A. Tapinarof in the treatment of psoriasis: A review

of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent. J. Am. Acad. Dermatol.
2021, 84, 1059–1067. [CrossRef] [PubMed]

92. Robbins, K.; Bissonnette, R.; Maeda-Chubachi, T.; Ye, L.; Peppers, J.; Gallagher, K.; Kraus, J.E. Phase 2, randomized dose-finding
study of tapinarof (GSK2894512 cream) for the treatment of plaque psoriasis. J. Am. Acad. Dermatol. 2019, 80, 714–721. [CrossRef]
[PubMed]

93. Stein Gold, L.; Bhatia, N.; Tallman, A.M.; Rubenstein, D.S. A phase 2b, randomized clinical trial of tapinarof cream for the
treatment of plaque psoriasis: Secondary efficacy and patient-reported outcomes. J. Am. Acad. Dermatol. 2021, 84, 624–631.
[CrossRef] [PubMed]

94. Collier, C.N.; Harper, J.C.; Cafardi, J.A.; Cantrell, W.C.; Wang, W.; Foster, K.W.; Elewski, B.E. The prevalence of acne in adults 20
years and older. J. Am. Acad. Dermatol. 2008, 58, 56–59. [CrossRef]

95. Fabbrocini, G.; Kaya, G.; Caseiro Silverio, P.; De Vita, V.; Kaya, A.; Fontao, F.; Sorg, O.; Saurat, J.H. Aryl Hydrocarbon Receptor
Activation in Acne Vulgaris Skin: A Case Series from the Region of Naples, Italy. Dermatology 2015, 231, 334–338. [CrossRef]

96. Hu, T.; Pan, Z.; Yu, Q.; Mo, X.; Song, N.; Yan, M.; Zouboulis, C.C.; Xia, L.; Ju, Q. Benzo(a)pyrene induces interleukin (IL)-6
production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ.
Toxicol. Pharmacol. 2016, 43, 54–60. [CrossRef]

97. Muku, G.E.; Blazanin, N.; Dong, F.; Smith, P.B.; Thiboutot, D.; Gowda, K.; Amin, S.; Murray, I.A.; Perdew, G.H. Selective Ah
receptor ligands mediate enhanced SREBP1 proteolysis to restrict lipogenesis in sebocytes. Toxicol. Sci. Off. J. Soc. Toxicol. 2019,
171, 146–158. [CrossRef]

98. Hou, X.X.; Chen, G.; Hossini, A.M.; Hu, T.; Wang, L.; Pan, Z.; Lu, L.; Cao, K.; Ma, Y.; Zouboulis, C.C.; et al. Aryl Hydrocarbon
Receptor Modulates the Expression of TNF-α and IL-8 in Human Sebocytes via the MyD88-p65NF-κB/p38MAPK Signaling
Pathways. J. Innate Immun. 2019, 11, 41–51. [CrossRef] [PubMed]

99. Cao, K.; Chen, G.; Chen, W.; Hou, X.; Hu, T.; Lu, L.; Wang, L.; Pan, Z.; Wu, Q.; Li, X.; et al. Formalin-killed Propionibacterium
acnes activates the aryl hydrocarbon receptor and modifies differentiation of SZ95 sebocytes in vitro. Eur. J. Dermatol. 2021, 31,
32–40. [CrossRef]

100. Furue, M.; Tsuji, G. Chloracne and Hyperpigmentation Caused by Exposure to Hazardous Aryl Hydrocarbon Receptor Ligands.
Int. J. Environ. Res. Public Health 2019, 16, 4864. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jid.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28595996
http://doi.org/10.1111/1346-8138.14139
http://www.ncbi.nlm.nih.gov/pubmed/29226422
http://doi.org/10.1016/j.immuni.2014.04.019
http://www.ncbi.nlm.nih.gov/pubmed/24909886
http://doi.org/10.5021/ad.2020.32.5.360
http://doi.org/10.1038/jid.2010.36
http://doi.org/10.5021/ad.2021.33.2.138
http://www.ncbi.nlm.nih.gov/pubmed/33935455
http://doi.org/10.1002/eji.201546070
http://doi.org/10.1016/j.cellimm.2014.06.007
http://www.ncbi.nlm.nih.gov/pubmed/25046360
http://doi.org/10.3390/ijms22147501
http://doi.org/10.1016/j.jid.2019.11.022
http://doi.org/10.1358/dot.2020.56.8.3168447
http://doi.org/10.1016/j.jaad.2020.10.085
http://www.ncbi.nlm.nih.gov/pubmed/33157177
http://doi.org/10.1016/j.jaad.2018.10.037
http://www.ncbi.nlm.nih.gov/pubmed/30612986
http://doi.org/10.1016/j.jaad.2020.04.181
http://www.ncbi.nlm.nih.gov/pubmed/32446832
http://doi.org/10.1016/j.jaad.2007.06.045
http://doi.org/10.1159/000439402
http://doi.org/10.1016/j.etap.2016.02.011
http://doi.org/10.1093/toxsci/kfz140
http://doi.org/10.1159/000491029
http://www.ncbi.nlm.nih.gov/pubmed/30056444
http://doi.org/10.1684/ejd.2021.3964
http://doi.org/10.3390/ijerph16234864
http://www.ncbi.nlm.nih.gov/pubmed/31816860


Cells 2021, 10, 3559 13 of 13

101. Ju, Q.; Fimmel, S.; Hinz, N.; Stahlmann, R.; Xia, L.; Zouboulis, C.C. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters sebaceous gland
cell differentiation in vitro. Exp. Dermatol. 2011, 20, 320–325. [CrossRef]

102. Furue, M.; Fuyuno, Y.; Mitoma, C.; Uchi, H.; Tsuji, G. Therapeutic Agents with AHR Inhibiting and NRF2 Activating Activity for
Managing Chloracne. Antioxidants 2018, 7, 90. [CrossRef] [PubMed]

103. Napolitano, M.; Fabbrocini, G.; Marasca, C.; Monfrecola, G. Update on pathogenesis of hidradenitis suppurativa. G. Ital. Di
Dermatol. E Venereol. Organo Uff. Soc. Ital. Di Dermatol. E Sifilogr. 2018, 153, 3–7. [CrossRef]

104. Guenin-Macé, L.; Morel, J.D.; Doisne, J.M.; Schiavo, A.; Boulet, L.; Mayau, V.; Goncalves, P.; Duchatelet, S.; Hovnanian, A.; Bondet,
V.; et al. Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight
2020, 5, e140598. [CrossRef] [PubMed]

105. Schlapbach, C.; Hänni, T.; Yawalkar, N.; Hunger, R.E. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa.
J. Am. Acad. Dermatol. 2011, 65, 790–798. [CrossRef] [PubMed]

106. Yidana, D.B. Hidradenitis suppurativa–The role of interleukin-17, the aryl hydrocarbon receptor and the link to a possible fungal
aetiology. Med. Hypotheses 2021, 149, 110530. [CrossRef]

http://doi.org/10.1111/j.1600-0625.2010.01204.x
http://doi.org/10.3390/antiox7070090
http://www.ncbi.nlm.nih.gov/pubmed/30011787
http://doi.org/10.23736/S0392-0488.17.05798-4
http://doi.org/10.1172/jci.insight.140598
http://www.ncbi.nlm.nih.gov/pubmed/32970636
http://doi.org/10.1016/j.jaad.2010.07.010
http://www.ncbi.nlm.nih.gov/pubmed/21641076
http://doi.org/10.1016/j.mehy.2021.110530

	Introduction 
	Aryl Hydrocarbon Receptor Signaling 
	The Role of AhR in Skin Physiology 
	Methods 
	Atopic Dermatitis 
	Psoriasis 
	Acne 
	Hidradenitis Suppurativa 
	Conclusions 
	References

